首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Marrow stromal cells (MSC) and neonatal calvarial cells have the potential to differentiate and express markers of mature osteoblasts. Furthermore, MSCs can generate multiple differentiated connective tissue phenotypes. These properties and their ability to be expanded ex vivo make them good models for ex vivo gene therapy. In this study we examined the ability of vesicular stomatitis virus (VSV-G) pseudotyped retroviral vectors to transduce osteoprogenitor cells derived from bone marrow and from neonatal calvaria. Retrovectors encoding either beta-galactosidase or green fluorescent protein (eGFP) were used for transduction of primary murine marrow stromal and primary neonatal calvarial cell cultures. High infection efficiency was demonstrated by fluorescence-activated cell analysis when GFP was used as a marker or by estimating the number of beta-galactosidase-positive cells. Expression of markers of differentiated bone cells, including Col1a1, bone sialoprotein, and osteocalcin mRNA and alkaline phosphatase activity was not impaired by retroviral transduction. Our data suggest that VSV-G pseudotypes retroviral vectors are suitable for introducing genes into osteoprogenitor cells without affecting osteoprogenitor lineage progression.  相似文献   

2.
3.
Human papillomaviruses (HPVs) infect cervical epithelial cells and induce both benign and precancerous lesions. High-risk HPVs promote the development of cervical cancer in vivo and can immortalize cervical epithelial cells in vitro, whereas low-risk HPVs cannot. We used cDNA microarrays and quantitative polymerase chain reaction to compare cellular gene expression in primary cervical epithelial cells during a time course after retroviral transduction with either low-risk or high-risk E6/E7 genes. At early passages, cervical cells transduced with high-risk E6/E7 genes demonstrated increased expression of the cell cycle-regulated genes CDC2 and ubiquitin carrier E2-C. At later passages, these same cells exhibited dramatic increases in insulin-like growth factor-binding protein-3 (IGFBP-3) mRNA and both secreted an intracellular protein, with mRNA levels increasing approximately 85-fold. Corroborating these in vitro studies, in situ hybridization of cervical biopsies with an IGFBP-3 riboprobe revealed high levels of expression in high-grade squamous intraepithelial neoplasia but not in normal cervical epithelium. Our in vitro results indicate that overexpression of IGFBP-3 is a late event after E6/E7 expression, and analysis of cervical lesions indicates that overexpression of this gene is also seen in vivo.  相似文献   

4.
5.
Multiple sclerosis (MS) and other T cell-mediated autoimmune diseases develop in individuals carrying a complex susceptibility trait, probably following exposure to various environmental triggers. Owing to the presumed weak influence of single genes on disease predisposition and the recognized genetic heterogeneity of autoimmune disorders in humans, candidate gene searches in MS have been difficult. In an attempt to identify molecular markers indicative of disease status rather than susceptibility genes for MS, we show that gene expression profiling of peripheral blood mononuclear cells by cDNA microarrays can distinguish MS patients from healthy controls. Our findings support the concept that the activation of autoreactive T cells is of primary importance for this complex organ-specific disorder and prompt further investigations on gene expression in peripheral blood cells aimed at characterizing disease phenotypes.  相似文献   

6.
The evolutionarily conserved target of rapamycin complex 1 (TORC1) controls cell growth in response to nutrient availability and growth factors. TORC1 signaling is hyperactive in cancer, and regulators of TORC1 signaling may represent therapeutic targets for human diseases. To identify novel regulators of TORC1 signaling, we performed a genome-scale RNA interference screen on microarrays of Drosophila melanogaster cells expressing human RPS6, a TORC1 effector whose phosphorylated form we detected by immunofluorescence. Our screen revealed that the TORC1-S6K-RPS6 signaling axis is regulated by many subcellular components, including the Class I vesicle coat (COPI), the spliceosome, the proteasome, the nuclear pore, and the translation initiation machinery. Using additional RNAi reagents, we confirmed 70 novel genes as significant on-target regulators of RPS6 phosphorylation, and we characterized them with extensive secondary assays probing various arms of the TORC1 pathways, identifying functional relationships among those genes. We conclude that cell-based microarrays are a useful platform for genome-scale and secondary screening in Drosophila, revealing regulators that may represent drug targets for cancers and other diseases of deregulated TORC1 signaling.  相似文献   

