首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The central nervous system and peripheral nervous system (CNS/PNS) contain factors that inhibit axon regeneration, including myelin-associated glycoprotein (MAG), the Nogo protein, and chondroitin sulfate proteoglycan (CSPG). They also contain factors that promote axon regeneration, such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). Axon regeneration into and within the CNS fails because the balance of factor favors inhibiting regeneration, while in the PNS, the balance of factor favors promoting regeneration. The balance of influences in the CNS can be shifted toward promoting axon regeneration by eliminating the regeneration-inhibiting factors, overwhelming them with regeneration-promoting factors, or making axon growth cones non-receptive to regeneration-inhibiting factors. The present in vitro experiments, using adult rat dorsal root ganglion (DRG) neurons, were designed to determine whether the regeneration-inhibiting influences of Schwann cell CSPG are mediated via Schwann cell membrane contact with the DRG neuron cell body or their growth cones. The average longest neurite of neurons in cell body contact with Schwann cells was 7.4-fold shorter than those of neurons without Schwann cell-neuron cell body contact (naked neurons), and the neurites showed substrate specificity, growing only on the Schwann cell membranes and not extending onto the laminin substrate. The neurites of naked neurons showed no substrate specificity and extended over the laminin substrate, as well as onto and off the Schwann cells. After digesting the Schwann cell CSPG with the enzyme C-ABC, neurons in cell body contact with Schwann cells extended neurites the same length as those of naked neurons, and their neurites showed no substrate selectivity. Further, the neurites of naked neurons were not longer than those of naked neurons not exposed to C-ABC. These data indicate that the extent of neurite outgrowth from adult rat DRG neurons and substrate specificity of their growth cone is mediated via contact between the Schwann cell membrane-bound CSPG and the DRG neuron cell body and not with their growth cones. Further, there was no apparent influence of diffusible or substrate-bound CSPG on neurite outgrowth. These results show that eliminating the CSPG of Schwann cells in contact with the cell body of DRG neurons eliminates the sensitivity of their growth cones to the CSPG-induced outgrowth inhibition. This may in turn allow the axons of these neurons to regenerate through the dorsal roots and into the spinal cord.  相似文献   

2.
Microglia enhance dorsal root ganglion outgrowth in Schwann cell cultures   总被引:2,自引:0,他引:2  
Transplantation of cellular populations to facilitate regrowth of damaged axons is a common experimental therapy for spinal cord injury. Schwann cells (SC) or microglia grafted into injury sites can promote axonal regrowth of central projections of dorsal root ganglion (DRG) sensory neurons. We sought to determine whether the addition of microglia or microglia-derived secretory products alters DRG axon regrowth upon cultures of SC. Rat DRG explants were grown on monolayers consisting of either SC, microglia, SC exposed to microglia-conditioned medium (MCM), or co-cultures with different relative concentrations of microglia. Image analysis revealed that, compared to SC alone, the extent of neurite outgrowth was significantly greater on SC-microglia co-cultures. Immunocytochemistry for extracellular matrix molecules showed that microglial cells stained positively for growth-promoting thrombospondin, whereas laminin and the inhibitory chondroitin sulfate proteoglycans (CSPGs) were localized primarily to SC. Notably, immunoreactivity for CSPGs appeared reduced in areas associated with DRG outgrowth in co-cultures and SC exposed to MCM. These results show that microglia or their secreted products can augment SC-mediated DRG regrowth in vitro, indicating that co-grafting SC with microglia provides a novel approach to augment sensory fiber regeneration after spinal cord injury.  相似文献   

3.
4.
Schwann cells support and facilitate axonal growth during development and successful regeneration in the peripheral nerve. In the regenerating rat sciaticnerve, Schwann cells provide a trophic milieu for primary sensory, sympathetic, and motoneurons. We have characterized a neurotrophic activity produced by adult rat sciatic nerve Schwann cells and a spontaneously immortal Schwann cell clone (iSC). This activity elicits neurite outgrowth from chick embryo explants of both CNS and PNS. The iSC activity has been concentrated by cation-exchange chromatography and compared to known neurotrophins in bioassay. Pooled bound fractions elicit neurite outgrowth from sympathetic, ciliary and motoneurons. In collagen matrix cocultures of iSC and E4 ventral horn(before motor axon extension to muscle targets), the iSC activity can direct the initial axonal extension from motoneurons. The data presented suggest that Schwann cell-produced activity may mediate motoneuron axonal extension before contact with their peripheral source of neurotrophin. © 1994 Wiley-Liss, Inc.  相似文献   

