首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Natural killer (NK) cells express inhibitory and activation receptors that recognize MHC class I-like molecules on target cells. These receptors may be involved in the critical role of NK cells in controlling initial phases of certain viral infections. Indeed, the Ly49H NK cell activation receptor confers in vivo genetic resistance to murine cytomegalovirus (MCMV) infections, but its ligand was previously unknown. Herein, we use heterologous reporter cells to demonstrate that Ly49H recognizes MCMV-infected cells and a ligand encoded by MCMV itself. Exploiting a bioinformatics approach to the MCMV genome, we find at least 11 ORFs for molecules with previously unrecognized features of predicted MHC-like folds and limited MHC sequence homology. We identify one of these, m157, as the ligand for Ly49H. m157 triggers Ly49H-mediated cytotoxicity, and cytokine and chemokine production by freshly isolated NK cells. We hypothesize that the other ORFs with predicted MHC-like folds may be involved in immune evasion or interactions with other NK cell receptors.  相似文献   

2.
Regunathan J  Chen Y  Wang D  Malarkannan S 《Blood》2005,105(1):233-240
Interaction of the activating ligand H60 with NKG2D receptor constitutes a major stimulatory pathway for natural killer (NK) cells. The influence of inhibitory Ly49 receptors on NKG2D-mediated activation is not clearly understood. Here we show that the magnitude of NKG2D-mediated cytotoxicity is directly proportional to both the levels of H60 and the nature of major histocompatibility complex (MHC) class I molecules expressed on the target cells. The expression levels of H60 on the target cells determined the extent to which the inhibition by Ly49C/I receptors can be overridden. In contrast, even a higher expression of H60 molecule on the target cells failed to overcome the inhibition mediated by Ly49A/G receptors. Also, the level of interferon-gamma (IFN-gamma) and granulocyte-macrophage colony-stimulating factor (GM-CSF) generated by NK cells through anti-NKG2D monoclonal antibody (mAb)-mediated activation is significantly reduced by the presence of immobilized anti-Ly49A/G mAbs. Thus, NKG2D-mediated cytotoxicity and cytokine secretion results from the fine balance between activating and inhibitory receptors, thereby defining the NK cell-mediated immune responses.  相似文献   

3.
Sun K  Alvarez M  Ames E  Barao I  Chen M  Longo DL  Redelman D  Murphy WJ 《Blood》2012,119(6):1590-1598
Natural killer (NK) cells can mediate the rejection of bone marrow allografts and exist as subsets based on expression of inhibitory/activating receptors that can bind MHC. In vitro data have shown that NK subsets bearing Ly49 receptors for self-MHC class I have intrinsically higher effector function, supporting the hypothesis that NK cells undergo a host MHC-dependent functional education. These subsets also play a role in bone marrow cell (BMC) allograft rejection. Thus far, little in vivo evidence for this preferential licensing across mouse strains with different MHC haplotypes has been shown. We assessed the intrinsic response potential of the different Ly49(+) subsets in BMC rejection by using β2-microglobulin deficient (β2m(-/-)) mice as donors. Using congenic and allogeneic mice as recipients and depleting the different Ly49 subsets, we found that NK subsets bearing Ly49s, which bind "self-MHC" were found to be the dominant subset responsible for β2m(-/-) BMC rejection. This provides in vivo evidence for host MHC class I-dependent functional education. Interestingly, all H2(d) strain mice regardless of background were able to resist significantly greater amounts of β2m(-/-), but not wild-type BMC than H2(b) mice, providing evidence that the rheostat hypothesis regarding Ly49 affinities for MHC and NK-cell function impacts BMC rejection capability.  相似文献   

