首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inflammation is an important component of the tumor microenvironment. IL-1 is an inflammatory cytokine which plays a key role in carcinogenesis and tumor progression. IL-1 is subject to regulation by components of the IL-1 and IL-1 receptor (ILR) families. Negative regulators include a decoy receptor (IL-1R2), receptor antagonists (IL-1Ra), IL-1R8, and anti-inflammatory IL-37. IL-1 acts at different levels in tumor initiation and progression, including driving chronic non-resolving inflammation, tumor angiogenesis, activation of the IL-17 pathway, induction of myeloid-derived suppressor cells (MDSC) and macrophage recruitment, invasion and metastasis. Based on initial clinical results, the translation potential of IL-1 targeting deserves extensive analysis.  相似文献   

2.
3.
Emerging data in myeloma and other cancers indicates that heparan sulfate proteoglycans promote tumor progression by enhancing their growth and metastasis. By acting as key regulators of cell signaling via their interactions with multiple growth and angiogenic factors, heparan sulfates mediate a shift in the microenvironment that supports the tumor as an ‘organ’ and promotes an aggressive tumor phenotype. In addition, enzymatic remodeling of heparan sulfate proteoglycans provides a mechanism for rapid, localized and dynamic modulation of proteoglycan function thereby tightly regulating activities within the tumor microenvironment. New data from animal models demonstrates that heparan sulfate or the enzymes that regulate heparan sulfate are viable targets for cancer therapy. This strategy of targeting heparan sulfate may be particularly effective for attacking cancers like myeloma where extensive genetic chaos renders them unlikely to respond well to agents that target a single signaling pathway.  相似文献   

4.
Metastatic disease, mainly to the lungs, liver, bone, and brain, is the most common cause of death from breast cancer, despite advances in surgical and clinical management. Two basic principles govern the process of metastasis. First, that tumors are heterogeneous populations of cells, and second, that the process is a sequence of events that depends on tumor cell properties and interactions with the microenvironment at the site of metastasis. Inhibitors targeted at any of these different steps have the potential to inhibit metastatic progression, and examples of key therapeutic targets include overexpression of growth factor receptors, angiogenic factors, matrix metalloproteases, and integrin receptors. The identification of molecular targets for therapy of breast cancer metastasis will be accelerated by DNA array technology, and their selection for use should include evaluation of interactions between tumor cells and normal tissue components. These sorts of inhibitors are likely to target both cancer and normal cell functions, for example, inhibitors of matrix metalloproteases that can potentially inhibit both tumor cell invasion and angiogenesis. The use of appropriate animal models will be necessary to determine the impact of targeted inhibitors on the growth and development of breast cancer metastasis.  相似文献   

5.
The role of a tumor immune infiltrate in cancer progression and metastasis has been debated frequently. Although often considered to be associated with improved prognosis and leading to the enhanced survival of cancer patients, inflammatory cells have also been described to assist the tumor's capabilities to progress, proliferate, and metastasize. Tumor-associated macrophages (TAMs), for example, have been shown to be symbiotically related to tumor cells: Tumor cells recruit TAMs and provide them with survival factors, and TAMs in turn produce a variety of angiogenic factors in response to the tumor microenvironment. This review will describe the composition of an immune infiltrate in tumors and the angiogenic and angiostatic properties of the cells present. Special emphasis will be on the angiogenesis-associated activities of TAMs. The development of immunotherapy and gene therapy using TAMs to mediate tumor cytotoxicity or to deliver gene constructs will be discussed as well. As immunotherapy has so far not been as effective as anticipated, a combination therapy in which angiostatic agents are used as well is put forward as a novel strategy to treat cancer.  相似文献   

6.
7.
Malignant progression is the process by which tumor cells acquire more malignant properties, such as invasiveness and metastasis, during tumor development. The process is thought to be regulated by the microenvironment surrounding tumor cells, which can modify the malignant properties of tumor cells directly or through various humoral factors. Using a cloned weakly malignant cell line, ER-1, which we established, we demonstrated that growth factors such as epidermal growth factor (EGF) and transforming growth factor-beta (TGF-#) derived from host cells play an important role in promoting malignant progression of ER-1 cells. It is noteworthy that EGF treatment induced not only reversible but also irreversible progression to ER-1 cells depending on the treatment period. An increase in intracellular reactive oxygen species by EGF stimulation was thought to be one of the key factors involved in EGF-induced malignant progression of ER-1 cells. Morphological investigations revealed that ER-1 cells that had acquired malignant properties showed more abundant microvilli on the surface compared to ER-1 cells. Thus, the ER-1 cell line is a useful tool for biological and morphological analyses of the mechanisms of malignant progression of tumor.  相似文献   