5.
The failure of axon regeneration in the injured mammalian central nervous system has been ascribed, in part, to the inhibitory effects of myelin proteins. To investigate the influence of myelination on neurite growth and regeneration by both central nervous system and peripheral nervous system neurons, isolated rat neonatal retinal ganglion cells and adult and neonatal dorsal root ganglion neurons were cultured on cryostat sections of both immature unmyelinated and mature fully myelinated adult rat optic nerve. In agreement with earlier studies using neonatal peripheral neurons, the adult optic nerve failed to support neurite outgrowth from any of the neurons tested. A new finding was that tissue sections from unmyelinated optic nerve (aged embryonic days 18 and 20, and postnatal days 1–3), also failed to support the growth of neurites from neonatal retinal ganglion cells and both neonatal and adult dorsal root ganglion neurons. Neonatal retinal ganglion cells also failed to extend neurites on sections of pre-degenerated sciatic nerve, a tissue shown in our previous work to be a good substratum for supporting neurite growth for both neonatal and adult DRG neurons. These results suggest that cells in the immature optic nerve either express widely acting axon growth inhibitory molecules unrelated to previously described myelin proteins, or do not synthesize appropriate axon growth promoting molecules. They also reveal that, for axon regeneration, central nervous system and peripheral sensory neurons require distinct substratum interactions.  相似文献   

6.
This review will address new ideas, including several from our laboratory, on the role of local molecules and signaling within the microenvironment of injured peripheral nerve trunks. These include the concepts of axon-Schwann cell (SC) outgrowth partnership such as the secretion of local molecules that may facilitate or inhibit regenerative activity and the role of directional cues secreted by the SCs to guide regrowing axons. Several specific themes along these lines are explored: (i) a role for peptidergic axon synthesis and signaling to SCs; (ii) the expression of molecular regeneration brakes in regenerating axons, specifically activated RHOA GTPase; (iii) the concept of misdirected axon outgrowth, focusing on the prototypic NGF and local TrkA interaction in adult regrowth; (iv) the role of extracellular basement membrane constituents such as laminin, RGD/fibronectin and their integrin receptors. We show that these different themes play an important but not exclusive role in determining regenerative success. Collectively, these individual findings help us appreciate the many facets of regenerative success which depend on the surrounding environment, the expressed receptors, and the internal state of the growing axon.  相似文献   

7.
Exploiting molecules and pathways important in developmental axon behaviour may offer new insights into regenerative behaviour of adult peripheral neurons after injury. In previous work, we have provided evidence that inhibition or knockdown of PTEN (phosphatase and tensin homolog deleted on chromosome ten) dramatically increases adult peripheral axon outgrowth, especially in preconditioned neurons (Christie et al., 2010). PTEN appears to operate as an endogenous brake to regeneration. Recent reports from Drinjakovic et al. (2010) have highlighted a role for the ubiquitin proteasome system (UPS) during neurite outgrowth in developing Xenopus retinal ganglion cells. Specifically, disruption of the UPS E3 ligase Nedd4 (neural precursor cell-expressed developmentally down-regulated protein 4) inhibited neurite branching through up-regulation of PTEN. We explored the potential role of Nedd4 in the peripheral neurons of adult rat dorsal root ganglia (DRG), particularly its impact on regenerative behaviour. Global inhibition of the UPS in vitro was associated with a severe decrease in neurite branching, both in preconditioned (injured) and control DRG sensory neurons. These involved neurons however maintained or qualitatively increased their PTEN expression, suggesting ongoing PTEN activity during UPS inhibition. Considering component's of UPS more specifically, Nedd4 co-localized with PTEN within sensory neurons in vivo and in vitro. Nedd4 also co-localized with PTEN and NF200 labelled regenerating axons at the injury site in the periphery following a 3 day sciatic nerve cut. A significant role for this unique co-expression was observed with fluorescently tagged siRNA inhibition of Nedd4, which decreased neurite outgrowth, an impact associated with greater expression of PTEN and that was completely reversed with application of a PTEN inhibitor. Overall, our results suggest an important role for Nedd4 regulation of PTEN in the response of peripheral neurons to injury. By degrading PTEN among other potential actions, Nedd4 supports axonal outgrowth whereas its inhibition facilitates PTEN inhibition of regeneration.  相似文献   