4.
Mouse natural killer (NK) cells acquire effector function by an education process termed “licensing” mediated by inhibitory Ly49 receptors which recognize self-MHC class I. Ly49 receptors can bind to MHC class I on targets (in trans) and also to MHC class I on the NK-cell surface (in cis). Which of these interactions regulates NK-cell licensing is not yet clear. Moreover, there are no clear phenotypic differences between licensed and unlicensed NK cells, perhaps because of the previously limited ability to study NK cells with synchronized licensing. Here, we produced MHC class I-deficient mice with inducible MHC class I consisting of a single-chain trimer (SCT), ovalbumin peptide-β2 microgloblin-H2Kb (SCT-Kb). Only NK cells with a Ly49 receptor with specificity for SCT-Kb were licensed after MHC class I induction. NK cells were localized consistently in red pulp of the spleen during induced NK-cell licensing, and there were no differences in maturation or activation markers on recently licensed NK cells. Although MHC class I-deficient NK cells were licensed in hosts following SCT-Kb induction, NK cells were not licensed after induced SCT-Kb expression on NK cells themselves in MHC class I-deficient hosts. Furthermore, hematopoietic cells with induced SCT-Kb licensed NK cells more efficiently than stromal cells. These data indicate that trans interaction with MHC class I on hematopoietic cells regulates NK-cell licensing, which is not associated with other obvious phenotypic changes.The ability of natural killer (NK) cells to be activated by their targets is controlled by their activation and inhibitory receptors (1, 2). Activation receptors can recognize ligands expressed on their targets, triggering NK cells if their inhibitory receptors are not engaged. In mice, most Ly49 molecules are inhibitory receptors that recognize MHC class I molecules on target cells (3). Engagement of Ly49 receptors by MHC class I leads to signals that block NK-cell triggering during effector responses. These receptors explain the “missing-self” hypothesis, which postulates that NK cells survey tissues for normal levels of the ubiquitously expressed MHC class I molecule (4). In the absence of MHC class I, inhibition is released, and NK cells then can be activated through their activation receptors to kill and produce cytokines. Thus, the NK-cell inhibitory receptors control NK-cell responses at the effector level.NK cells in MHC class I-deficient mice, such as β2-microglobulin (β2m)−/− and TAP−/− mice, do not receive inhibitory signals and should be overactive (57). Instead, however, NK cells from these animals are hyporesponsive to activation receptor cross-linking. Moreover, NK cells apparently lacking known MHC-specific receptors also are hyporesponsive (8). Previously, we reported that the NK-cell inhibitory receptors have a second function that can explain these paradoxical findings (7). Through recognition of self-MHC class I via their inhibitory MHC class I-specific receptors, NK cells become licensed (or educated), resulting in the functional competence of their activation receptors. For example, in C57BL/6 (H2b) mice, Ly49C+ NK cells are licensed by recognition of self-H2Kb and secrete more IFN-γ after NK1.1 stimulation than do Ly49C NK cells. In contrast, IFN-γ production is comparable in Ly49A+ and Ly49A NK cells, indicating that Ly49A+ NK cells are not licensed in C57BL/6 mice because Ly49A does not recognize an H2b class I allele. On the other hand, Ly49A+ NK cells are specifically licensed in mice expressing its MHC class I ligand, H2Dd, as self-MHC. Thus, the recognition of self-MHC class I leads to enhanced function of NK-cell activation receptors, and this enhancement is influenced by self-MHC–specific Ly49 receptors in mice.Other studies suggest that a similar process occurs for human NK cells that preferentially express killer Ig-like receptors (KIRs) for HLA class I recognition and effector inhibition. Although the mouse lectin-like Ly49 receptors and human KIRs are structurally distinct, they share many other features, supporting the concept that each species evolved a different genetic solution for the MHC class I-specific inhibitory receptors; that is, Ly49 receptors and KIRs now are considered to be outstanding examples of convergent evolution (9, 10). As with NK cells bearing self-MHC–specific Ly49 receptors in mice, human NK cells with self-HLA–specific KIRs display enhanced function (1113). In contrast, NK cells from the same donor but without expression of self-HLA–specific KIRs show decreased function. Moreover, NK cells bearing the same KIR but without its cognate ligand in other donors do not display enhanced function. Thus, licensing (i.e., the education effects of self-MHC class I recognition by relevant NK-cell receptors) is now accepted as being operational in mice and humans (13).Other than expression of self-MHC–specific Ly49 receptors or KIRs and enhanced capacity to signal through their activation receptors, licensed mouse and human NK cells are not clearly distinguishable from unlicensed NK cells (7, 11, 12). However, this apparent similarity could result from a continuous process in which small numbers of NK cells are educated and then join “older” NK cells, and major phenotypic changes during licensing may be transient. Therefore previous phenotypic studies of licensed NK cells may have been limited by the inability to investigate NK cells in which licensing is synchronized.Crystallographic studies revealed two potential interaction sites on MHC class I at which interactions with Ly49 receptors might take place: Site 1 is on the left side of the peptide-binding cleft (when viewed from above with the α1 helix shown on top); site 2 is below the peptide-binding cleft (14). Mutational studies demonstrated that the Ly49 receptors engage site 2 in trans to inhibit effector functions, because point mutations at site 2 abrogated the capacity of transfected MHC class I molecules to inhibit NK cells in an Ly49-dependent manner (1517). Furthermore, we recently showed that these same residues are involved in conferring Ly49-dependent licensing effects because transgenic (Tg) expression of site 2-mutant MHC class I molecules failed to induce licensed NK cells, whereas wild-type MHC class I alleles allowed licensing (18). Thus, Ly49 receptors interact with the same site on their MHC class I ligands for effector inhibition and licensing, providing another link of these two processes.Because NK cells also express MHC class I molecules, prior studies suggested that Ly49 receptors also can interact with their ligands on the same NK-cell surface, i.e., in cis as well as in trans with their target cell (19). Site 2 on MHC class I molecules is involved in both cis and trans interactions of Ly49 receptors with their MHC class I ligands. Studies of Tg mice expressing a mutated Ly49A receptor that cannot engage in in cis interactions but retains the ability to engage in in trans interactions showed that NK cells expressing mutated Ly49A were not licensed, suggesting that NK cells are licensed via cis interactions (20). However, the possibility that the mutated Ly49A disrupted other unknown signals or interactions required for NK-cell licensing cannot be ruled out completely. Moreover, we and others recently identified the importance of trans interactions in NK-cell licensing because unlicensed splenic β2m−/− NK cells acquired the licensed phenotype when adoptively transferred to wild-type hosts (21, 22). On the other hand, non–H2Dd-expressing Ly49A+ NK cells can acquire H2Dd through contact with H2Dd-expressing cells in an Ly49A-dependent manner in vitro and in vivo (23, 24), suggesting that the transferred NK cells could have acquired host MHC class I, allowing potential interactions with MHC class I in cis as well as in trans. Thus, it remains unclear whether cis or trans interactions are required for NK-cell licensing.Previously, we used mice in which an MHC class I single-chain trimer (SCT) consisting of ovalbumin (OVA) peptide (SIINFEKL), β2m, and H2Kb heavy chain (SCT-Kb) is expressed in an MHC class I-deficient environment (7). The SCT-Kb molecule is specifically and solely recognized by Ly49C when stably expressed as a transgene in C57BL/6 mice, conferring the licensed phenotype to Ly49C+ NK cells. Here we were able to monitor Ly49C+ NK cells after acute induction of SCT-Kb and found that unlicensed Ly49C+ NK cells became licensed without changes in NK-cell maturation or activation markers or localization in spleen. Furthermore, our data showed trans interaction with hematopoietic cells is required for NK-cell licensing, but cis interaction is not.  相似文献   

