首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholinergic basal forebrain (CBF) projection systems are defective in late Alzheimer's disease (AD). We examined the brains of 12-month-old singly and doubly transgenic mice overexpressing mutant amyloid precursor protein (APP(swe)) and/or presenilin-1 (PS1(M146L)) to investigate the effects of these AD-related genes on plaque and tangle pathology, astrocytic expression, and the CBF projection system. Two types of beta-amyloid (Abeta)-immunoreactive (ir) plaques were observed: type 1 were darkly stained oval and elongated deposits of Abeta, and type 2 were diffuse plaques containing amyloid fibrils. APP(swe) and PS1(M146L) mouse brains contained some type 1 plaques, while the doubly transgenic (APP(swe)/PS1(M146L)) mice displayed a greater abundance of types 1 and 2 plaques. Sections immunostained for the p75 NGF receptor (p75(NTR)) revealed circular patches scattered throughout the cortex and hippocampus of the APP(swe)/PS1(M146L) mice that contained Abeta, were innervated by p75(NTR)-ir neurites, but displayed virtually no immunopositive neurons. Tau pathology was not seen in any transgenic genotype, although a massive glial response occurred in the APP(swe)/PS1(M146L) mice associated with amyloid plaques. Stereology revealed a significant increase in p75(NTR)-ir medial septal neurons in the APP(swe) and PS1(M146L) singly transgenic mice compared to the APP(swe)/PS1(M146L) mice. No differences in size or optical density of p75(NTR)-ir neurons were observed in these three mutants. p75(NTR)-ir fibers in hippocampus and cortex were more pronounced in the APP(swe) and PS1(M146L) mice, while the APP(swe)/PS1(M146L) mice showed the least p75(NTR)-ir fiber staining. These findings suggest a neurotrophic role for mutant APP and PS1 upon cholinergic hippocampal projection neurons at 12 months of age.  相似文献   

2.
GM1 ganglioside regulates the proteolysis of amyloid precursor protein   总被引:3,自引:0,他引:3  
Plaques containing amyloid beta-peptides (Abeta) are a major feature in Alzheimer's disease (AD), and GM1 ganglioside is an important component of cellular plasma membranes and especially enriched in lipid raft. GM1-bound Abeta (GM1/Abeta), found in brains exhibiting early pathological changes of AD including diffuse plaques, has been suggested to be involved in the initiation of amyloid fibril formation in vivo by acting as a seed. However, the role of GM1 in amyloid beta-protein precursor (APP) processing is not yet defined. In this study, we report that exogenous GM1 ganglioside promotes Abeta biogenesis and decreases sAPPalpha secretion in SH-SY5Y and COS7 cells stably transfected with human APP695 cDNA without affecting full-length APP and the sAPPbeta levels. We also observe that GM1 increases extracellular levels of Abeta in primary cultures of mixed rat cortical neurons transiently transfected with human APP695 cDNA. These findings suggest a regulatory role for GM1 in APP processing pathways.  相似文献   

3.
The molecular mechanisms of the interrelationship between cholinergic neurotransmission, processing of amyloid precursor protein (APP) and beta-amyloid (Abeta) production in vivo are still less understood. To reveal any effect of cholinergic dysfunction on APP processing in vivo, 11-month-old transgenic Tg2576 mice with Abeta plaque pathology received intraperitoneal injections of scopolamine at a daily dosage of 2mg/kg body weight for 14 days in order to suppress cortical cholinergic transmission by chronic inhibition of muscarinic acetylcholine receptors. Scopolamine treatment of transgenic Tg2576 mice resulted in increased levels of fibrillar Abeta(1-40) and Abeta(1-42), while the soluble, SDS-extractable Abeta level remained unchanged as compared to vehicle-injected Tg2576 mice. alpha-Secretase activity determined in cortical tissue from scopolamine-treated Tg2576 mice was lower by about 30% as compared to that assayed in control mice, while beta-secretase activity and BACE1 protein expression appeared unaffected by scopolamine treatment. The amount of sAPPalpha, the product secreted by alpha-secretase-mediated APP cleavage, and the unprocessed APP were assayed in the soluble and membrane fraction, respectively, of cortical tissue preparations from treated and control mice by Western blotting. Using the anti antibody 6E10 which specifically labels human sAPPalpha and full length APP in transgenic Tg2576, an enhanced APP level was detected in the membrane fraction from treated mice as compared to controls, while in the soluble fraction scopolamine treatment did not affect the protein level of sAPPalpha. These data indicate an accumulation of APP in cortical membrane fraction in scopolamine-treated Tg2576 mice presumably due to the decreased level of alpha-secretase-mediated APP cleavage, and further suggest that chronic suppression of cortical muscarinic cholinergic transmission may alter the balance between alpha- and beta-secretory APP processing by favouring the amyloidogenic route.  相似文献   