8.
Fibroblast growth factor 2 (FGF‐2) is a trophic factor expressed by glial cells and different neuronal populations. Addition of FGF‐2 to spinal cord and dorsal root ganglia (DRG) explants demonstrated that FGF‐2 specifically increases motor neuron axonal growth. To further explore the potential capability of FGF‐2 to promote axon regeneration, we produced a lentiviral vector (LV) to overexpress FGF‐2 (LV‐FGF2) in the injured rat peripheral nerve. Cultured Schwann cells transduced with FGF‐2 and added to collagen matrix embedding spinal cord or DRG explants significantly increased motor but not sensory neurite outgrowth. LV‐FGF2 was as effective as direct addition of the trophic factor to promote motor axon growth in vitro. Direct injection of LV‐FGF2 into the rat sciatic nerve resulted in increased expression of FGF‐2, which was localized in the basal lamina of Schwann cells. To investigate the in vivo effect of FGF‐2 overexpression on axonal regeneration after nerve injury, Schwann cells transduced with LV‐FGF2 were grafted in a silicone tube used to repair the resected rat sciatic nerve. Electrophysiological tests conducted for up to 2 months after injury revealed accelerated and more marked reinnervation of hindlimb muscles in the animals treated with LV‐FGF2, with an increase in the number of motor and sensory neurons that reached the distal tibial nerve at the end of follow‐up. GLIA 2014;62:1736–1746  相似文献   

9.
The successful regeneration of peripheral branches of sensory neurons following injury is attributed to the presence of neurotrophins and interaction of regenerating axons with the extracellular matrix. Here, we show that the laminin receptor, alpha7beta1 integrin is a crucial mediator of neurite outgrowth from distinct populations of sensory neurons. Following sciatic nerve crush, alpha7 integrin is expressed by medium-large diameter, NF200-immunoreactive (IR), and medium diameter, CGRP-IR, neurons, but very few small diameter non-peptidergic neurons. The functional significance of alpha7 integrin expression following injury was addressed using dissociated adult rat and mouse sensory neurons. By using function-blocking antibodies and neurons isolated from alpha7 integrin null mice, we demonstrate that NGF- and NT-3-stimulated neurite outgrowth is reduced in the absence of alpha7 integrin signaling. In contrast, GDNF-stimulated neurite outgrowth is less dependent on alpha7 integrin. These results define an essential interaction between alpha7 integrin and laminin for mediating neurite outgrowth of subpopulations of injured adult sensory neurons.  相似文献   

