首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Because malignant and benign breast tumors show different shapes and sizes on sonography, information about tumor shapes and sizes is important for clinical diagnosis. Since sonograms include noise and tissue texture, accurate clinical diagnosis is highly dependent on clinical experience and expertise. However, manually sketching a 3‐dimensional (3D) breast tumor contour is a time‐consuming and complicated task. Automatic contouring, which provides a contour similar to that of manual sketching of a breast tumor on sonography, may improve diagnostic accuracy. This study presents an efficient method for automatically detecting 3D contours of breast tumors on 3D sonography. The proposed method applies a voxel nearest neighbor filter, a Wiener filter, and an unsharp filter to enhance contrast and reduce noise. After a 3D region‐growing algorithm is used to obtain the contour of the breast tumor, postprocessing of the extracted contour is performed to diminish the shadow region of the tumor. This study evaluated 20 tumor cases comprising 10 benign and 10 malignant cases. The results of computer simulation reveal that the proposed 3D segmentation method provides robust contouring for breast sonograms. This approach consistently obtains contours similar to those obtained by manual contouring of a breast tumor and can reduce the time needed to sketch precise contours.  相似文献   

2.
Liao YY  Wu JC  Li CH  Yeh CK 《Ultrasonic imaging》2011,33(4):264-278
Texture analysis of breast ultrasound B-scans has been widely applied to the segmentation and classification of breast tumors. We present a parametric imaging method based on the texture features to preserve tumor edges and retain the texture information simultaneously. Four texture-feature parameters--homogeneity, contrast, energy and variance--were evaluated using the gray-level co-occurrence matrix. The local texture-feature parameter was assigned as the new pixel located at the center of the sliding window at each position. This process yielded the texture-feature parametric image as the map of texture-feature values. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were estimated to show the quality improvement of the images. The contours outlined from 11 experienced physicians and the gradient vector flow (GVF) snake algorithm segmentations were adopted to verify the edge enhancement of texture-feature parametric images. In addition, the Fisher's linear discriminant analysis (FLDA) and receiver-operating-characteristic (ROC) curve were used to test the performance of breast tumor classifications between texture-feature parametric images and B-scan images. The results show that the variance images have higher CNR and SNR estimates than those in the B-scan images. There was a high agreement between the physician's manual contours and the GVF snake automatic segmentations in the variance images, and the mean area overlap was over 93%. The area under the ROC curve from the B-scan images had 0.81 and 95% confidence interval of 0.72-0.88, and the texture-feature parametric images had 0.90 and 95% confidence interval of 0.84-0.96. These findings indicate that the texture-feature parametric imaging method can be not only useful for determining the location of the lesion boundary but also as a tool to improve the accuracy of breast tumor classifications.  相似文献   

3.
Objective: A specific algorithm is presented for the automatic extraction of breast tumors in ultrasonic imaging. Method: The algorithm involves two-dimensional adaptive K-means clustering of the gray scale and textural feature images. The segmentation problem is formulated as a maximum a posteriori (MAP) estimation problem. The MAP estimation is achieved using Besag's iterated conditional modes algorithm for the minimization of an energy function. This function has three components: the first constrains the region to be close to the data; the second imposes spatial continuity; and the third takes into consideration the texture of the various regions. A multiresolution implementation of the algorithm is performed using a wavelets basis. Results: Experiments were carried out on synthetic images and on in vivo breast ultrasound images. Various parameters involved in the algorithm are discussed to evaluate the robustness and accuracy of the segmentation method. Conclusion: Including textural features in the segmentation of ultrasonic data improves the robustness of the algorithm and makes the segmentation result less parameter dependent.  相似文献   