5.
Subsets of natural killer (NK) cells are characterized by the expression of inhibitory and/or stimulatory receptors specific for major histocompatibility complex (MHC) class I determinants. In mice, these include the Ly49 family of molecules. One mechanism by which tumor cells may evade NK cell killing is by expressing the appropriate MHC class I and binding inhibitory Ly49 receptors. Therefore, the question of whether blocking the interaction between the Ly49 inhibitory receptors on NK and MHC class I cells on tumor cells augments antitumor activity was investigated. Blockade of Ly49C and I inhibitory receptors using F(ab')(2) fragments of the 5E6 monoclonal antibody (mAb) resulted in increased cytotoxicity against syngeneic tumors and decreased tumor cell growth in vitro. The effect of 5E6 F(ab')(2) was specific for the MHC of the tumor, as the use of F(ab')(2) of the mAb against Ly49G2 failed to increase NK activity. Treatment of leukemia-bearing mice with 5E6 F(ab')(2) fragments or adoptive transfer of NK cells treated ex vivo with the F(ab')(2) resulted in significant increases in survival. These results demonstrate that blockade of NK inhibitory receptors enhances antitumor activity both in vitro and in vivo, suggesting that NK inhibitory receptors can be responsible for diminishing antitumor responses. Therefore, strategies to block inhibitory receptors may be of potential use in increasing the efficacy of immunotherapy. (Blood. 2001;97:3132-3137)  相似文献   