10.
alpha-Melanocyte-stimulating hormone (alpha-MSH) accelerates the regrowth of peripheral nerve axons in the rat following their transection (Verhaagen et al., Expl Neurol. 92, 451-454, 1986). The cellular mechanisms of this trophic response were investigated for several naturally occurring derivatives of alpha-MSH using Nerve Growth Factor (NGF)-stimulated quail sensory ganglion explants in vitro in which both neurite outgrowth and non-neuronal cell behaviour could be more reliably observed and quantified. Neurite outgrowth was determined with a semi-quantitative scoring assay. Glial migration into the outgrowth was quantified using a monoclonal antibody, GTE-52, which labels the nuclei of Schwann cells. Des-acetyl alpha-MSH caused a marginal increase in the neurite outgrowth density which was significant at concentrations of 0.04 and 0.1 microgram/ml. The response to acetylated (N-acetyl, N,O-diacetyl) forms of alpha-MSH was characterized by fascicle formation by neurites which resulted in an apparent decrease in the neurite score, and by the outgrowth of non-neuronal cells. Using monoclonal antibody GTE-52, which recognizes a glial nuclear antigen, these cells were identified as Schwann cells. N-Acetyl, but not des-acetyl alpha-MSH increased the number of GTE-52-labelled cells in the NGF-stimulated neurite outgrowth and stimulated their migration in the absence of neurites when NGF was omitted from the culture medium. Exposure of growing explants to two polyclonal antibodies against alpha-MSH resulted in an increased neurite outgrowth density. The results support the hypothesis that alpha-MSH peptides stimulate peripheral nerve growth by modulating the neurite sprouting response, and demonstrate that the nature of the neurotrophic response to naturally occurring melanotropins depends on the existence of acyl substitution at the N-terminal amino acid residue. A possible role of endogenous melanotropin peptides in the regulation of sensory nerve growth is discussed.  相似文献   

11.
J M Hopkins  R P Bunge 《Glia》1991,4(1):46-55
The ability of sciatic nerve grafts to support in vivo regeneration of retinal ganglion cell axons in the adult rat raises the question of which peripheral nerve constituents may be required to promote this unexpected central regenerative response. Prime candidates for this role include the surface of the Schwann cell and components of extracellular matrix present in peripheral nerve trunks. To determine the relative importance of Schwann cells and their basal lamina in promoting retinal ganglion cell axon regeneration in the mammalian visual system, we have used an in vitro model. This approach allowed analysis of the abilities of defined peripheral nerve constituents to promote in vitro outgrowth of neurites from explants of adult rat retina harvested 7 to 10 days after in vivo optic nerve crush. Neurite outgrowth was assessed by neurofilament immunofluorescence after 3 to 20 days in vitro. Culture substrata, consisting of isolated Schwann cells (SC), Schwann cells with their assembled extracellular matrix (SC + ECM), or isolated extracellular matrix from which the Schwann cells had been removed (ECM), were prepared by first co-culturing rat Schwann cells with embryonic dorsal root ganglion neurites on a layer of type I collagen, and then manipulating the cultures to produce the desired substrata. Type I collagen alone did not support neurite growth from adult rat retina. SC and SC + ECM supported regeneration of axons from retinal explants at average growth rates of 18 and 30 microns/h, respectively. Isolated ECM was a poor substrate for retinal neurite growth; the few neurites that gained access to this material grew at rates averaging less than 3 microns/h. These observations suggest that regeneration of adult mammalian retinal ganglion cell axons through peripheral nerve grafts (in vivo) is primarily dependent on neurite-promoting factors present on the surface of Schwann cells and does not require organized extracellular matrix.  相似文献   

12.
The competence of neurons to regenerate depends on their ability to initiate a program of gene expression supporting growth and on the growth-permissive properties of glial cells in the distal stump of the injured nerve. Most studies on intrinsic molecular mechanisms governing peripheral nerve regeneration have focussed on the lesion-induced expression of proteins promoting growth cone motility, neurite extension, and adhesion. However, little is known about the expression of intrinsic chemorepulsive proteins and their receptors, after peripheral nerve injury and during nerve regeneration. Here we report the effect of peripheral nerve injury on the expression of the genes encoding sema III/coll-1 and its receptor neuropilin-1, which are known to be expressed in adult sensory and/or motor neurons. We have shown that peripheral nerve crush or transection results in a decline in sema III/coll-1 mRNA expression in injured spinal and facial motor neurons. This decline was paralleled by an induction in the expression of the growth-associated protein B-50/GAP-43. As sema III/coll-1 returned to normal levels following nerve crush, B-50/GAP-43 returned to precrush levels. Thus, the decline in sema III/coll-1 mRNA coincided with sensory and motor neuron regeneration. A sustained decline in sema III/coll-1 mRNA expression was found when regeneration was blocked by nerve transection and ligation. No changes were observed in neuropilin-1 mRNA levels after injury to sensory and motor neurons, suggesting that regenerating peripheral neurons continue to be sensitive to sema III/coll-1. Therefore we propose that a decreased expression of sema III/coll-1, one of the major ligands for neuropilin-1, during peripheral nerve regeneration is an important molecular event that is part of the adaptive response related to the success of regenerative neurite outgrowth occurring following peripheral nerve injury.  相似文献   