4.
In this paper we report and characterize a semi-automatic prostate segmentation method for prostate brachytherapy. Based on anatomical evidence and requirements of the treatment procedure, a warped and tapered ellipsoid was found suitable as the a-priori 3D shape of the prostate. By transforming the acquired endorectal transverse images of the prostate into ellipses, the shape fitting problem was cast into a convex problem which can be solved efficiently. The average whole gland error between non-overlapping volumes created from manual and semi-automatic contours from 21 patients was 6.63 ± 0.9%. For use in brachytherapy treatment planning, the resulting contours were modified, if deemed necessary, by radiation oncologists prior to treatment. The average whole gland volume error between the volumes computed from semi-automatic contours and those computed from modified contours, from 40 patients, was 5.82 ± 4.15%. The amount of bias in the physicians' delineations when given an initial semi-automatic contour was measured by comparing the volume error between 10 prostate volumes computed from manual contours with those of modified contours. This error was found to be 7.25 ± 0.39% for the whole gland. Automatic contouring reduced subjectivity, as evidenced by a decrease in segmentation inter- and intra-observer variability from 4.65% and 5.95% for manual segmentation to 3.04% and 3.48% for semi-automatic segmentation, respectively. We characterized the performance of the method relative to the reference obtained from manual segmentation by using a novel approach that divides the prostate region into nine sectors. We analyzed each sector independently as the requirements for segmentation accuracy depend on which region of the prostate is considered. The measured segmentation time is 14 ± 1s with an additional 32 ± 14s for initialization. By assuming 1-3 min for modification of the contours, if necessary, a total segmentation time of less than 4 min is required, with no additional time required prior to treatment planning. This compares favorably to the 5-15 min manual segmentation time required for experienced individuals. The method is currently used at the British Columbia Cancer Agency (BCCA) Vancouver Cancer Centre as part of the standard treatment routine in low dose rate prostate brachytherapy and is found to be a fast, consistent and accurate tool for the delineation of the prostate gland in ultrasound images.  相似文献   

5.

Rationale and objectives

Advanced ischemic heart disease is usually accompanied by left ventricular (LV) myocardial volume loss and an abnormal enhancing pattern on delayed phase of multi-detector row computed tomography (MDCT). To assist radiologists and physicians in estimating the LV myocardial volume on delayed phase, this paper proposes an adaptive segmentation method for contouring the myocardial region in the delayed-phase MDCT and for computing the volume.

Materials and methods

The proposed method uses an anisotropic diffusion filter as a preprocessing procedure to enhance contrast and reduce specks in MDCT imaging. This work picks the middle of mid-ventricular level image slices as the lead slice. The proposed method develops two contouring modes to sketch the myocardium contour on the lead slice. By establishing the obtained contours as the initial contours, the region-growing method is employed to identify the contour of the myocardial region for each slice. The convex-hull finding algorithm is then used to refine the extracted contour. Finally, the width properties of the myocardial region and the morphological operators are used to obtain the entire LV myocardial volume.

Results

Twenty-seven healthy patients who had no symptoms of ischemic heart disease are examined to evaluate the performance of the proposed method. Compared with manual contours delineated by two experienced experts, the contouring results using computer simulation reveal that the proposed method reliably identifies contours similar to those obtained using manual sketching.

Conclusion

The proposed method provides robust contouring for the LV myocardium on delayed-phase MDCT. The potential role of this technique may substantially reduce the time required to sketch manually a precise contour with high stability.  相似文献   