6.
The Ly49 natural killer (NK)-cell receptor family comprises both activating and inhibitory members, which recognize major histocompatibility complex (MHC) class I or MHC class I-related molecules and are involved in target recognition. As previously shown, the Ly49E receptor fails to bind to a variety of soluble or cell-bound MHC class I molecules, indicating that its ligand is not an MHC class I molecule. Using BWZ.36 reporter cells, we demonstrate triggering of Ly49E by the completely distinct, non-MHC-related protein urokinase plasminogen activator (uPA). uPA is known to be secreted by a variety of cells, including epithelial and hematopoietic cells, and levels are up-regulated during tissue remodeling, infections, and tumorigenesis. Here we show that addition of uPA to Ly49E-positive adult and fetal NK cells inhibits interferon-gamma secretion and reduces their cytotoxic potential, respectively. These uPA-mediated effects are Ly49E-dependent, as they are reversed by addition of anti-Ly49E monoclonal antibody and by down-regulation of Ly49E expression using RNA interference. Our results suggest that uPA, besides its established role in fibrinolysis, tissue remodeling, and tumor metastasis, could be involved in NK cell-mediated immune surveillance and tumor escape.  相似文献   

7.
8.
Effective natural killer (NK) cell recognition of murine cytomegalovirus (MCMV)-infected cells depends on binding of the Ly49H NK cell activation receptor to the m157 viral glycoprotein. Here we addressed the immunological consequences of variation in m157 sequence and function. We found that most strains of MCMV possess forms of m157 that evade Ly49H-dependent NK cell activation. Importantly, repeated passage of MCMV through resistant Ly49H+ mice resulted in the rapid emergence of m157 mutants that elude Ly49H-dependent NK cell responses. These data provide the first molecular evidence that NK cells can exert sufficient immunological pressure on a DNA virus, such that it undergoes rapid and specific mutation in an NK cell ligand enabling it to evade efficient NK cell surveillance.  相似文献   

9.
Natural killer (NK) cells are the major effectors of acute rejection of incompatible bone marrow cell (BMC) grafts in lethally irradiated mice. The immunogenetics of BMC rejection are largely controlled by the coexpression (or not) of inhibitory and stimulatory Ly49 receptors whose ligands are class I major histocompatibility complex (MHC) molecules. The majority of the BMC rejection studies involved low numbers of BMCs that were resisted by host NK cells. In the present study, larger numbers of BMCs were given in which rejection was not detected and the role of different Ly49 NK subsets not presumably involved in the rejection of a particular BMC haplotype was examined. Surprisingly, the data show that the removal of NK cell subsets expressing Ly49 inhibitory receptors for donor class I antigens, which would be predicted to have no effect on the BMC rejection capability, resulted in the marked rejection of BMCs where no resistance was normally seen. These results extend the "missing self" hypothesis to suggest that NK Ly49 inhibitory receptors can both inhibit activation and killing by those cells, but also can in some way influence the function of NK cells that do not express that inhibitory receptor in a cell-cell interaction. This suggests that caution must be exercised before removal of host NK cell subset is applied clinically because enhanced BMC rejection may result. Altering the balance of Ly49 NK subsets may also affect other in vivo activities of these cells.  相似文献   