13.
In injured adult neurons, the process of axonal regrowth and reestablishment of the neuronal function have to be activated. We assessed in this study whether RhoA, a key regulator of neurite elongation, is activated after injury to the peripheral nervous system. RhoA is activated in motoneurons but not in Schwann cells after mouse sciatic nerve injury. To examine whether the activation of RhoA and its effector, Rho-kinase, retards axon regeneration of injured motoneurons, we employed a Rho-kinase inhibitor, fasudil. Amplitudes of distally evoked compound muscle action potentials are increased significantly faster after axonal injury in mice treated with fasudil compared with controls. Histological analysis shows that fasudil treatment increases the number of regenerating axons with large diameter, suggesting that axon maturation is facilitated by Rho-kinase inhibition. In addition, fasudil does not suppress the myelination of regenerating axons. These findings suggest that RhoA/Rho-kinase may be a practical molecular target to enhance axonal regeneration in human peripheral neuropathies.  相似文献   

14.
Peripheral nerve injury triggers the activation of the small GTPase RhoA in spinal motor and peripheral sensory neurons. C3 transferase, an exoenzyme produced by Clostridium botulinum that inactivates RhoA by ADP‐ribosylation, has been successfully applied in central nervous system (CNS) lesion models to facilitate regeneration functionally and morphologically. Until now it has not been demonstrated if C3bot exerts positive effects on peripheral axon regeneration as well. In organotypic spinal cord preparations, C3bot reduced axonal growth of motoneurons, while no effect on sensory axon outgrowth from dorsal root ganglia (DRG) explants was observed. Enzymatically inactive C3E174Q was ineffective in both culture models. Spinal cord slices exhibited a significant increase in microglia/macrophages after treatment with C3bot suggesting an inflammatory component in the inhibition of axon growth. C3bot or C3E174Q were then applied into conduits implanted after transection of the sciatic nerve in rats. Functional evaluation by electrophysiology, nociception, and walking track tests did not show any significant difference between groups with active or mutant C3E174Q. Transmission electron microscopy of the regenerated nerves revealed no significant differences in the number of myelinated and unmyelinated axons 6 weeks after surgery. Compared to the CNS, the functional significance of RhoA may be limited during nerve regeneration in a growth‐promoting environment.  相似文献   

15.
Since little is known about the intracellular changes that take place in response to Schwann cell-neuron interactions that occur during neurite outgrowth and myelination, we investigated the expression of a protein-tyrosine kinase, pp60c-src, during peripheral nerve regeneration through a silicone tube. Segments of regenerated nerve, extracted at various times following nerve-transection, showed an induction of in vitro c-src kinase activity as measured by autophosphorylation of immunoprecipitated pp60c-src. This activity occurred at 7 days following nerve transection coincident with the onset of neurite outgrowth in vivo. This kinase activity, which peaked out between 21 and 35 days and decreased thereafter, appeared to be associated with axonal growth and myelination, but not mitogenesis in the tube. Analysis of c-src proteins levels by Western blot showed a similar expression profile as that of the kinase activity. Qualitatively, the expression of an immunoreactive c-src band, migrating slightly slower than pp60, was detected in extracts of regenerating nerve segments as well as in the corresponding L4 and L5 dorsal root ganglia. This protein may be the CNS neuronal-specific form (pp60+) of the c-src protein. In situ hybridization revealed that Schwann cells and sensory and motor neurons associated with the regenerated sciatic nerve were positive for c-src mRNA during regeneration possibly accounting for the increased src protein expression during regeneration. Since the increased expression of pp60c-src in regenerated nerve segments coincides with both axonal sprouting and myelination, our findings suggest that the c-src protein may play a role in Schwann cell-neuron interactions which facilitate the occurrence of these events during regeneration. In addition, although pp60+ is generally not detectable in the mature PNS, our findings show that this protein may be induced during conditions of PNS differentiation which promote neurite outgrowth.  相似文献   