6.
New automated whole breast ultrasound (ABUS) machines have recently been developed and the ultrasound (US) volume dataset of the whole breast can be acquired in a standard manner. The purpose of this study was to develop a novel computer-aided diagnosis system for classification of breast masses in ABUS images. One hundred forty-seven cases (76 benign and 71 malignant breast masses) were obtained by a commercially available ABUS system. Because the distance of neighboring slices in ABUS images is fixed and small, these continuous slices were used for reconstruction as three-dimensional (3-D) US images. The 3-D tumor contour was segmented using the level-set segmentation method. Then, the 3-D features, including the texture, shape and ellipsoid fitting were extracted based on the segmented 3-D tumor contour to classify benign and malignant tumors based on the logistic regression model. The Student’s t test, Mann-Whitney U test and receiver operating characteristic (ROC) curve analysis were used for statistical analysis. From the Az values of ROC curves, the shape features (0.9138) are better than the texture features (0.8603) and the ellipsoid fitting features (0.8496) for classification. The difference was significant between shape and ellipsoid fitting features (p = 0.0382). However, combination of ellipsoid fitting features and shape features can achieve a best performance with accuracy of 85.0% (125/147), sensitivity of 84.5% (60/71), specificity of 85.5% (65/76) and the area under the ROC curve Az of 0.9466. The results showed that ABUS images could be used for computer-aided feature extraction and classification of breast tumors. (E-mail: rfchang@csie.ntu.edu.tw)  相似文献   

7.
Purpose  Accurate localization and contouring of prostate are crucial issues in prostate cancer diagnosis and/or therapies. Although several semi-automatic and automatic segmentation methods have been proposed, manual expert correction remains necessary. We introduce a new method for automatic 3D segmentation of the prostate gland from magnetic resonance imaging (MRI) scans. Methods  A statistical shape model was used as an a priori knowledge, and gray levels distribution was modeled by fitting histogram modes with a Gaussian mixture. Markov fields were used to introduce contextual information regarding voxels’ neighborhoods. Final labeling optimization is based on Bayesian a posteriori classification, estimated with the iterative conditional mode algorithm. Results  We compared the accuracy of this method, free from any manual correction, with contours outlined by an expert radiologist. In 12 cases, including prostates with cancer and benign prostatic hypertrophy, the mean Hausdorff distance and overlap ratio were 9.94 mm and 0.83, respectively. Conclusion  This new automatic prostate MRI segmentation method produces satisfactory results, even at prostate’s base and apex. The method is computationally feasible and efficient.  相似文献   

8.
The stacked-ellipse (SE) algorithm was developed to rapidly segment the uterus on 3-D ultrasound (US) for the purpose of enabling US-guided adaptive radiotherapy (RT) for uterine cervix cancer patients. The algorithm was initialised manually on a single sagittal slice to provide a series of elliptical initialisation contours in semi-axial planes along the uterus. The elliptical initialisation contours were deformed according to US features such that they conformed to the uterine boundary. The uterus of 15 patients was scanned with 3-D US using the Clarity System (Elekta Ltd.) at multiple days during RT and manually contoured (n = 49 images and corresponding contours). The median (interquartile range) Dice similarity coefficient and mean surface-to-surface-distance between the SE algorithm and manual contours were 0.80 (0.03) and 3.3 (0.2) mm, respectively, which are within the ranges of reported inter-observer contouring variabilities. The SE algorithm could be implemented in adaptive RT to precisely segment the uterus on 3-D US.  相似文献   

9.
Tissue elasticity of a lesion is a useful criterion for the diagnosis of breast ultrasound (US). Elastograms are created by comparing ultrasonic radio-frequency waveforms before and after a light-tissue compression. In this study, we evaluate the accuracy of continuous US strain image in the classification of benign from malignant breast tumors. A series of B-mode US images is applied and each case involves 60 continuous images obtained by using the steady artificial pressure of the US probe. In general, after compression by the US probe, a soft benign tumor will become flatter than a stiffened malignant tumor. We proposed a computer-aided diagnostic (CAD) system by utilizing the nonrigid image registration modality on the analysis of tumor deformation. Furthermore, we used some image preprocessing methods, which included the level set segmentation, to improve the performance. One-hundred pathology-proven cases, including 60 benign breast tumors and 40 malignant tumors, were used in the experiments to test the classification accuracy of the proposed method. Four characteristic values--normalized slope of metric value (NSM), normalized area difference (NAD), normalized standard deviation (NSD) and normalized center translation (NCT)--were computed for all cases. By using the support vector machine, the accuracy, sensitivity, specificity and positive and negative predictive values of the classification of continuous US strain images were satisfactory. The A(z) value of the support vector machine based on the four characteristic values used for the classification of solid breast tumors was 0.9358.  相似文献   