10.
Natural killer (NK) cells express inhibitory receptors for major histocompatibility complex (MHC) class I. If self-MHC is down-regulated or absent, lack of inhibition triggers "missing self" killing. NK cells developing in the absence of MHC class I are hypo-responsive, demonstrating that MHC class I molecules are required for NK-cell education. Here, we show that the number and the type of MHC class I alleles that are present during NK-cell education quantitatively determine the frequency of responding NK cells, the number of effector functions in individual NK cells, and the amount of interferon-gamma production in NK cells of specific Ly49 subsets. A relationship between the extent of inhibitory signals during education and functional responsiveness was corroborated by an enhanced probability of NK cells expressing more than one inhibitory receptor for a single host self-MHC class I allele to degranulate after activation. Our data suggest that the capacity of an individual NK cell to respond to stimulation is quantitatively controlled by the extent of inhibitory signals that are received from MHC class I molecules during NK-cell education.  相似文献   

11.
Natural killer (NK) cells are lymphocytes of the innate immune system able to recognize and kill tumors lacking self-MHC class I molecules. This “missing-self” recognition is mediated by the lack of engagement of MHC class I-specific inhibitory NK cell receptors that include the killer cell Ig-like receptors (KIR) in humans and Ly49 molecules in mice. A promising immunotherapeutic strategy against MHC class I+ cancer cells is to block NK cell inhibitory receptors using monoclonal antibodies (mAb). However, interactions between MHC class I molecules and their inhibitory receptors are also required for the acquisition of NK cell functional competence, a process referred as to “education.” In addition, inhibitory receptors are involved in self-tolerance on educated NK cells. Here, we developed a preclinical mouse model in which all NK cells are educated by a single transgenic inhibitory receptor, human KIR2DL3, through the engagement with its HLA-Cw3 ligand. This approach revealed that NK cells could be reprogrammed to control the development of mouse syngenic tumors in vivo. Moreover, in vivo anti-KIR mAb treatment induced the killing of HLA+ target cells without breaking self-tolerance. Finally, the long-term infusion of anti-KIR mAb neither abolished NK cell education nor tumor cell recognition. Therefore, these results strongly support the use of inhibitory receptor blockade in cancer patients.  相似文献   

12.
Stadnisky MD  Xie X  Coats ER  Bullock TN  Brown MG 《Blood》2011,117(19):5133-5141
MHC class I (MHC I) is essential to NK- and T-cell effector and surveillance functions. However, it is unknown whether MHC I polymorphism influences adaptive immunity through NK cells. Previously, we found that MHC I D(k), a cognate ligand for the Ly49G2 inhibitory receptor, was essential to NK control of murine (M)CMV infection. Here we assessed the significance of NK inhibitory receptor recognition of MCMV on CD8 T cells in genetically defined MHC I D(k) disparate mice. We observed that D(k)-licensed Ly49G2? NK cells stabilized and then enhanced conventional dendritic cells (cDCs) recovery after infection. Furthermore, licensed NK support of cDC recovery was essential to enhance the tempo, magnitude, and effector activity of virus-specific CD8 T cells. Minimal cDC and CD8 T-cell number differences after low-dose MCMV in D(k) disparate animals further implied that licensed NK recognition of MCMV imparted qualitative cDC changes to enhance CD8 T-cell priming.  相似文献   