16.
Lesioned central nervous system (CNS) axons fail to regenerate because of limited availability of neurotrophic factors (NTF) to promote neuron survival and drive axon regeneration through an environment rich in multiple myelin- and non myelin-derived axon growth inhibitory ligands that initiate growth cone collapse through the Rho/Rho kinase (ROCK) signalling pathway. However, pharmacological inhibition of Rho and ROCK promotes neurite outgrowth in PC12, Ntera-2 cells and embryonic/early postnatal neurons in culture. We have used our well-characterised CNS myelin-inhibited adult rat retinal culture model to show that Y27632 only promotes disinhibited neurite outgrowth if RGC are co-stimulated with ciliary neurotrophic factor (CNTF). Y27632 in CNTF-stimulated retinal cultures promotes optimal RGC neurite outgrowth at 10 μM concentrations, while higher concentrations negatively correlate with RGC neurite outgrowth and survival. Raising the levels of cAMP in Y27632-treated retinal cultures also promotes significant RGC neurite outgrowth, an effect that is potentiated by the further inclusion of CNTF. Our results suggest that Y27632-induced ROCK inhibition promotes robust disinhibited axon regeneration of adult neurons only when growth promoting factors are added and/or cAMP levels are raised.  相似文献   

17.
Repulsive guidance molecule b (RGMb) is a bone morphogenetic protein (BMP) coreceptor and sensitizer of BMP signaling, highly expressed in adult dorsal root ganglion (DRG) sensory neurons. We used a murine RGMb knock-out to gain insight into the physiological role of RGMb in the DRG, and address whether RGMb-mediated modulation of BMP signaling influences sensory axon regeneration. No evidence for altered development of the PNS and CNS was detected in RGMb(-/-) mice. However, both cultured neonatal whole DRG explants and dissociated DRG neurons from RGMb(-/-) mice exhibited significantly fewer and shorter neurites than those from wild-type littermates, a phenomenon that could be fully rescued by BMP-2. Moreover, Noggin, an endogenous BMP signaling antagonist, inhibited neurite outgrowth in wild-type DRG explants from naive as well as nerve injury-preconditioned mice. Noggin is downregulated in the DRG after nerve injury, and its expression is highly correlated and inversely associated with the known regeneration-associated genes, which are induced in the DRG by peripheral axonal injury. We show that diminished BMP signaling in vivo, achieved either through RGMb deletion or BMP inhibition with Noggin, retarded early axonal regeneration after sciatic nerve crush injury. Our data suggest a positive modulatory contribution of RGMb and BMP signaling to neurite extension in vitro and early axonal regrowth after nerve injury in vivo and a negative effect of Noggin.  相似文献   

18.
Apart from several growth factors which play a crucial role in the survival and development of the central and peripheral nervous systems, thyroid hormones can affect different processes involved in the differentiation and maturation of neurons. The present study was initiated to determine whether triiodothyronine (T3) affects the survival and neurite outgrowth of primary sensory neurons in vitro. Dorsal root ganglia (DRG) from 19-day-old embryos or newborn rats were plated in explant or dissociated cell cultures. The effect of T3 on neuron survival was tested, either in mixed DRG cell cultures, where neurons grow with non-neuronal cells, or in neuron-enriched cultures where non-neuronal cells were eliminated at the outset. T3, in physiological concentrations, promoted the growth of neurons in mixed DRG cell cultures as well as in neuron-enriched cultures without added nerve growth factor (NGF). Since neuron survival in neuron-enriched cultures cannot be promoted by endogenous neurotrophic factors synthesized by non-neuronal cells, the increased number of surviving neurons was due to a direct trophic action of T3. Another trophic effect was revealed in this study: T3 sustained the neurite outgrowth of sensory neurons in DRG explants. The stimulatory effect of T3 on nerve fibre outgrowth was considerably reduced when non-neuronal cell proliferation was inhibited by the antimitotic agent cytosine arabinoside, and was completely suppressed when the great majority of non-neuronal cells were eliminated in neuron-enriched cultures. These results indicate that the stimulatory effect of T3 on neurite outgrowth is mediated through non-neuronal cells. It is conceivable that T3 up-regulates Schwann cell expression of a neurotrophic factor, which in turn stimulates axon growth of sensory neurons. Together, these results demonstrate that T3 promotes both survival and neurite outgrowth of primary sensory neurons in DRG cell cultures. The trophic actions of T3 on neuron survival and neurite outgrowth operate under two different pathways.  相似文献   