10.
The use of manual segmentation of lymph nodes, within an ultrasound image, is challenging due to operator dependency and speckle. A group of 23 healthy female volunteers consented to a short imaging session to capture a maximum of three axillary lymph nodes. A feasibility study was completed using both automatic and manual segmentation techniques to analyze a sample of 45, three-dimensional (3-D) nodal volume sets. Level-set segmentation based on geodesic active contours and shape-space learning based on a level-set segmentation approach was used to capture global node shapes. Most of the image feature based segmentation methods failed; however, a more precise automatic segmentation algorithm was obtained using a superimposed shape model. Shape model based segmentation significantly improved the segmentation compared with standard level sets. The best segmentation results were achieved when an experienced sonographer assisted with setting seed surfaces. The initialization of seed surfaces improved the capture of the global shape and lymphatic vessels.  相似文献   

11.
The correct segmentation of blood vessels in optical coherence tomography (OCT) images may be an important requirement for the analysis of intra-retinal layer thickness in human retinal diseases. We developed a shape model based procedure for the automatic segmentation of retinal blood vessels in spectral domain (SD)-OCT scans acquired with the Spectralis OCT system. The segmentation procedure is based on a statistical shape model that has been created through manual segmentation of vessels in a training phase. The actual segmentation procedure is performed after the approximate vessel position has been defined by a shadowgraph that assigns the lateral vessel positions. The active shape model method is subsequently used to segment blood vessel contours in axial direction. The automated segmentation results were validated against the manual segmentation of the same vessels by three expert readers. Manual and automated segmentations of 168 blood vessels from 34 B-scans were analyzed with respect to the deviations in the mean Euclidean distance and surface area. The mean Euclidean distance between the automatically and manually segmented contours (on average 4.0 pixels respectively 20 μm against all three experts) was within the range of the manually marked contours among the three readers (approximately 3.8 pixels respectively 18 μm for all experts). The area deviations between the automated and manual segmentation also lie within the range of the area deviations among the 3 clinical experts. Intra reader variability for the experts was between 0.9 and 0.94. We conclude that the automated segmentation approach is able to segment blood vessels with comparable accuracy as expert readers and will provide a useful tool in vessel analysis of whole C-scans, and in particular in multicenter trials.  相似文献   

12.
Skin toxicity is the most common side effect of breast cancer radiotherapy and impairs the quality of life of many breast cancer survivors. We, along with other researchers, have recently found quantitative ultrasound to be effective as a skin toxicity assessment tool. Although more reliable than standard clinical evaluations (visual observation and palpation), the current procedure for ultrasound-based skin toxicity measurements requires manual delineation of the skin layers (i.e., epidermis-dermis and dermis-hypodermis interfaces) on each ultrasound B-mode image. Manual skin segmentation is time consuming and subjective. Moreover, radiation-induced skin injury may decrease image contrast between the dermis and hypodermis, which increases the difficulty of delineation. Therefore, we have developed an automatic skin segmentation tool (ASST) based on the active contour model with two significant modifications: (i) The proposed algorithm introduces a novel dual-curve scheme for the double skin layer extraction, as opposed to the original single active contour method. (ii) The proposed algorithm is based on a geometric contour framework as opposed to the previous parametric algorithm. This ASST algorithm was tested on a breast cancer image database of 730 ultrasound breast images (73 ultrasound studies of 23 patients). We compared skin segmentation results obtained with the ASST with manual contours performed by two physicians. The average percentage differences in skin thickness between the ASST measurement and that of each physician were less than 5% (4.8 ± 17.8% and −3.8 ± 21.1%, respectively). In summary, we have developed an automatic skin segmentation method that ensures objective assessment of radiation-induced changes in skin thickness. Our ultrasound technology offers a unique opportunity to quantify tissue injury in a more meaningful and reproducible manner than the subjective assessments currently employed in the clinic.  相似文献   

