首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beta-secretase as a therapeutic target for inhibitor drugs   总被引:3,自引:0,他引:3  
Recent identification of beta-scretasse being a membrane-associated aspartic protease has stimulated strong interest on this enzyme as a therapeutic target for Alzheimer s disease. Here we review the current understanding in the structure-function relationship as well as the status in the design of its inhibitors of this protease, memapsin 2 (BACE, ASP-2). The development in the basic tools, such as the preparation of recombinant memapsin 2, the assay method for kinetic measurements of inhibition, the determination of the subsite specificity and the crystal structure of memapsin 2 complexed to a tight-binding inhibitor, has made the structural based inhibitor design possible. More recent inhibitors, having Ki values in the nanomolar range and molecular size in low 700 Da, show some promise that clinically useful inhibitors of beta-scretasse may be attainable.  相似文献   

2.
The amyloid-beta (Abeta) peptide is the principal components of the senile plaques found in the brains of patients with Alzheimer's disease (AD). The poorly soluble 40-42 amino acid peptide, formed from the cleavage of the Abeta precursor protein (APP) by two proteases, is believed to play a central role in the pathogenesis of AD. Beta-secretase (memapsin 2, BACE1), a membrane-anchored aspartic protease, is responsible for the initial step of APP cleavage leading to the generation of Abeta. Identification and structural determination of beta-secretase have established it to be a primary drug target for AD therapy and stimulated active studies on the inhibitors of this protease. Here we review more recent developments in the design and testing of structure-based beta-secretase inhibitors.  相似文献   

3.
The family of aspartic proteases such as cathepsin D, gastricin, pepsin, renin, HIV protease and others have been the subject of molecular modeling in the field of drug design in the last years. The first aspartic protease inhibitor was reported thirty years ago as a renin inhibitor. The success of HIV protease inhibitors in preventing progression to AIDS was based on the transition state analogs of renin inhibitors. Taking these three decades into consideration, an astonishing variety of chemical classes, in vitro and in vivo activities and species specificities of inhibitors of aspartic proteases have been reported. Especially inhibitors of renin, HIV protease and secreted aspartic protease of Candida albicans are covered.  相似文献   

4.
5.
Structure-based design and synthesis of a number of potent and selective memapsin 2 inhibitors are described. These inhibitors were designed based upon the X-ray structure of memapsin 2-bound inhibitor 3 that incorporates methylsulfonyl alanine as the P2-ligand and a substituted pyrazole as the P3-ligand. Of particular importance, we examined the ability of the substituted isophthalic acid amide derivative to mimic the key interactions in the S2-S3 regions of the enzyme active sites of 3-bound memapsin 2. We investigated various substituted phenylethyl, alpha-methylbenzyl, and oxazolylmethyl groups as the P3-ligands. A number of inhibitors exhibited very potent inhibitory activity against mempasin 2 and good selectivity against memapsin 1. Inhibitor 5d has shown low nanomolar enzyme inhibitory potency (Ki=1.1 nM) and very good cellular inhibitory activity (IC50=39 nM). Furthermore, in a preliminary study, inhibitor 5d has shown 30% reduction of Abeta40 production in transgenic mice after a single intraperitoneal administration (8 mg/kg). A protein-ligand X-ray crystal structure of 5d-bound memapsin 2 provided vital molecular insight that can serve as an important guide to further design of novel inhibitors.  相似文献   

6.
Beta-secretase (BACE) as a drug target for Alzheimer's disease   总被引:4,自引:0,他引:4  
Evidence suggests that the beta-amyloid peptide (Abeta) is central to the pathophysiology of Alzheimer's Disease (AD). Amyloid plaques, primarily composed of Abeta, progressively develop in the brains of AD patients, and mutations in three genes (APP, PS1, and PS2) cause early on-set familial AD (FAD) by increasing synthesis of the toxic Abeta42 peptide. Given the strong association between Abeta and AD, therapeutic strategies to lower the concentration of Abeta in the brain should prove beneficial for the treatment of AD. Abeta is a proteolytic product of the large TypeI membrane protein, amyloid precursor protein (APP). Two proteases, called beta- and gamma-secretase, cleave APP to generate the Abeta peptide. For over a decade, the molecular identities of these proteases were unknown. Recently, the gamma-secretase has been tentatively identified as the presenilin proteins, PS1 and PS2, and the beta-secretase has been shown to be the novel transmembrane aspartic protease, beta-site APP Cleaving Enzyme 1 (BACE1; also called Asp2 and memapsin2). BACE2, a novel protease homologous to BACE1, was also identified, and the two BACE enzymes define a new family of transmembrane aspartic proteases. BACE1 exhibits all the properties of the beta-secretase, and as the key enzyme that initiates the formation of Abeta, BACE1 is an attractive drug target for AD. This review discusses the identification and initial characterization of BACE1 and BACE2, and summarizes our current understanding of BACE1 post-translational processing and intracellular trafficking. Finally, recent studies of BACE1 knockout mice, the BACE1 X-ray structure, and implications for BACE1 drug development will be discussed.  相似文献   