13.
Koh CY  Ortaldo JR  Blazar BR  Bennett M  Murphy WJ 《Blood》2003,102(12):4067-4075
Natural killer (NK) cells are composed of subsets characterized by the expression of inhibitory or activating receptors, or both, specific for different major histocompatibility complex (MHC) class I determinants. We have previously shown that inhibitory receptor blockade of syngeneic NK cells was an effective means of ex vivo purging of leukemia-contaminated bone marrow and that the transplantation of mice with the purged bone marrow cells (BMCs) resulted in long-term, relapse-free survival. We have extended the investigation to assess the antitumor effects mediated by NK cells H2-allogeneic to tumor cells. We demonstrate that various tumor cell lines are more susceptible to lysis by H2-allogeneic NK cells than by syngeneic NK cells in vitro even though comparable percentages of Ly49 NK cells were present. Using allogeneic NK cells to purge leukemia-contaminating BMCs before transplantation resulted in a higher proportion of mice with long-term survival than using syngeneic NK cells. Allogeneic NK cells did not suppress hematopoietic reconstitution as measured by granulocyte/monocyte-colony-forming unit (CFU-GM), complete blood count (CBC), and donor chimerism at various days after transplantation. Inhibitory receptor blockade of allogeneic NK cells also significantly increased these antitumor effects at lower NK/tumor ratios compared with those of syngeneic NK cells. These results demonstrate that H2-allogeneic NK cells mediate more potent antitumor effects than syngeneic NK cells without adverse hematologic effects and thus may be useful in cancer therapy.  相似文献   

14.
Ly49A is an inhibitory receptor, which counteracts natural killer (NK) cell activation on the engagement with H-2D(d) (D(d)) MHC class I molecules (MHC-I) on target cells. In addition to binding D(d) on apposed membranes, Ly49A interacts with D(d) ligand expressed in the plane of the NK cells' membrane. Indeed, multivalent, soluble MHC-I ligand binds inefficiently to Ly49A unless the NK cells' D(d) complexes are destroyed. However, it is not known whether masked Ly49A remains constitutively associated with cis D(d) also during target cell interaction. Alternatively, it is possible that Ly49A has to be unmasked to significantly interact with its ligand on target cells. These two scenarios suggest distinct roles of Ly49A/D(d) cis interaction for NK cell function. Here, we show that Ly49A contributes to target cell adhesion and efficiently accumulates at synapses with D(d)-expressing target cells when NK cells themselves lack D(d). When NK cells express D(d), Ly49A no longer contributes to adhesion, and ligand-driven recruitment to the cellular contact site is strongly reduced. The destruction of D(d) complexes on NK cells, which unmasks Ly49A, is necessary and sufficient to restore Ly49A adhesive function and recruitment to the synapse. Thus, cis D(d) continuously sequesters a considerable fraction of Ly49A receptors, preventing efficient Ly49A recruitment to the synapse with D(d)+ target cells. The reduced number of Ly49A receptors that can functionally interact with D(d) on target cells explains the modest inhibitory capacity of Ly49A in D(d) NK cells. This property renders Ly49A NK cells more sensitive to react to diseased host cells.  相似文献   

15.
The outcome of older patients with acute leukemia remains poor with few long-term survivors, indicating the need for treatment approaches that target pro-apoptotic pathways not influenced by chemotherapy resistance. For a long time, natural killer (NK) cells have held promise for cancer immunotherapy because, unlike T lymphocytes, they can kill tumor cells without the need for tumor-specific antigen recognition. In the treatment of acute leukemia, NK cell-based therapies have focused on in vivo expansion and activation with cytokines with only modest success. However, recent understanding of the importance of NK receptors for the recognition and lysis of leukemia cells suggests novel therapeutic strategies. The balance of inhibitory and activating signals through surface receptors, recognizing major histocompatibility complex (MHC) class I and class I-like molecules on target cells, determines whether NK cells activate killing. In this review, we discuss the biologic rationale for therapeutic strategies harnessing NK cells and focus on novel directions for their future use in elderly patients with acute leukemia.  相似文献   

16.
Critical to innate immunity, the natural killer (NK) cell performs its function of immunosurveillance through its recognition of altered or missing self on damaged, infected, or transformed malignant cells. NK cell receptors responsible for detection of human leukocyte antigen (HLA) class I and class I-like proteins on potential target cells transmit inhibitory and activating signals that integrate to determine NK cell function. Advances in the fields of NK cell receptor biology and immunogenetics have enhanced our understanding of NK cell target recognition and may now guide studies to determine NK cell effects in the clinical setting. Analysis of NK cell receptor-ligand relationships, such as the inhibitory killer immunoglobulin-like receptors (KIRs) and their HLA class I ligands, has revealed the potential for NK cell-mediated benefit in allogeneic hematopoietic stem cell transplantation for hematologic malignancies.  相似文献   