13.
Purpose To develop a new contour extraction method for identifying abnormal tissue. Methods We combined two techniques: logarithmic K distribution of a scattering model (method 1) and regional discrimination using the characteristics of local ultrasound images (method 2) into an integrated method (method 3) that provides accurate contours, which are essential for quantitizing border information. Results The diagnostic tissue information around the border of an image can be characterized by its shape and texture statistics. The degrees of circularity and irregularity and the depth–width ratio were calculated for the extracted contours of breast tumors. In addition, gradients, separability, and variance between the two regions along the contour and the area and variance of the internal echoes, were calculated as indices of diagnostic criteria of breast tumors. The quantitized indices were able to discriminate among cysts, fibroadenomas, and cancer. Conclusion In many ultrasound images of breast tumors, the combined techniques, the variance ratio of the logarithmic K distribution to the logarithmic Rayleigh distribution and the multilevel technique with local image information can effectively extract abnormal tissue contours.  相似文献   

14.
Quantitative characterisation of carotid atherosclerosis and classification into symptomatic or asymptomatic is crucial in planning optimal treatment of atheromatous plaque. The computer-aided diagnosis (CAD) system described in this paper can analyse ultrasound (US) images of carotid artery and classify them into symptomatic or asymptomatic based on their echogenicity characteristics. The CAD system consists of three modules: a) the feature extraction module, where first-order statistical (FOS) features and Laws' texture energy can be estimated, b) the dimensionality reduction module, where the number of features can be reduced using analysis of variance (ANOVA), and c) the classifier module consisting of a neural network (NN) trained by a novel hybrid method based on genetic algorithms (GAs) along with the back propagation algorithm. The hybrid method is able to select the most robust features, to adjust automatically the NN architecture and to optimise the classification performance. The performance is measured by the accuracy, sensitivity, specificity and the area under the receiver-operating characteristic (ROC) curve. The CAD design and development is based on images from 54 symptomatic and 54 asymptomatic plaques. This study demonstrates the ability of a CAD system based on US image analysis and a hybrid trained NN to identify atheromatous plaques at high risk of stroke.  相似文献   

15.

Purpose

Automatic segmentation of anatomical structures and lesions from medical ultrasound images is a formidable challenge in medical imaging due to image noise, blur and artifacts. In this paper we present a segmentation technique with features highly suited to use in noisy 3D ultrasound volumes and demonstrate its use in modeling bone, specifically the acetabulum in infant hips. Quantification of the acetabular shape is crucial in diagnosing developmental dysplasia of the hip (DDH), a common condition associated with hip dislocation and premature osteoarthritis if not treated. The well-established Graf technique for DDH diagnosis has been criticized for high inter-observer and inter-scan variability. In our earlier work we have introduced a more reliable instability metric based on 3D ultrasound data. Visualizing and interpreting the acetabular shape from noisy 3D ultrasound volumes has been one of the major roadblocks in using 3D ultrasound as diagnostic tool for DDH. For this study we developed a semiautomated segmentation technique to rapidly generate 3D acetabular surface models and classified the acetabulum based on acetabular contact angle (ACA) derived from the models. We tested the feasibility and reliability of the technique compared with manual segmentation.

Methods

The proposed segmentation algorithm is based on graph search. We formulate segmentation of the acetabulum as an optimal path finding problem on an undirected weighted graph. Slice contours are defined as the optimal path passing through a set of user-defined seed points in the graph, and it can be found using dynamic programming techniques (in this case Dijkstra’s algorithm). Slice contours are then interpolated over the 3D volume to generate the surface model. A three-dimensional ACA was calculated using normal vectors of the surface model.