19.
Based on the observation that in adult mice the carbohydrate epitope L2/HNK-1 is detectable on Schwann cells in ventral spinal roots, but only scarcely in dorsal roots (Martini et al., Dev. Biol., 129, 330 - 338, 1988), the possibility was investigated that the carbohydrate is involved in the outgrowth of regenerating motor neuron axons on peripheral nerve substrates expressing the epitope. To monitor whether the L2 carbohydrate remains present during the time periods in which regenerating axons penetrate the denervated distal nerve stumps, the expression of L2 in motor and sensory branches of the femoral nerve was investigated in normal animals and after a crush lesion. During the first two postoperative weeks, L2 immunoreactivity remained high in the myelinating Schwann cells of the motor branch, whereas L2 immunoreactivity was virtually absent in the sensory branch. In a first experimental approach, cryosections of ventral and dorsal spinal roots and of motor and sensory nerves of adult rats and mice were used as substrates for neurite outgrowth. Neurites of motor neurons from chicken embryos were approximately 35% longer after 30 h of maintenance on ventral roots than on dorsal roots. Neurites from sensory neurons had the same length on dorsal as on ventral motors and were as long as neurites from motor neurons grown on dorsal roots. L2 antibodies reduced neurite outgrowth of motor neurons on ventral roots but not on dorsal roots. Neurite outgrowth of sensory neurons on both roots was not altered by the antibodies. Neurite outgrowth of motor neurons on a mixture of the extracellular matrix glycoprotein laminin and the L2 carbohydrate-carrying glycolipid was significantly higher than on the laminin substrate mixture with GD1b ganglioside or sulphatide. L2 antibodies reduced neurite outgrowth of motor neurons by 50% on the L2 glycolipid, but not on GD1b or sulphatide. These observations indicate that the L2 carbohydrate promotes neurite outgrowth of motor neurons in vitro and may thus contribute to the preferential reinnervation of motor nerves by regenerating motor axons in vivo.  相似文献   

20.
Our goal was to devise methods of implanting defined populations of the cellular constituents of peripheral nerve into regions of spinal cord injury. This objective derived from the knowledge that the cellular environment of peripheral nerve is known to be supportive of axon regeneration from both central and peripheral neurons. Two of the constituents of the peripheral nerve environment known to influence axonal growth are the Schwann cell and extracellular matrix (particularly basal lamina), both of which can be obtained in culture. We describe here large-scale methods of establishing purified populations of rat sensory neurons to which purified populations of Schwann cells were added. These essentially monolayer preparations were then scrolled and cut into lengths of proper shape and size to provide implants for sites of spinal cord injury in newborn rats. We also describe methods enabling the addition of leptomeningeal components to the implants; this addition contributes a proliferating population of vascular endothelial cells (identified by immunostaining) to the otherwise vasculature-free neuron/Schwann cell implant. Light and electron microscopic observations were made to characterize the implants. When the implant was ready for use, it contained Schwann cells that were differentiated, i.e., had begun to ensheathe axons and form basal lamina. The use of a medium containing human plasma to foster endothelial cell growth led to increased neurite fasciculation and Schwann cell migratory activity in the outgrowth, particularly when the neurons and Schwann cells were cultured on leptomeninges. The second paper in this series reports the deportment of these implants and their influence on corticospinal tract growth after placement into regions of dorsal column injury in neonatal rats (Kuhlengel et al., J. Comp. Neurol 293:74-91, 1990).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号