4.
Alzheimer's disease (AD) is defined by deposits of the 42-residue amyloid-beta peptide (Abeta42) in the brain. Abeta42 is a minor metabolite of the amyloid precursor protein (APP), but its relative levels are increased by mutations on APP and presenilins 1 and 2 linked to familial AD. beta-secretase (BACE-1), an aspartyl protease, cleaves approx 10% of the APP in neuronal cells on the N-terminal side of Abeta to produce the C-terminal fragment (CTFbeta), which is cleaved by gamma-secretase to produce mostly Abeta of 40 residues (90%) and approx10% Abeta42. A third enzyme, alpha-secretase, cleaves APP after Abeta16 to secrete sAPPalpha and CTFalpha, the major metabolites of APP. Moreover, previous studies have demonstrated that phorbol esters stimulate processing of APP by alpha-secretase. Because alpha-secretase and BACE-1 cleave APP within the secretory pathway, it is likely that the two enzymes compete for the APP substrate. This type of competition can explain the failure to saturate the minor BACE-1 pathway by overexpressing APP in the cell. In this study, we demonstrate that inhibition of constitutive alpha-secretase processing in a human neuroblastoma cell line does not increase the yield of Abeta, suggesting that the APP substrate targeted for alpha-secretase processing is not diverted to the BACE-1 pathway. However, when phorbol ester-induced alpha-secretase was similarly inhibited, we detected an increase in BACE-1 processing and AB yield. We explain these results compartmentalization of BACE-1 and alpha-secretase with processing depending on sorting of APP to the two compartments. The simplest explanation for the detection of competition between the two pathways upon phorbol ester stimulation is the partial failure of this compartmentalization by phorbol ester-induced release of secretory vesicles.  相似文献   

5.
The amyloid hypothesis has dominated the thinking in our attempts to understand, diagnose and develop drugs for Alzheimer's disease (AD). This article presents a new hypothesis that takes into account the numerous familial AD (FAD) mutations in the amyloid precursor protein (APP) and its processing pathways, but suggests a new perspective beyond toxicity of forms of the amyloid beta-peptide (Abeta). Clearly, amyloid deposits are an invariable feature of AD. Moreover, although APP is normally processed to secreted and membrane-bound fragments, sAPPbeta and CTFbeta, by BACE, and the latter is subsequently processed by gamma-secretase to Abeta and CTFgamma, this pathway mostly yields Abeta of 40 residues, and increases in the levels of the amyloidogenic 42-residue Abeta (Abeta42) are seen in the majority of the mutations linked to the disease. The resulting theory is that the disease is caused by amyloid toxicity, which impairs memory and triggers deposition of the microtubule associated protein, Tau, as neurofibrillary tangles. Nevertheless, a few exceptional FAD mutations and the presence of large amounts of amyloid deposits in a group of cognitively normal elderly patients suggest that the disease process is more complex. Indeed, it has been hard to demonstrate the toxicity of Abeta42 and the actual target has been shifted to small oligomers of the peptide, named Abeta derived diffusible ligands (ADDLs). Our hypothesis is that the disease is more complex and caused by a failure of APP metabolism or clearance, which simultaneously affects several other membrane proteins. Thus, a traffic jam is created by failure of important pathways such as gamma-secretase processing of residual intramembrane domains released from the metabolism of multiple membrane proteins, which ultimately leads to a multiple system failure. In this theory, toxicity of Abeta42 will only contribute partially, if at all, to neurodegeneration in AD. More significantly, this theory would predict that focussing on specific reagents such as gamma-secretase inhibitors that hamper metabolism of APP, may initially show some beneficial effects on cognitive performance by elimination of acutely toxic ADDLs, but over the longer term may exacerbate the disease process by reducing membrane protein turnover.  相似文献   