Results

The algorithm was tested over an extensive dataset of 51 infant ultrasound hip volumes obtained from 42 subjects with normal to dysplastic hips. The contours generated by the segmentation algorithm closely matched with those obtained from manual segmentation. The average RMS errors between the semiautomated and manual segmentation for the 51 volumes were 0.28 mm/1.1 voxel (with 2 node points) and 0.24 mm/0.9 voxel (with 3 node points). The semiautomatic algorithm gave visually acceptable results on images with moderate levels of noise and was able to trace the boundary of the acetabulum even in the presence of significant shadowing. Semiautomatic contouring was also faster than manual segmentation at 37 versus 56 s per scan. It also improved the repeatability of the ACA calculation with inter-observer and intra-observer variability of \(1.4 \pm 0.9\) degree and \(1.4 \pm 1.0\) degree.

Conclusion

The semiautomatic segmentation technique proposed in this work offers a fast and reliable method to delineate the contours of the acetabulum from 3D ultrasound volumes of the hip. Since the technique does not rely upon contour evolution, it is less susceptible than other methods to the frequent missing or incomplete boundaries and noise artifacts common in ultrasound images. ACA derived from the segmented 3D surface was able to accurately classify the acetabulum under the categories normal, borderline and dysplastic. The semiautomatic technique makes it easier to segment the volume and reduces the inter-observer and intra-observer variation in ACA calculation compared with manual segmentation. The method can be applied to any structure with an echogenic boundary on ultrasound (such as a ventricle, blood vessel, organ or tumor), or even to structures with a bright border on computed tomography or magnetic resonance imaging.
  相似文献   

16.
In this study, we made use of the discrete active contour model to overcome the natural properties of ultrasound (US) images, speckle, noise and tissue-related textures, to segment the breast tumors precisely. Determination of the real tumor boundary with the snake-deformation process requires an initial contour estimate. However, the manual way to sketch an initial contour is very time-consuming. Thus, we propose an automatic initial contour-finding method that not only maintains the tumor shape, but also is close to the tumor boundary and inside the tumor. During the deformation process, to prevent the snake trapping into the false position caused by tissue-related texture or speckle, we added the edge information as an image feature to define the external force. In addition, because the 3-D volume of a tumor is essentially constructed by a sequence of 2-D images, our method for finding boundaries of a tumor can be extended to 3-D cases. By precisely counting the volume of the 3-D images, we can get the volume of tumor. Finally, we will show that the proposed techniques have rather good performance and lead to a satisfactory result in comparison with the estimated volume and physician's estimate.  相似文献   

17.

Objective

The segmentation of ultrasound (US) images is useful for several applications in computer aided interventions including the registration of pre-operative CT or MRI to intra-operative US. Shadowing, intensity inhomogeneity and speckle are the common effects on US images. They render the segmentation algorithms developed for other modalities inappropriate due to poor robustness. We present a novel method for classification of hepatic structures including vasculature and liver parenchyma on US images.

Methods

The method considers B-mode US images as a dynamic texture. The dynamics of each pixel are modelled as an auto regressive (AR) process perturbed with Gaussian noise. The linear coefficients and noise variance are estimated pixel-wise using Neumaier and Schneider’s algorithm. Together with mean intensity they comprise a parametric space in which classification (maximum a posteriori or K-nearest neighbour) of each pixel is performed. We emphasize the novelty of studying dynamics rather than static features such as intensity in the segmentation of various structures.

Results

We assessed the automatic segmentations of ten US sequences using Dice Similarity Coefficients. The algorithm’s capability of vessel extraction was tested on three sequences where Doppler US failed to capture vasculature.