17.
Inhibitory receptors for MHC class I molecules increase the threshold of lymphocyte activation. Natural Killer (NK) cells express a large number of such inhibitory receptors, including the human killer Ig-like receptors (KIR). However, activating members of the KIR family have poorly defined ligands and functions. Here we describe the use of activating KIR tetramer reagents as probes to detect their ligands. Infection of cells with Epstein-Barr virus leads to expression of a detectable ligand for the activating receptor KIR2DS1. In this case, KIR2DS1 interacts with up-regulated peptide-MHC class I complexes on Epstein-Barr virus-infected cells in a transporter associated with antigen processing (TAP)-dependent manner. In tetramer-based cellular assays and direct affinity measurements, this interaction with MHC class I is facilitated by a broad spectrum of peptides. KIR2DS1 and its inhibitory homologue, KIR2DL1, share sensitivity to peptide sequence alterations at positions 7 and 8. These results fit a model in which activating and inhibitory receptors recognize the same sets of self-MHC class I molecules, differing only in their binding affinities. Importantly, KIR2DS1 is not always sufficient to trigger NK effector responses when faced with cognate ligand, consistent with fine control during NK cell activation. We discuss how our results for KIR2DS1 and parallel studies on KIR2DS2 relate to the association between activating KIR genes and susceptibility to autoimmune disorders.  相似文献   

18.
The engagement of inhibitory receptors specific for major histocompatibility complex class I (MHC-I) molecules educates natural killer (NK) cells, meaning the improvement of the response of activation receptors to subsequent stimulation. It is not known whether inhibitory MHC-I receptors educate only NK cells or whether they improve the responsiveness of all cell types, which express them. To address this issue, we analyzed the expression of inhibitory MHC-I receptors on intestinal intraepithelial lymphocytes (iIELs) and show that T-cell receptor (TCR)-αβ CD8αα iIELs express multiple inhibitory receptors specific for MHC-I molecules, including CD94/NKG2A, Ly49A, and Ly49G2. However, the presence of MHC-I ligand for these receptors did not improve the response of iIELs to activation via the TCR. The absence of iIEL education by MHC-I receptors was not related to a lack of inhibitory function of these receptors in iIELs and a failure of these receptors to couple to the TCR. Thus, unlike NK cells, iIELs do not undergo an MHC-I-guided education process. These data suggest that education is an NK cell-specific function of inhibitory MHC-I receptors.  相似文献   

19.
IL-15 is an essential mediator of peripheral NK-cell homeostasis   总被引:14,自引:4,他引:10  
Several distinct classes of surface receptors can, on ligand binding, transmit signals that modulate the survival, proliferation, and apoptosis of peripheral B, T, and natural killer (NK) cells. At the population level, dynamic changes in lymphocyte cell numbers are strictly regulated to maintain a steady state, a process referred to as homeostasis. Although several studies have investigated the signals that regulate B- and T-cell homeostasis, little is known about the mechanisms that control the survival and proliferation of peripheral NK cells. Using an adoptive transfer system, we have investigated the role of gammac-dependent cytokines, in particular interleukin 7 (IL-7) and IL-15, and major histocompatibility complex (MHC) class I molecules in peripheral NK-cell homeostasis. We observed that IL-15 plays a dominant role in the survival of peripheral NK cells, via maintenance of the antiapoptotic factor Bcl-2. IL-15 availability, however, also plays an important role because endogenous NK cells in the recipient mice influence the behavior of adoptively transferred NK cells. Finally, although NK cells bear functional inhibitory Ly49 receptors for MHC class I molecules, the presence or absence of specific ligands on host cells did not influence the survival or homeostatic expansion of donor NK cells.  相似文献   