7.
8.
It has been reported previously that: (1) normal-breast epithelial cells that are CD24-/44+ express higher levels of stem/progenitor cell-associated genes; (2) cancer cells that have undergone epithelial to mesenchymal transition display CD24-/44+ cell-surface expression, a marker for breast cancer stem cells; (3) loss of E-cadherin is a preliminary step in epithelial to mesenchymal transition; and (4) vimentin is a marker of mesenchymal phenotype. We hypothesized that stem cell subpopulations would be more frequent in metastatic than in primary tumors. Therefore we assessed by immunohistochemical analysis, tissue microarrays containing tissue from primary and associated metastatic breast cancers for expression of CD24, CD44, E-cadherin and vimentin to evaluate candidate cancer-initiating cell populations in breast cancer subtypes and metastatic lesions. The occurrence of CD24-/44+ and CD24+/44- cells did not differ in primary vs matched lymph node or distant and locoregional metastatic lesions; E-cadherin expression was decreased in primary vs lymph node metastases (P=0.018) but not decreased in distant and locoregional metastases relative to primary tumor, whereas vimentin, was more frequently expressed in lymph node and distant and locoregional metastases (P=0.013, P=0.004) than in matched primary cancers. Thus, the frequency of CD24-/44+ cells does not differ in metastases relative to the primary breast cancer but differs by tumor stage and subtype.  相似文献   

9.
10.
Retrovirus-mediated oncogene transfer into neural transplants.   总被引:2,自引:0,他引:2  
A gene transfer model was developed which allows for the identification of transformation pathways in the developing nervous system. Transforming genes were introduced into fetal brain transplants using embryonic CNS as donor tissue and replication-defective retroviral vectors as genetic vehicles. This technique relies on the extraordinary organotypic differentiation capacity of neural grafts and the expression of retrovirally transmitted genes in various cell types of CNS transplants. In contrast to transgenic animals but analogous to sporadic tumor formation, target cells for the retroviral vector develop in an environment of unmodified neural tissue. We have introduced a number of neurotropic oncogenes into fetal brain transplants including genes with an associated tyrosine kinase activity (polyoma medium T, v-src), a novel member of the fibroblast growth factor (fgf) gene family and the SV40 large T antigen. These experiments have demonstrated a significant transformation potential of oncogenes in specific target cells of the brain, provided evidence for a dominant complementary transforming effect of simultaneously expressed ras and myc genes in neural precursor cells and have yielded intriguing model systems for human CNS neoplasms such as the cerebellar medulloblastoma. This review describes the transplantation model, demonstrates several striking phenotypes induced by oncogene expression in neural grafts and elaborates on future prospects of this experimental approach.  相似文献   

11.
12.
Xu CW 《Genome research》2002,12(3):482-486
Whole-genome sequencing projects have generated a wealth of gene sequences from a variety of organisms. A major challenge is to rapidly uncover gene regulatory circuits and their functional manifestations at the cellular level. Here we report the coupled fabrication of nanocraters ranging in size from 100 pL to 1.5 nL on permeable membranes for culturing cells. Using this approach, we developed bacterial and yeast cell microarrays that allowed phenotypic determinations of gene activities and drug targets on a large scale. Cell microarrays will therefore be a particularly useful tool for studying phenotypes of gene activities on a genome-wide scale.  相似文献   