6.
Alzheimer disease: mouse models pave the way for therapeutic opportunities   总被引:5,自引:0,他引:5  
Research into the molecular mechanisms of Alzheimer disease (AD) continues to clarify important issues in aberrant protein processing while seeking to identify therapeutic targets. Mutations of genes on chromosomes 1, 14 (presenilins 1 and 2), and 21 (the amyloid-beta [Abeta] amyloid precursor protein [APP]) cause the familial forms of AD that often begin before age 65. An allelic polymorphism on chromosome 19 (apolipoprotein E ) affects the age of onset of the more common forms of sporadic AD. Multiple studies in transgenic mice provide strong evidence to support the view that Abeta amyloid formation is an early and critical pathogenic event: mice expressing pathogenic human APP mutations develop Abeta deposits; coexpression of mutant presenilin genes accelerates the rate of Abeta deposition; and apolipoprotein E plays a role in this process. Thus, the 3 established genetic causes or risk factors for AD affect Abeta deposition. The fact that elevation of the Abeta42/Abeta40 ratio (differing only in 2 amino acids in length) is also linked to amyloid deposition in the APP mice and is temporally linked to cognitive impairment suggests that Abeta42 may be a principal inducing factor of AD. The exact sequence of events is still unknown, but the transgenic models generated so far have shown their usefulness in clarifying this complex part of the pathology. The continuing progress in elucidation of the molecular pathogenesis of AD suggests a range of rational pharmacological interventions for this disorder. The most promising strategy involves the development of approaches to retard, halt, or prevent Abeta-mediated disease progression, and these can now be tested in transgenic animals.  相似文献   

7.
Cholesterol is one of multiple factors, other than familial genetic mutations, that can influence amyloid-beta peptide (Abeta) metabolism and accumulation in Alzheimer disease (AD). The effect of a high-cholesterol diet on amyloid precursor protein (APP) processing in brain has not been thoroughly studied. This study was designed to further investigate the role of cholesterol in the production of Abeta and APP intracellular domain (AICD) in 12-month-old Tg2576 transgenic mice. The mice were maintained on a high-cholesterol diet for 6 weeks. We found that diet-induced hypercholesterolemia increased the APP cytosolic fragment AICD and reduced sAPPalpha in the Tg2576 mice compared to the mice on a control basal diet. In addition, the levels of detergent-extracted Abeta40 were reduced, although no change in guanidine-extracted Abeta levels was observed. Full-length APP, alpha/betaC-terminal fragment (alpha/betaCTF), and beta-secretase (BACE) were not different in the cholesterol-fed mice compared to the control diet-fed mice. This study suggests that a high dietary cholesterol in aged mice may not only influence Abeta metabolism, but also regulate the AICD levels. AICD has a proposed role in signal transduction and apoptosis, hence modulation of AICD production could be an alternative mechanism by which cholesterol contributes to AD pathogenesis.  相似文献   

8.
The formation of Alzheimer's Abeta peptide is initiated when the amyloid precursor protein (APP) is cleaved by the enzyme beta-secretase (BACE1); inhibition of this cleavage has been proposed as a means of treating Alzheimer's disease. (AD) We have previously shown that young BACE1 knockout mice (BACE1 KO) do not generate Abeta but in other respects appear normal. Here we have extended this analysis to include both gene expression profiling and phenotypic assessment of older BACE1 KO animals to evaluate the impact of chronic Abeta deficiency. We did not detect global compensatory changes in neural gene expression in young BACE1 KO mice. In particular, expression of the beta-secretase homolog BACE2 was not upregulated. Furthermore, we found no structural alterations in any organ, including all central and peripheral neural tissues, of BACE1 KO mice up to 14 months of age. Aged BACE1 KO mice engineered to overexpress human APP (BACE1 KO/APPtg) did not develop amyloid plaques. These data provide evidence that neither beta-secretase nor Abeta plays a vital role in mouse physiology and that chronic beta-secretase inhibition could be a useful approach in treating AD.  相似文献   