Conclusion

The modelling of image dynamics with AR process combined with MAP classifier produced robust segmentation results indicating that the method has a good potential for intra-operative use.  相似文献   

18.
Defining myocardial contours is often the most time-consuming portion of dynamic cardiac MRI image analysis. Displacement encoding with stimulated echoes (DENSE) is a quantitative MRI technique that encodes tissue displacement into the phase of the complex MRI images. Cine DENSE provides a time series of these images, thus facilitating the non-invasive study of myocardial kinematics. Epicardial and endocardial contours need to be defined at each frame on cine DENSE images for the quantification of regional displacement and strain as a function of time. This work presents a reliable and effective two-dimensional semi-automated segmentation technique that uses the encoded motion to project a manually-defined region of interest through time. Contours can then easily be extracted for each cardiac phase. This method boasts several advantages, including, (1) parameters are based on practical physiological limits, (2) contours are calculated for the first few cardiac phases, where it is difficult to visually distinguish blood from myocardium, and (3) the method is independent of the shape of the tissue delineated and can be applied to short- or long-axis views, and on arbitrary regions of interest. Motion-guided contours were compared to manual contours for six conventional and six slice-followed mid-ventricular short-axis cine DENSE datasets. Using an area measure of segmentation error, the accuracy of the segmentation algorithm was shown to be similar to inter-observer variability. In addition, a radial segmentation error metric was introduced for short-axis data. The average radial epicardial segmentation error was 0.36+/-0.08 and 0.40+/-0.10 pixels for slice-followed and conventional cine DENSE, respectively, and the average radial endocardial segmentation error was 0.46+/-0.12 and 0.46+/-0.16 pixels for slice following and conventional cine DENSE, respectively. Motion-guided segmentation employs the displacement-encoded phase shifts intrinsic to DENSE MRI to accurately propagate a single set of pre-defined contours throughout the remaining cardiac phases.  相似文献   

19.
Ultrasound (US) imaging is an indispensible technique for detection of abdominal stones which are a serious health hazard. Segmentation of stones from abdominal ultrasound images presents a unique challenge because these images contain strong speckle noise and attenuated artifacts. In clinical situations where a large number of stones must be identified, traditional methods such as manual identification become tedious and lack reproducibility too. The necessity of obtaining high reproducibility and the need to increase efficiency motivates the development of automated and fast procedures that segment out stones of all sizes and shapes in medical images by applying image segmentation techniques. In this paper we present and compare two fully automatic and unsupervised methods for robust stone detection in B-mode ultrasound images of the abdomen. Our approaches are based on the marker controlled watershed segmentation, along with some pre-processing and post-processing procedures that eliminate the inherent problems associated with medical ultrasound images. The first algorithm (Algorithm I) utilizes the advantage of the Speckle reducing anisotropic diffusion (SRAD) technique, along with unsharp filtering and histo- gram equalization for removal of speckle noise, and the second algorithm (Algorithm II) is based on the log decompression model which too serves as a tool for minimization of speckle. Experimental results obtained from processing a set of 50 ultrasound images ensure the robustness of both the proposed algorithms. Comparative results of both the algorithms based on efficiency and relative error in stone area have been provided.  相似文献   

20.
The purpose of this study was to test the efficacy of using small training sets in computer-aided diagnostic systems (CAD) and to increase the capabilities of ultrasound (US) technology in the differential diagnosis of solid breast tumors. A total of 263 sonographic images of solid breast nodules, including 129 malignancies and 134 benign nodules, were evaluated by using a bootstrap technique with 10 original training samples. Texture parameters of a region-of-interest (ROI) were resampled with a bootstrap technique and a decision-tree model was used to classify the tumor as benign or malignant. The accuracy was 87.07% (229 of 263 tumors), the sensitivity was 95.35% (123 of 129), the specificity was 79.10% (106 of 134), the positive predictive value was 81.46% (123 of 151), and the negative predictive value was 94.64% (106 of 112). This analysis method provides a second opinion for physicians with high accuracy. The new method shows a potential to be useful in future application of CAD, especially when a large database cannot be obtained for training or a newly developed ultrasonic system has smaller sets of samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号