13.
Although analogies are often made comparing development to cancer, there is of course a major difference. Normal development requires complex patterns of rigidly controlled cell proliferation and differentiation. In contrast, cancer represents the pathological condition that results when normal cell growth patterns are uncoupled from their regulatory influences. Genetic studies of RNA tumor viruses have provided insights into the relationships and differences of the genes responsible for normal development and cancer. The presence of discrete genes (oncogenes) within the genome of oncogenic retroviruses is responsible for their tumorigenic potential. Molecular genetic studies have found that normal eukaryotic cells possess genes that are quite homologous to the retroviral oncogenes. These normal cellular genes (proto-oncogenes) are involved in the regulation of proliferation and differentiation. However, if mutated, proto-oncogenes have the potential for inducing neoplastic transformation. The conversion of a proto-oncogene to an oncogene is called activation. Proto-oncogenes can become activated by a variety of genetic mechanisms including transduction, insertional mutagenesis, amplification, point mutations, and chromosomal translocations. In each instance the genetic aberration results in a proto-oncogene that is now free of its normal regulatory constraints. Such deregulation of function imparts a distinct growth advantage to the cell.  相似文献   

14.
Metastasis of human head and neck cancer is a multistep and highly heterogeneous process requiring activation and deactivation of multiple and specific genes. To identify these genes, we established highly metastatic head and neck squamous cell carcinoma (HNSCC) cell lines from poorly metastatic HNSCC cells through in vivo selection using a lymph node metastatic mouse model. The very close genetic relationship between these highly metastatic cell lines and the parental cell line provided an excellent model for differential gene expression analysis using cDNA microarrays. Comparison of 6 cell lines established individually from the lymph node metastases with their poorly metastatic parental cell line revealed 33 differentially expressed genes. Some of these genes are involved in cellular signal transduction and matrix modeling. Differences in expression of members of the tumor necrosis factor, interleukin, caspase, and matrix metalloproteinase families were also examined. We found that two upregulated genes participated in the NF-κB regulatory pathway. Furthermore, differences in gene expression between six cell lines derived from primary tumors and six cell lines derived from lymph node metastases in the mouse model were analyzed statistically. Tissue growth factor-β and tumor necrosis factor-related genes showed significantly altered expression in cells derived from lymph node metastases as compared with cells derived from primary tumors, suggesting that the differential growth advantage of metastatic cells requires more aggressive responses to their environment, such as a lymph node tissue. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Genomic alterations influencing the expression and/or activity of tumor suppressors or oncogenes such as KRAS2, CDKN2A, TP53, and DPC4 have been directly implicated in the initiation and progression of human pancreatic adenocarcinoma. In an effort further to systematically characterize the genomic alterations that occur in this disease, we conducted a genome wide analysis of alterations in gene copy number using array-based comparative genomic hybridization (CGH). For this analysis, we utilized a panel of 25 human pancreatic cancer cell lines derived from either primary or metastatic tumors. This panel also included a metastatic progression series of cell lines derived from COLO 357 cells. Array CGH permitted the identification of alterations in the copy number of genes that might participate in the aberrant behavior of pancreatic cancer cells. In addition, the acquisition of invasive and metastatic potential by derivatives of COLO 357 cells was accompanied by additional focal genomic alterations including point mutations and amplification of KRAS2. To complement the array CGH analysis, we also conducted an analysis of mRNA expression patterns in a subset of these cells using cDNA microarrays. By this means, we identified a set of candidate genes, including those regulated by RAS signaling, that may contribute to the process of cancer cell invasion and metastasis. Supplementary material for this article can be found on the Genes, Chromosomes, and Cancer website at http://www.interscience.wiley.com/jpages/1045-2257/suppmat/index.html.  相似文献   

16.
Environmental chemicals may be involved in the etiology of breast cancer. Among them, organophosphorous compounds are the most widely used pesticides because of their extensive use in agriculture, medicine and industry. The risk of breast cancer is associated with prolonged exposure to female hormones and is attributed to estrogen since prolonged stimulation by steroid hormones may increase cell division. The aim of the present study was to identify the differentially expressed genes encoding enzymes that are important to drug transport and metabolism in parathion- and estrogen-treated human breast epithelial cell lines using cDNA microarrays. MCF-l0F, an immortalized human breast epithelial cell line was treated with parathion and estrogen, either alone or in combination, and malignant cells were developed through a series of sequential steps. Differential expression from the drug metabolism gene array showed that 17 genes were found to be altered either by parathion or estrogen alone, or the combination of both. Among the genes altered by parathion in comparison to the control were CHST5, CHST6 and CHST7 (sulfotransferases); CYP2F1, CYP3A7 and CYP4F3 (CYPs); GSTP1, GSTT2 and MGST1 (GSTs); MT1X (metallothionein); TPMT (methyltransferase); UGT1A1 and UGT2B (UDP glycosyltransferases). The same genes were down-regulated in estrogen alone including several metallothioneins (MT1A, MT1E, MT1H, MT1L and MT2A). The combination of parathion and estrogen induced down-regulation of three sulfotransferases, CYP2F1 and CYP4F3, MGST1, all metallothioneins and TPMT genes. There was no change in CYP3A7, GSTP1, GSTT2, UGT1A1 and UGT2B genes in the presence of both substances. It can be concluded from this study that organophosphorous pesticides such as parathion in the presence of estradiol induced changes in human drug metabolism gene expression in breast cells.  相似文献   