8.
The tumor microenvironment is considered to play an important role in tumor formation and progression by providing both negative and positive signals that influence tumor cell growth. We and others have previously shown that brain tumor (glioma) formation in Nf1 genetically engineered mice requires a microenvironment composed of cells heterozygous for a targeted Nf1 mutation. Using NF1 as a model system to understand the contribution of the tumor microenvironment to glioma formation, we show that Nf1+/- brain microglia produce specific factors that promote Nf1-/- astrocyte growth in vitro and in vivo and identify hyaluronidase as one of these factors in both genetically engineered Nf1 mouse and human NF1-associated optic glioma. We further demonstrate that blocking hyaluronidase ameliorates the ability of Nf1+/- microglia to increase Nf1-/- astrocyte proliferation and that hyaluronidase increases Nf1-/- astrocyte proliferation in an MAPK-dependent fashion. Lastly, inhibiting microglia activation in genetically engineered Nf1 mice significantly reduces mouse optic glioma proliferation in vivo. Collectively, these studies identify Nf1+/- microglia as an important stromal cell type that promotes Nf1-/- astrocyte and optic glioma growth relevant to the pathogenesis of NF1-associated brain tumors and suggest that future brain therapies might be directed against paracrine factors produced by cells in the tumor microenvironment.  相似文献   

9.
The differential display technique was applied for identification of genes that have altered expression in mouse hepatocellular carcinomas relative to normal liver. Three genes were identified. The IL-1 receptor antagonist (IL-1ra) was expressed in hepatocellular carcinomas, whereas the major urinary protein (MUP) and cytochrome P-450 naphthalene hydroxylase (cyp2F2) genes were down-regulated. Because IL-1ra is a natural antagonist of IL-1, and because the latter has been reported to suppress the growth of hepatic cells, we also studied the expression of IL-1ra in hepatocarcinogenesis. IL-1ra was immunohistochemically detected in tumor cells in approximately 70% of hepatocellular adenomas and carcinomas, whereas early preneoplastic hepatocytic foci, as well as normal hepatocytes surrounding the lesions, were negative. In addition, 20% of human hepatocellular carcinomas were also partly positive for IL-1ra. RT-PCR analysis demonstrated that mouse hepatic tumors contain both secreted and intracellular forms of IL-1ra. On the other hand, there were no differences in levels of IL-1alpha and IL-1beta between hepatic tumors and normal liver in mice, suggesting that the majority of tumors create a microenvironment that inhibits the actions of IL-1. Furthermore, IL-1ra-positive adenomas contained more proliferating cell nuclear antigen-positive cells than IL-1ra-negative adenomas, indicating a link with high proliferation activity, although this was no longer evident in carcinomas. The observed altered gene expression may be related to biological phenotypes of hepatic tumors, and IL-1ra in particular may positively influence tumor cell growth through its antagonism of IL-1.  相似文献   

10.
Pericellular proteases have long been associated with cancer invasion and metastasis due to their ability to degrade extracellular matrix components. Recent studies demonstrate that proteases also modulate tumor progression and metastasis through highly regulated and complex processes involving cleavage, processing, or shedding of cell adhesion molecules, growth factors, cytokines, and kinases. In this review, we address how cancer cells, together with their surrounding microenvironment, regulate pericellular proteolysis. We dissect the multitude of mechanisms by which pericellular proteases contribute to cancer progression and discuss how this knowledge can be integrated into therapeutic opportunities.  相似文献   

11.
Angiotensin II (AII) is a multifunctional bioactive peptide, and host renin-angiotensin system (RAS) is closely associated with tumor growth. Recent reports have described that AII is a proangiogenic growth factor, and that Angiotensin II type 1 (AT1) receptor antagonists reduce tumor growth and tumor-associated angiogenesis. In this paper, we investigated the participation of AT1 receptor-signaling in cancer progression using murine Lewis lung carcinoma (LLC) cells, which express AT1 receptor, and AT1a receptor gene-deficient (AT1a-/-) mice. When LLC cells were implanted subcutaneously into wild-type (WT) mice, developed tumors showed intensive angiogenesis with an induction of vascular endothelial growth factor (VEGF) a. Compared with WT mice, tumor growth and tumor-associated angiogenesis was reduced in AT1a-/- mice with reduced expression of VEGFa. In AT1a-/- mice, administration of the AT1 receptor antagonist, TCV-116, showed further reductions of tumor growth, tumor-associated angiogenesis, and VEGFa expression. In vitro study, the expression of VEGFa mRNA and the production of VEGFa protein in LLC cells were significantly increased by AII, which were cancelled by AT1 receptor antagonist, CV-11974. Although the expression of other angiogenic factors, such as angiopoietin-1, angiopoietin-2, epidermal growth factor, and VEGF receptor 2 mRNA, was also investigated in tumor tissues, the expression of VEGFa was most correlated with tumor size among those other angiogenic factors. VEGFa induction by AT1 receptor-signaling in both host and tumor tissues is one of key regulators of tumor growth and tumor-associated angiogenesis. In conclusion, tumor tissue RAS as well as host tissue RAS were found to have an important role in tumor growth. AT1 receptor-signaling blockade may be a novel and effective target in the treatment of cancer.  相似文献   