7.
8.
9.
HIV protease is a key enzyme to play a key role in the HIV-1 replication cycle and control the maturation from HIV viruses to an infectious virion. HIV-1 protease has become an important target for anti-HIV-1 drug development. Here, we used molecular dynamics simulation to study the binding mode between mannitol derivatives and HIV-1 protease. The results suggest that the most active compound (M35) has more stable hydrogen bonds and stable native contacts than the less active one (M17). These mannitol derivatives might have similar interaction mode with HIV-1 protease. Then, 3D-QSAR was used to construct quantitative structure-activity models. The cross-validated q(2) values are found as 0.728 and 0.611 for CoMFA and CoMSIA, respectively. And the non-cross-validated r(2) values are 0.973 and 0.950. Nine test set compounds validate the model. The results show that this model possesses better prediction ability than the previous work. This model can be used to design new chemical entities and make quantitative prediction of the bioactivities for HIV-1 protease inhibitors before resorting to in vitro and in vivo experiment.  相似文献   

10.
Summary This paper reviews the structure and function of monomeric eukaryotic aspartic proteinases and their inhibitors, including recent analyses of the sequences and the three-dimensional structural models of the plant aspartic proteinases, which contain a very large inserted domain that is homologous to saposins. The three-dimensional structures of renins, cathepsin D and cathepsin E complexed with inhibitors are described. These have provided an understanding of the relation between structure, catalysis and specificity useful for drug design. Finally, studies are presented of homologues of aspartic proteinases which are found during pregnancy in livestock; these have lost the catalytic residues characteristic of active enzymes, although they have the capacity to bind peptides.  相似文献   

11.
AIM: To build a model of 3D-structure of H , K -ATPase catalytic subunit for theoretical study and anti-ulcer drug design. METHODS: The model was built on the basis of structural data from the Ca2 -ATPase. Structurally conserved regions were defined by amino acid sequence comparisons, optimum interconnecting loops were se- lected from the protein databank, and amino (N)- and carboxyl (C)-terminal ends were generated as random coil structures. Applying molecular mechanics method th…  相似文献   

12.
13.
INTRODUCTION Beta-carbolines have been reported to possess sig-nificant antitumor activities[1,4,6,9,17], in addition thesecompounds are widely studied for their bioactivity inantibacterial, anti-radialization, anti-trypanosome, andneural activities as well as mutagenic and co-mutagenicproperties. Also they are potent and specific inhibitorsof cyclin-dependent kinases[2,3,5,8-10,12-17]. The extractscontaining beta-carbolines from the plant Peganumharmala have been widely used in Nor…  相似文献   

14.
Aspartic proteases are the smallest class of human proteases with only 15 members. Over the past years, they have received considerable attention as potential targets for pharmaceutical intervention since many have been shown to play important roles in physiological and pathological processes. Despite numerous efforts, however, the only inhibitors for aspartic proteases currently on the market are directed against the HIV protease, an aspartic protease of viral origin. Nevertheless, several inhibitors including those targeting renin, BACE1 and gamma-secretase are in clinical or preclinical development, and some other aspartic proteases are discussed as potential drug target. The crystal structures of seven human aspartic proteases have now been solved and, together with a detailed kinetic understanding of their catalytic mechanism, this has greatly contributed to the design and discovery of novel inhibitors for this protease class. This review describes current aspartic protease drug targets and summarizes the drug discovery efforts in this field. In addition, it highlights recent developments which may lead to a new generation of aspartic protease inhibitors.  相似文献   

15.
Current strategies in pharmaceutical research comprise two methodologically different but complementary approaches for lead finding purposes, namely the random screening of compound libraries and the structure-based effort, commonly termed rational drug design. The structure-based approach is aimed to exploit 3D structure data of the molecular components involved in the molecular recognition event that underlies the attempt to therapeutically modulate the biological function of a macromolecular target with proven pathophysiological relevance for a disease state. In this context, G protein-coupled receptors (GPCRs) constitute the most prominent family of validated drug targets within biomedical research, since approximately 60 % of approved drugs elicit their therapeutic effects by selectively addressing members of that target family. From a 3D structure point of view, these transmembrane signal transduction systems represent the most challenging task for structure determination, which is due to the heterogeneous and fine-balanced environment conditions that are necessary for structural and functional integrity of the receptor protein. This contribution will address the different concepts to derive structurally relevant information on the transmemebrane seven-helix protein (7TM) domain of GPCRs with special emphasis laid on the multidisciplinarity of the applied methodologies. The current status of electron-cryo-microscopy on 2D crystals and even high-resolution x-ray crystallography on 7TM proteins will be introduced highlighting the transferability of the emerging structural principles onto the GPCR superfamily. Special techniques from bioinformatics and homology-related molecular modeling in combination with tailor-made protein simulation methodologies complement the experimentally derived data, in that they facilitate the 3D structure generation and structure validation process. This contribution summarises the most recent results of GPCR structure studies with the aim to underline the impact of structure data not only for the purpose of rationalising structure-activity data on low-molecular weight antagonists within the context of a protein binding pocket, but also for a better understanding of e.g. mutagenesis experiments, thus qualifying GPCR structure models as valid communication platforms establishing a functional link between molecular biology, biophysics, bioinformatics and organic chemistry in a highly efficient manner.  相似文献   