9.
Increasing evidence points to synaptic plasticity impairment as one of the first events in Alzheimer's disease (AD). However, studies on synaptic dysfunction in different transgenic AD models that overexpress familial AD mutant forms of amyloid precursor protein (APP) and/or presenilin (PS) have provided conflicting results. Both long-term potentiation (LTP) and basal synaptic transmission (BST) have been found to be both unchanged and altered in different models and under differing experimental conditions. Because of their more robust amyloid-beta (Abeta) deposition, double transgenic mice currently are used by several laboratories as an AD model. Here, we report that mice overexpressing APP (K670N:M671L) together with PS1 (M146L) have abnormal LTP as early as 3 months of age. Interestingly, reduced LTP paralleled plaque appearance and increased Abeta levels and abnormal short-term memory (working memory). BST and long-term memory (reference memory) are impaired only later (approximately 6 months) as amyloid burden increases. Abeta pathology across different ages did not correlate with synaptic and cognitive deficits, suggesting that Abeta levels are not a marker of memory decline. In contrast, progression of LTP impairment correlated with the deterioration of working memory, suggesting that percentage of potentiation might be an indicator of the cognitive decline and disease progression in the APP/PS1 mice.  相似文献   

10.
Cerebrolysin is a peptide mixture with neurotrophic effects that might reduce the neurodegenerative pathology in Alzheimer's disease (AD). We have previously shown in an amyloid protein precursor (APP) transgenic (tg) mouse model of AD-like neuropathology that Cerebrolysin ameliorates behavioral deficits, is neuroprotective, and decreases amyloid burden; however, the mechanisms involved are not completely clear. Cerebrolysin might reduce amyloid deposition by regulating amyloid-beta (Abeta) degradation or by modulating APP expression, maturation, or processing. To investigate these possibilities, APP tg mice were treated for 6 months with Cerebrolysin and analyzed in the water maze, followed by RNA, immunoblot, and confocal microscopy analysis of full-length (FL) APP and its fragments, beta-secretase (BACE1), and Abeta-degrading enzymes [neprilysin (Nep) and insulin-degrading enzyme (IDE)]. Consistent with previous studies, Cerebrolysin ameliorated the performance deficits in the spatial learning portion of the water maze and reduced the synaptic pathology and amyloid burden in the brains of APP tg mice. These effects were associated with reduced levels of FL APP and APP C-terminal fragments, but levels of BACE1, Notch1, Nep, and IDE were unchanged. In contrast, levels of active cyclin-dependent kinase-5 (CDK5) and glycogen synthase kinase-3beta [GSK-3beta; but not stress-activated protein kinase-1 (SAPK1)], kinases that phosphorylate APP, were reduced. Furthermore, Cerebrolysin reduced the levels of phosphorylated APP and the accumulation of APP in the neuritic processes. Taken together, these results suggest that Cerebrolysin might reduce AD-like pathology in the APP tg mice by regulating APP maturation and transport to sites where Abeta protein is generated. This study clarifies the mechanisms through which Cerebrolysin might reduce Abeta production and deposition in AD and further supports the importance of this compound in the potential treatment of early AD.  相似文献   

11.
Both the beta-amyloid precursor protein (APP) and the apoliprotein E (apoE) genes are involved in the pathogenesis of Alzheimer's disease (AD). We previously showed that mice over-expressing a human mutated form of APP (APP(V717F)) display age-dependent recognition memory deficits associated with the progression of amyloid deposition. Here, we asked whether 10- to 12-month-old APP(V717F) mice lacking the apoE gene, which do not present obvious amyloid deposition, differ from APP(V717F) mice in the object recognition task. The recognition performance is decreased in both transgenic mouse groups compared to control groups. Moreover, some behavioral disturbances displayed by APP mice lacking apoE are even more pronounced than those of APP mice expressing apoE. Our results suggest that the recognition memory deficits are related to high levels of soluble Abeta rather than to amyloid deposits.  相似文献   