12.
Because the progression and metastasis of solid tumors depend on their local microcirculation, we sought to characterize tumor angiogenesis three dimensionally in a highly metastatic mouse melanoma model, B16BL6 (B16), injected with Matrigel into the subcutis in the skin on the back of syngeneic C57BL/6 mice. We found that B16 with Matrigel grew significantly faster than B16 alone and had altered tumor angiogenesis. Tumor vessels apparently grew vigorously in the opposite direction of the tumor without invading the tumor mass until at least day 10 of injection. In addition, vascular branching resulted not only from sprouting as was seen in B16 without Matrigel but also from vascular splitting, either because of compression from outside the vessels or from septum formation by endothelial cells. This phenomenon was characteristic of B16 cells, but not of other tumor cells, including Lewis lung carcinoma and ASH-1 hybridoma cell lines, both of which were tested under the same conditions. The reduction in various angiogenic factors in Matrigel did not affect the angiogenic patterns and tumor growth. We hypothesize that tumor vessels may vigorously alter their angiogenic patterns in response to the local microenvironment.  相似文献   

13.
14.
Bone metastasis is the most common metastasis in breast cancer patients. Clinical observations propose strong association between estrogen receptor (ER)-positive tumors and the development of bone metastases. We hypothesized of biologically diverse sets of hormone-dependent tumors predisposed to bone metastases and of possible role of ER-signaling pathways in the development and progression of bone metastases. We developed a novel in vitro estrogen (E2)-responsive model system, in which breast cancer cells and bone cells express high levels of either ERα or ERβ. Using co-culture approach and gene array technology we identified E2-responsive genes involved in the interaction between cancer cells and bone cells. We detected 13 genes that were altered solely by ERα and 11 genes that were regulated solely by ERβ in cancer cells. Only 5 genes were modified by both ERα and ERβ. Interestingly, the majority of genes in bone cells were altered through ERβ. Two genes, namely MacMarcks and Muc-1, whose changes in expressions in cancer cells in response to E2 were highly significant, were selected for immunohistochemical analysis using tissue microarrays of 59 infiltrating ductal carcinomas. Our results indicated that both MacMarcks and Muc-1 were expressed at high frequency in ER-positive tumors. The correlation between ERα- and ERβ-status of hormone-dependent tumors with combined expression of these two markers might suggest a more aggressive tumor phenotype associated with bone metastases. Further analysis of tissues with clinicopathological characteristics and known bone metastatic disease will indicate potential prognostic values of these and other markers in the development of bone metastases in a subgroup of “bad” hormone-dependent breast cancer. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Regulation of interleukin-8 expression by tumor-associated stress factors.   总被引:4,自引:0,他引:4  
Tumor and host cells frequently express interleukin-8 (IL-8). IL-8 has been shown to be motogenic, mitogenic, and angiogenic and to play important roles in human tumor progression. IL-8 expression can be induced by numerous stress factors present in the tumor environment, such as hypoxia, acidosis, hyperglycemia, hyperosmotic pressure, high cell density, hyperthermia, radiation, and chemotherapeutic agents. Understanding the mechanisms of IL-8 expression and regulation will be helpful in designing potential therapeutic modalities targeting IL-8 to control tumor growth and metastasis.  相似文献   

16.
Epithelial ovarian cancer is the most lethal gynecologic cancer with a 5 years survival rate of 30–40% in patients diagnosed with high-grade invasive disease (TOV). This is in stark contrast to the 95% 5 years survival rate in ovarian cancer patients diagnosed with low malignant potential (LMP) disease. The progression from localized tumor to invasive metastasis involves matrix proteolysis. Protease inhibitors are thought to play a key role by limiting this process. Using the Affymetrix HG-U133A GeneChip array, we have studied all serine protease inhibitors and found several serpin family members that are differentially expressed between LMP and TOV serous tumors. SERPINA1 was selected for further study due to its high expression in the majority of LMP tumors and its low expression in TOV tumors; observations that were also validated by quantitative-PCR (Q-PCR). To study the effects of its over expression on different tumorigenic parameters, SERPINA1 was cloned in the pcDNA3.1+ plasmid which was subsequently used to derive stable clones from two invasive ovarian cancer cell lines, TOV-112D and TOV-1946. We found no effect of SERPINA1 over expression on tumor growth in SCID mice although cell migration and invasion were affected in in vitro assays. There was also no association between patient survival and SERPINA1 immunostaining, however, SERPINA1 localization was different in LMP (nuclear) and TOV (cytoplasmic) tumors. SERPINA1 remains an interesting candidate since protein homeostasis, regulated by proteases and their inhibitors, should be studied holistically in order to assess their full impact in tumor progression.  相似文献   