16.
病毒3CL蛋白酶三维结构模型及其抑制剂的虚拟筛选(英文)   总被引:15,自引:2,他引:15  
目的:构建SARS病毒类3C(3CL)蛋白酶的三维结构模型,根据这一模型设计3CL蛋白酶的抑制剂。方法:用生物信息学方法从GenBank和PDB库中搜寻出具有晶体结构并与SARS病毒3CL蛋白酶有较高同源型的蛋白质,以此为模板,用同源蛋白模建方法构建SARS病毒3CL蛋白酶的三维结构模型;针对模建的三维结构模型,进行高通量虚拟筛选,从现有小分子数据库中获得具有抑制SARS病毒3CL蛋白酶活性的化合物。结果:同源性分析表明SARS病毒3CL蛋白酶与遗传性肠胃炎主蛋白酶(TGEV M~(pro)),有较高的同源性,组成底物结合口袋残基的同源性更高。因此,可以根据TGEV M~(pro)的晶体结构为模板模建SARS病毒3CL蛋白酶的三维结构。 三维结构模型表明,ARS病毒3CL蛋白酶的结构与TGEV M~(pro)的结构非常相象,两个蛋白酶活性口袋的结构和形状儿乎一样。虚拟筛选测试研究表明,MRRD数据库中的73个蛋白酶抑制剂能与两个蛋白同时作用。结论:无论是SARS病毒3CL蛋白酶还是TGEV M~(pro)的晶体结构均可以作为设计抗SARS药物的结构模型。从现有的蛋白酶抑制剂中筛选抗SARS药物可能是一条好的途径。  相似文献   

17.
18.
Fragment-based lead generation (FBLG) has recently emerged as an alternative to traditional high throughput screening (HTS) to identify initial chemistry starting points for drug discovery programs. In comparison to HTS screening libraries, the screening sets for FBLG tend to contain orders of magnitude fewer compounds, and the compounds themselves are less structurally complex and have lower molecular weight. This report summarises the advent of FBLG within the industry and then describes the FBLG experience at AstraZeneca. We discuss (1) optimising the design of screening libraries, (2) hit detection methodologies, (3) evaluation of hit quality and use of ligand efficiency calculations, and (4) approaches to evolve fragment-based, low complexity hits towards drug-like leads. Furthermore, we exemplify our use of FBLG with case studies in the following drug discovery areas: antibacterial enzyme targets, GPCRs (melanocortin 4 receptor modulators), prostaglandin D2 synthase inhibitors, phosphatase inhibitors (protein tyrosine phosphotase 1B), and protease inhibitors (b-secretase).  相似文献   

19.
目的寻找作为感冒229E抗原型冠状病毒3CL蛋白酶抑制剂的新化学结构。方法运用分子对接方法在ACD化合物库中发现天然产物金丝桃苷是潜在的新型抑制剂,借助分子模拟的方法进行结构改造,设计并合成了5个金丝桃苷衍生物,采用表面等离子共振(SPR)法测试这些化合物与该蛋白酶的结合能力。结果与结论衍生物Ⅱ、Ⅲ、Ⅳ与蛋白酶的结合能力比原天然产物Ⅰ提高了3倍以上,它们的结合构象也明显不同于Ⅰ与SARS病毒3CL蛋白酶的结合构象。这些结合模式的差异为设计选择性更好的感冒病毒3CL蛋白酶抑制剂提供了有益的参考信息。将计算机辅助药物分子设计、有机合成和生物活性测试有机地结合起来,是发现和设计感冒229E型病毒3CL蛋白酶新型选择性抑制剂的有效途径。  相似文献   

20.
Xue W  Pan D  Yang Y  Liu H  Yao X 《Antiviral research》2012,93(1):126-137
Hepatitis C virus (HCV) NS3/4A protease represents an attractive drug target for antiviral therapy. However, drug resistance often occurs, making many protease inhibitors ineffective and allowing viral replication to occur. Herein, based on the recently determined structure of NS3/4A-TMC435 complex, atomic-level models of the key residue mutated (R155K, A156V and D168A) NS3/4A-TMC435 complexes were constructed. Subsequently, by using molecular dynamics simulations, binding free energy calculation and substrate envelope analysis, the structural and energetic changes responsible for drug resistance were investigated. The values of the calculated binding free energy follow consistently the order of the experimental activities. More importantly, the computational results demonstrate that R155K and D168A mutations break the intermolecular salt bridges network at the extended S2 subsite and affect the TMC435 binding, while A156V mutation leads to a significant steric clash with TMC435 and further disrupts the two canonical substrate-like intermolecular hydrogen bond interactions (TMC435(N1-H46)?Arg155(O) and Ala157(N-H)?TMC435(O2)). In addition, by structural analysis, all the three key residue mutations occur outside the substrate envelope and selectively weaken TMC435’s binding affinity without effect on its natural substrate peptide (4B5A). These findings could provide some insights into the resistance mechanism of NS3/4A protease mutants to TMC435 and would be critical for the development of novel inhibitors that are less susceptible to drug resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号