12.
Mutations in the amyloid precursor protein (APP) gene result in elevated production and deposition of the 42 amino acid beta-amyloid (Abeta1-42) peptide and early-onset Alzheimer's disease (AD). To accurately examine the effect of the APP FAD mutations in vivo, we introduced yeast artificial chromosomes (YACs) containing the entire genomic copy of human APP harboring FAD mutations into transgenic mice. Our current results demonstrate that mutant APP YAC transgenic mice exhibit many features characteristic of human AD, including regional deposition of Abeta with preferential deposition of Abeta1-42, extensive neuritic abnormalities as evidenced by staining with APP, ubiquitin, neurofilament, and hyperphosphorylated tau antibodies, increased markers of inflammation, and the overlapping deposition of Abeta with apolipoproteins E and J. Our results also suggest that APP YAC transgenic mice possess unique pathological attributes when compared to other transgenic mouse models of AD that may reflect the experimental design of each model.  相似文献   

13.
Doubly transgenic mice (PSAPP) overexpressing mutant APP and PS1 transgenes were examined using antibodies to Abeta subtypes and glial fibrillary acidic protein (GFAP). Visible Abeta deposition began primarily in the cingulate cortex of PSAPP mice at approximately 10 weeks of age. By 6 months, the mice had extensive amyloid deposition throughout the hippocampus and cortex as well as other regions of the brain. Highly congophilic deposits consisting of N-terminal normal and modified forms of Abeta were identified, reminiscent of those found in human AD brain. Both immunohistochemistry and mass spectrometry showed that Abeta42 forms were underrepresented relative to Abeta40, and Abeta43 was undetectable. Deposits were associated with prominent gliosis which increased with age, but in 14-month-old PSAPP mice, GFAP immunoreactivity in the vicinity of amyloid deposits was substantially reduced compared to APP littermates. These mice have considerable utility in the study of the amyloid phenotype of AD.  相似文献   

14.
In Alzheimer disease, the extracellular deposition of beta-amyloid (Abeta) in the brain is accompanied by the intracellular accumulation of aggregated forms of hyperphosphorylated tau. In developing animal models of AD, the authors and others have been able to reproduce extracellular amyloid pathology in the brains of mice by expressing mutant amyloid precursor proteins (APP). The co-expression of APP with mutant presenilin leads to a dramatic acceleration in Abeta deposition, leading to very high amyloid burdens in mice. In the current study, the authors have examined whether the brains of mice with high burdens of amyloid deposition also contain aggregated forms of tau, using a cellulose acetate filter trap assay. Although discrete accumulations of phosphorylated tau immunoreactivity were apparent in neurites proximal to cored deposits of Abeta, little if any of this tau was in a SDS-resistant state of aggregation. By contrast, the brains of AD patients contained large amounts of aggregated tau. Overall, this study demonstrates that, in mice, deposition of Abeta does not cause endogenous tau to aggregate.  相似文献   

15.
The beta amyloid (Abeta) cascade has been at the forefront of the hypothesis used to describe the pathogenesis of Alzheimer's disease (AD). It is generally accepted that drugs that can regulate the processing of the amyloid precursor protein (APP) toward the non-amyloidogenic pathway may have a therapeutic potential. Previous studies have shown that protein kinase C (PKC) hypofunction has an important role in AD pathophysiology. Therefore, the effects of a new PKC activator, alpha-APP modulator [(2S,5S)-(E,E)-8-(5-(4-(trifluoromethyl)phenyl)-2,4-pentadienoylamino)benzolactam (TPPB)], on APP processing were investigated. Using PC12 cells and SH-SY5Y(APP695) cells, it was found that TPPB promoted the secretion of sAPPalpha without affecting full-length expression of APP. The increase in sAPPalpha by TPPB was blocked by inhibitors of PKC, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and tyrosine kinase, suggesting the involvement of these signal transduction pathways. TPPB increased alpha-secretase activity [a disintegrin and metalloproteinase (ADAM)10 and 17], as shown by direct fluorescence activity detection and Western blot analysis. TPPB-induced sAPPalpha release was blocked by the metalloproteinase inhibitor TAPI-2, furin inhibitor CMK and by the protein-trafficking inhibitor brefeldin. The results also showed that TPPB decreased beta-secretase activity, Abeta40 release and beta site APP-cleaving enzyme 1 (BACE1) expression, but did not significantly affect neprilysin (NEP) and insulin-degrading enzyme (IDE) expression. Our data indicate that TPPB could direct APP processing towards the non-amyloidogenic pathway by increasing alpha-secretase activity, and suggest its therapeutic potential in AD.  相似文献   