17.
Metastasis is a complex process which contributes to the dissemination of cancer cells to other organs and forms new tumor sites. The proliferation of tumor cells is a necessary step for the initiation and progression of cancers and is associated with the formation of new vessels.In the latter stages of metastasis, cancer cells may spread into the extracellular matrix and may form metastatic nodules. Despite efforts to prevent this, effective therapies are limited in the treatment of some malignancies. Among the different tumor properties which could be usefully employed as a cancer target, metastasis may be one suitable target.The renin- angiotensin system is a physiological pathway that contributes to the proliferation of tumor cells, angiogenesis and the inflammatory response in tumor tissue. Angiotensin II (ANGII), a key peptide of this pathway, induces cell proliferation through the activation of two cellular pathways (mitogen-activated protein kinase (MAPK)-STAT3 and phosphoinositide 3-kinase (PI3K) –AKT pathway). AT1-R increases angiogenesis via the elevation of angiogenic factors expression (vascular endothelial growth factor (VEGF) and matrix metallopeptidases (MMPs)). The local activation of the RAS pathway increases the expression of ICAM, VCAM and MMPs genes that are involved in the late steps of the metastasis process.There is some evidence that RAS components are expressed in metastatic tumors and RASIs (renin-angiotensin system inhibitors) could be used to reduce cancer metastasis by affecting the mechanisms involved in several different cancers. Therefore, we have summarized the effects of RASIs, observed in pre-clinical and clinical studies of cancer cell metastasis.  相似文献   

18.
IL-6/JAK/STAT3是IL-6激活的显著的信号通路之一。IL-6、p-STAT3在前列腺癌(PCa)组织和转移瘤中高表达,在诱导PCa发生、促进肿瘤细胞增殖、侵袭和转移中起着关键作用,并且通过激活雄激素受体(AR)参与PCa去势抵抗和肿瘤耐药。IL-6/JAK/STAT3及其激活的下游因子在肿瘤进展中的多种角色为化疗药物开发提供了良好的基础,目前,许多靶向抑制剂已被证明可有效抑制肿瘤进展,有望研发出更多有效药物。  相似文献   

19.
Many important aspects of cancer biology, such as cancer initiation, progression, and metastasis, have been studied in animal models, mostly mice. As long as cancer was considered primarily a genetic disease, the study of transplantable mouse tumors, or even human tumor xenografts in immunocompromised mice, appeared to suffice. Many important genetic events that lead to transformation and in vivo tumor growth were elucidated. However, many even more important factors that determine whether or not the genetic potential of a tumor cell will be realized, such as the host response to the tumor and the tumor microenvironment that influences this response over a long period of time of tumor development, remained untested and unappreciated. This is slowly changing with the advent of molecular techniques that have spurred efforts to engineer better mouse models of human tumors. In this review, we show results of our efforts to combine a genetic mouse model of spontaneous human adenocarcinomas based on a Kras mutation, with an important human molecule MUC1 that is abnormally expressed on human adenocarcinomas, promoting oncogenesis, proinflammatory tumor microenvironment, and immunosurveillance.  相似文献   

20.
The transforming growth factor alpha (TGFalpha)/epidermal growth factor receptor (EGFR) signaling pathway appears to play a critical role in colon cancer progression, but the cellular and molecular mechanisms that contribute to metastasis remain unknown. KM12C colon cancer cell clones expressing high (C9) or negligible (C10) levels of TGFalpha were implanted into the cecal walls of nude mice. C9 tumors formed autocrine and paracrine EGFR networks, whereas C10 tumors were unable to signal through EGFR. The tumor microenvironment of C9, but not C10, contained cells enriched in vascular endothelial growth factor (VEGF) A, interleukin-8, and matrix metalloproteinases-2 and -9 and had a high vascular surface area. C9 tumors recruited a macrophage population that co-expressed F4/80 and lymphatic vessel endothelial hyaluronic acid receptor and produced VEGFC. The mean lymphatic density of C9 tumors was threefold higher than that of C10 tumors. C9, but not C10, tumor cells metastasized to regional lymph nodes in all mice and to the liver in 5 of 10 mice. Forced expression of TGFalpha in C10 tumor cells led to the generation of autocrine and paracrine EGFR signaling, macrophage recruitment, enhanced blood and lymphatic vascular surface areas, and increased lymphatic metastasis. Collectively, these data show that activation of TGFalpha-EGFR signaling in colon cancer cells creates a microenvironment that is conducive for metastasis, providing a rationale for efforts to inhibit EGFR signaling in TGFalpha-positive colon cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号