20.
Peptide selectivity is a feature of inhibitory receptors for MHC class I expressed by natural killer (NK) cells. CD94–NKG2A operates in tandem with the polymorphic killer cell Ig-like receptors (KIR) and Ly49 systems to inhibit NK cells. However, the benefits of having two distinct inhibitory receptor–ligand systems are not clear. We show that noninhibitory peptides presented by HLA-E can augment the inhibition of NKG2A+ NK cells mediated by MHC class I signal peptides through the engagement of CD94 without a signaling partner. Thus, CD94 is a peptide-selective NK cell receptor, and NK cells can be regulated by nonsignaling interactions. We also show that KIR+ and NKG2A+ NK cells respond with differing stoichiometries to MHC class I down-regulation. MHC-I–bound peptide functions as a molecular rheostat controlling NK cell function. Selected peptides which in isolation do not inhibit NK cells can have different effects on KIR and NKG2A receptors. Thus, these two inhibitory systems may complement each other by having distinct responses to bound peptide and surface levels of MHC class I.Natural killer (NK) cells play an important role in the immune response to viral infections and cancer. Their responses are determined by signals integrated from activating and inhibitory receptor–ligand interactions (1). In many situations inhibitory signals dominate activating signals. Therefore, releasing NK cells from inhibition is an important mechanism of enhancing their response to target cells. Inhibitory interactions are mediated by receptors for self-MHC class I. Most species have at least two discrete gene families of inhibitory receptors for MHC class I: the CD94–NKG2A C-type lectin-like receptor system and either the related Ly49 family of receptors or the unrelated killer cell Ig-like receptors (KIR) (2). The KIR family is important in humans and other primates, having undergone extensive diversification under positive selection. In contrast, the CD94–NKG2A system has remained relatively well conserved across the species with orthologous genes in primates and a closely related functional homolog in rodents (3, 4). Consistent with the coevolution of these families and their MHC class I ligands, KIR bind polymorphic MHC class I, HLA-A, -B, and -C molecules, whereas CD94–NKG2A binds the conserved oligomorphic HLA-E molecule or the rodent homolog Qa-1 (5, 6).Both receptor families are important in the immune response to viral infections. KIR are genetic determinants in the outcome of both HIV and hepatitis C virus (HCV) infection (710). Expression of CD94–NKG2A is up-regulated on NK cells in HIV and HCV infection and in the latter has been associated with a poor response to treatment (11, 12). Furthermore NKG2A+ NK cell clones lyse vaccinia-infected targets (13), and CD94 is important in clearing mouse pox infection (14). Both KIR and CD94–NKG2A respond to MHC class I down-regulation. One hypothesis is that the KIR have evolved to recognize MHC class I-specific down-regulation (15). However, because the majority of MHC class I leader peptides bind HLA-E and are inhibitory for NKG2A, the CD94–NKG2A system also is able to recognize down-regulation of most MHC class I alleles. It has been shown that KIR+ NK cells can be modulated by changes in the peptide bound by MHC class I, which confers additional functionality on the KIR system (1618). In particular peptide antagonism is a potent mechanism for activating KIR+ NK cells (19, 20). The CD94–NKG2A receptor also is peptide selective, with receptor binding being particularly influenced by residues 5, 6, and 8 of the peptide bound by HLA-E (2123). These residues interact primarily with the nonsignaling CD94 moiety, which occupies the majority of the HLA-E–binding interface. CD94–NKG2A seems to be a target for viral escape, with peptides derived from CMV, HCV, HIV, and EBV binding HLA-E and subsequently inhibiting NK cells (2427). Viral peptides that inhibit at KIR also are identifiable (28), but their relevance likely is limited to the subset of individuals who have the relevant peptide-binding MHC class I allele. Understanding differences in how the KIR and NKG2 systems respond to peptide may be important for interpreting their roles in the immune response to viral infections and tumors. Therefore we explored how HLA-E–bound peptide can influence NK cell reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号