17.
Multipotent, dedifferentiated cancer stem-like cells from brain gliomas   总被引:5,自引:0,他引:5  
In modern cancer biology, external factors and niches can act on differentiated tissue cells to cause cancer by inducing dedifferentiation of mature adult cells. Recently, we discovered that dedifferentiation of glioma cancer cells alters the expression of mature and neural stem cell (NSC)-related genes, in that cancer cells adjust to the serum-deprived environment and cell-to-cell interaction by down-regulating genes associated with neural mature markers and up-regulating genes that are primitive NSC markers. Neurogenesis of dedifferentiated glioma cancer cells also showed a highly increased neuronal marker associated with highly decreased glial and oligodendrocyte cell markers. After treatment with chemotherapeutic drugs, dedifferentiated cancer cells showed strong drug resistance and continued active cell growth. After grafting to severe combined immunodeficient (SCID) mouse brains, dedifferentiated cancer stem cells migrated and continued active proliferation for more than 4 weeks. We also performed microarray analysis and characterized the gene expression patterns in control cancer cells with dedifferentiated cancer stem-like cells. We delineated specific numbers of important proliferation signaling proteins, primitive neural lineage-related proteins, cancer genes, and transporter genes. In this report, we propose that the dedifferentiation process of brain tumor and normal tissue may contribute to the malignancy and aggressiveness of the brain cancer.  相似文献   

18.
Transcriptional response of lymphoblastoid cells to ionizing radiation   总被引:11,自引:0,他引:11       下载免费PDF全文
Jen KY  Cheung VG 《Genome research》2003,13(9):2092-2100
  相似文献   

19.
Neuropathic bladder dysfunction results from abnormal development of the spine, spinal cord injuries, or diseases such as diabetics. Patients with neuropathic bladders often require surgical intervention such as bladder reconstruction to improve incontinence and prevent renal damage. Tissue engineering with ex-vivo cultured bladder cells has been suggested as one means for improving bladder function. However, we previously demonstrated that cultured bladder smooth muscle cells (SMCs) derived from neuropathic bladder exhibit and maintain altered pathologic phenotypes in culture. To identify genes that are responsible for the abnormal neuropathic phenotypes specifically elevated cell proliferation, the expression levels of 1,185 genes were compared between cultured SMCs derived from normal and neuropathic bladders using a cDNA array consisting of well-annotated genes. The expression data were analyzed using several methods to identify differentially expressed genes. The resulting sets of differentially expressed genes were examined by pathway analysis to identify the networks that remain abnormal in the culture-stable phenotype of neuropathic SMCs. A total of 18 genes that are differentially expressed between cultured normal and neuropathic bladder SMCs were identified. Of these 17 were up-regulated greater than 2-fold in neuropathic bladder SMCs, six of them along with one gene that was not up-regulated greater than 2-fold in cultured neuropathic bladder SMCs were confirmed and identified by more stringent analysis methods including significance analysis of microarrays, class comparison, and class prediction analyses. The major dysregulated pathways include fibroblast growth factor signaling, PTEN signaling, and integrin signaling. Our results further suggest that altered neuropathic bladder SMC phenotypes is stable in the culture environments and that SMCs derived from diseased bladders may not be appropriate for tissue engineering purpose without modification of pathologically altered genes expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号