16.
The pathological process in Alzheimer's disease (AD) involves amyloid beta (Abeta) deposition and neuronal cell degeneration. The neurotoxic Abeta peptide is derived from the amyloid precursor protein (APP), a member of a larger gene family including the amyloid precursor-like proteins, APLP1 and APLP2. The APP and APLP2 molecules contain metal binding sites for copper and zinc. The zinc binding domain (ZnBD) is believed to have a structural rather than a catalytic role. The activity of the copper binding domain (CuBD) is unknown, however, APP reduces copper (II) to copper (I) and this activity could promote copper-mediated neurotoxicity. The expression of APP and APLP2 in the brain suggests they could have an important direct or indirect role in neuronal metal homeostasis. To examine this, we measured copper, zinc and iron levels in the cerebral cortex, cerebellum and selected non-neuronal tissues from APP (APP(-/-)) and APLP2 (APLP2(-/-)) knockout mice using atomic absorption spectrophotometry. Compared with matched wild-type (WT) mice, copper levels were significantly elevated in both APP(-/-) and APLP2(-/-) cerebral cortex (40% and 16%, respectively) and liver (80% and 36%, respectively). Copper levels were not significantly different between knockout and WT cerebellum, spleen or serum samples. There were no significant differences observed between APP(-/-), APLP2(-/-) and WT mice zinc or iron levels in any tissue examined. These findings indicate APP and APLP2 expression specifically modulates copper homeostasis in the liver and cerebral cortex, the latter being a region of the brain particularly involved in AD. Perturbations to APP metabolism and in particular, its secretion or release from neurons may alter copper homeostasis resulting in increased Abeta accumulation and free radical generation. These data support a novel mechanism in the APP/Abeta pathway which leads to AD.  相似文献   

17.
Clinical studies suggest that the incidence of Alzheimer's disease (AD) is increased following an ischaemic or hypoxic episode, such as stroke. Furthermore, levels of the AD-associated amyloid beta-peptides (Abeta) and the amyloid precursor protein (APP) are enhanced in experimental ischaemia. In our previous study [Webster, N.J., Green, K.N., Peers, C., Vaughan, P.F., Altered processing of amyloid precursor protein in the human neuroblastoma SH-SY5Y by chronic hypoxia, J. Neurochem., 83 (2002) 1262-1271] we reported that exposing cells of neuronal origin to a period of chronic hypoxia (CH; 2.5% O(2), 24 h) led to a decrease in processing of the amyloid precursor protein (APP) by the alternative and neuroprotective alpha-secretase pathway. In SH-SY5Y cells, the most likely mechanism was that CH inhibits the protein level of ADAM 10, a disintegrin metalloprotease widely believed to be the alpha-secretase. One effect of CH is to alter the activity of the stress-activated protein kinases (SAPKs) c-Jun amino terminal kinase (JNK) and p38. Thus, the main aims of this study were to investigate the effect of CH on (1) the activity of these SAPKs in SH-SY5Y and (2) whether changes in the activity of these kinases may account for the CH-induced decreases in ADAM 10 expression and sAPPalpha secretion. We demonstrated that the phosphorylation (activity) of JNK was decreased approximately 50% following a period of CH. An inhibitor of JNK did not mimic the effects of CH on either ADAM 10 expression or sAPPalpha secretion under conditions in which the phosphorylation of c-Jun was inhibited by approximately 80%. Thus the loss of JNK activity does not appear to be linked to the decrease in expression of ADAM 10 and secretion of sAPPalpha. In contrast, phosphorylation (activity) of p38 was enhanced approximately 300% following a period of CH. However, inhibitors of p38 were unable to reverse the loss of sAPPalpha in CH cells, indicating that this increase in activity was not linked to the altered processing of APP.  相似文献   

18.
Proteolysis of beta-amyloid precursor protein (APP) into amyloid beta peptide (Abeta) by beta- and gamma-secretases is a critical step in the pathogenesis of Alzheimer's Disease (AD), but the pathways regulating secretases are not fully characterized. Ubiquitinylation, which is dysregulated in AD, may affect APP processing. Here, we describe a screen for APP processing modulators using an siRNA library targeting 532 predicted ubiquitin ligases. Seven siRNA pools diminished Abeta production. Of these, siRNAs targeting PPIL2 (hCyp-60) suppressed beta-site cleavage. Knockdown of PPIL2 mRNA decreased BACE1 mRNA, while overexpression of PPIL2 cDNA enhanced BACE1 mRNA levels. Microarray analysis of PPIL2 or BACE1 knockdown indicated that genes affected by BACE1 knockdown are a subset of those dependent upon PPIL2; suggesting that BACE1 expression is downstream of PPIL2. The association of PPIL2 with BACE expression and its requirement for Abeta production suggests new approaches to discover disease modifying agents for AD.  相似文献   

19.
The CD40 receptor is a member of the tumor necrosis factor (TNF) super-family of trans-membrane receptors. Interaction of CD40 with its ligand CD40L mediates a broad range of immune and inflammatory responses in the periphery and in the central nervous system. Recently it has been suggested that CD40/CD40L interaction is involved in amyloid precursor protein (APP) processing and Alzheimer's disease (AD)-like pathology in transgenic mouse models of AD. We have previously shown that pharmacologically inhibiting CD40/CD40L interaction improves memory deficits in the PSAPP AD mouse model. We have also recently shown that CD40 deficiency mitigates amyloid deposition in APPsw and PSAPP mouse models. In the present report, using human embryonic kidney cells (HEK293) over-expressing both the APPsw mutation and CD40, we demonstrate that CD40/CD40L interaction directly increases the production of APP metabolites (Abeta 1-40, Abeta 1-42, CTFs, sAPPbeta and sAPPalpha). The results also show that CD40/CD40L interaction affects APP processing via the NF-kappaB pathway. Using NFkappaB inhibitors and SiRNAs to silence diverse elements of the NFkappaB pathway, we observe a reduction in levels of both Abeta 1-40 and Abeta 1-42. Taken together, our results further suggest that CD40L stimulation may be a key component in AD pathology and that elements of the NF-kappaB pathway may be suitable targets for therapeutic approaches against AD.  相似文献   

20.
Mice overexpressing mutant Alzheimer's disease (AD)-related proteins exhibit many of the neuropathological and behavioral features of the human disease. Transgenic animals have been created that express mutations in the amyloid precursor protein (APP), presenilin (PS)1, and PS2, and also animals expressing more than one of these mutations. For example, in APP mouse models, there are age-related accumulations of amyloid-beta (Abeta)-containing neuritic plaques in the hippocampus and cerebral cortex, activation of astrocytes and microglial cells in regions containing plaques, and degeneration of cholinergic nerve terminals in brain regions that eventually become plaque containing. Missing in the APP and PS mouse models are neurofibrillary tangles and robust neuronal loss in cerebral cortical and subcortical regions such as the basal forebrain cholinergic and locus coeruleus noradrenergic nuclei. Neurofibrillary tangles can be produced in mice expressing mutant tau protein, and the tangle formation is further enhanced in animals that also express mutant APP. Studies in APP mouse models indicate that, like AD, there are abnormalities in adult hippocampal neurogenesis. The animal models of AD have been used to develop and test treatments that reduce brain levels of the Abeta42 protein, neuritic plaque load and glial activation, and some have been found to restore learning and memory function. If such treatments can be shown to stop the neurodegenerative process and restore hippocampal neurogenesis, damaged brain circuits may be replaceable in patients with AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号