首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extracellular matrix component, s-laminin, is a homologue of the B1 subunit of laminin. S-laminin is concentrated in the synaptic cleft at the neuromuscular junction and contains a site that is adhesive for motor neurons, suggesting that it may influence neuromuscular development. To ascertain whether s-laminin may also play roles in the genesis of the central nervous system, we have examined its expression in the brain and spinal cord of embryonic and postnatal rats. S-laminin was not detectable in synapse-rich areas of adults. However, s-laminin was present in discrete subsets of three laminin-containing structures: (1) In the developing cerebral cortex, laminin and s-laminin were expressed in the subplate, a transient layer through which neuroblasts migrate and cortical afferents grow. Both laminin and s-laminin disappeared as embryogenesis proceeded; however, laminin was more widely distributed and present longer than s-laminin. (2) In the developing spinal cord, laminin was present throughout the pia. In contrast, s-laminin was concentrated in the pia that overlies the floor plate, a region in which extracellular cues have been postulated to guide growing axons. (3) In central capillaries, s-laminin appeared perinatally, an interval during which the blood-brain barrier matures. In contrast, laminin was present in capillary walls of both embryos and adults. To extend our immunohistochemical results, we used biochemical methods to characterize s-laminin in brain. We found that authentic s-laminin mRNA is present in the embryonic brain, but that brain-derived s-laminin differs (perhaps by a posttranslational modification) from that derived from nonneural tissues. We also used tissue culture methods to show that glia are capable of synthesizing "brain-like" s-laminin, and of assembling it into an extracellular matrix. Thus, glia may be one cellular source of s-laminin in brain. Together, these results demonstrate that s-laminin is present in the developing central nervous system, and raise the possibility that this molecule may influence developmental processes.  相似文献   

2.
3.
Somatostatin actions are mediated through G-protein coupled receptors named sst(1) to sst(5). We used an affinity-purified polyclonal antibody AS-69, directed against a specific N-terminal peptide sequence of sst(3) to determine the immunohistochemical distribution of the sst(3) receptor in the rat and human brain. The specificity of the antibody was shown by Western blotting experiments using an N-terminal sst(3) fusion protein. Enzymatic deglycosylation experiments were combined to blotting experiments on a sst(3)-transfected cell line and rat brain membrane proteins and with immunocytochemistry on the sst(3)-transfected cell line. These studies showed that the antibody detected the deglycosylated sst(3) receptor protein. Immunohistochemical staining showed that sst(3) immunoreactivity recognised by this N-terminal antiserum was widely distributed throughout the brain with cells and processes labelled in the cerebral cortex, regions of the limbic system (including the hippocampal formation, some amygdaloid regions, some basal ganglia nuclei and regions from the nucleus basalis complex), the habenula, the hypothalamus, the thalamus, different mesencephalic structures (substantia nigra, zona incerta, superior colliculus), the reticular formation, the cerebellum. The distribution of immunoreactivity was in good general agreement with that predicted from the localisation of sst(3) mRNA and radio-ligand binding studies; however, due to the preference of AS-69 towards the deglycosylated receptor, it appears that the sst(3) immunoreactivity detected may correspond largely to the deglycosylated receptor. This study on the immunohistochemical distribution of the sst(3) receptor in the brain may provide a better understanding of the central actions of somatotropin release-inhibiting factor (SRIF).  相似文献   

4.
BACKGROUND: Nogo protein has been identified as an inhibitor of axonal growth, which was highly expressed in central nervous system; however, there are only a few studies on changes of Nogo-A expression following central nervous system injury. OBJECTIVE: To investigate the dynamic expression of Nogo-A mRNA after rat central nervous system injury. DESIGN: Randomized controlled animal study. MATERIALS: Thirty-five rats were randomly divided into two groups, normal animal group (n = 5) and model group (n = 30). The model group was then divided into six subgroups at six time points: 12, 24 hours and 3, 9, 15, and 21 days post-injury, with five rats in each subgroup. METHODS: The left parietal lobe of rats was contused by free-fall strike, and total RNA was extracted from the entire brain tissue. Semi-quantitative RT-PCR was used to detect Nogo-A mRNA expression, and the ratio between expression of the target gene and glyceraldehyde phosphate dehydrogenase was used to determine the relative expression level. MAIN OUTCOME MEASURES: To determine whether Nogo-A mRNA expression was higher than usual following brain injury. RESULTS: The level of Nogo-A mRNA started to increase 12 hours after injury (P 〈 0.05) and decreased slightly by 24 hours post-injury. Expression increased again on day 3 and reached a peak on day 9. Nogo-A mRNA expression started to decrease on day 15, and then decreased to normal levels at days 21 (P 〉 0.05). CONCLUSION: After injury of the central nervous system, Nogo-A may play a pivotal role in obstructing regeneration of the nerve.  相似文献   

5.
Atriopeptin (AP) is a peptide hormone synthesized and secreted by the atria of the heart that participates in the regulation of fluid and electrolyte balance. AP-like materials have been detected immunologically in neurons in the central nervous system of the rat. In this study, we have used a solution hybridization-nuclease protection assay to determine whether the brain of the rat contains RNA coding preproatriopeptin, the atrial biosynthetic precursor of AP, and to study the regional distribution of preproatriopeptin mRNA in the brain. We have found that the brain contains mRNA identical to the atrial messenger RNA for preproatriopeptin. AP mRNA is differentially distributed in the brain; the highest concentration was found in the hypothalamus, followed by the cortex and septum, hippocampus, midbrain, spinal cord, olfactory bulb, striatum, and pons and medulla. Very low levels were found in the cerebellum, while no detectable AP mRNA was observed in retina, anterior pituitary, or rat liver. The presence of AP mRNA in the brain demonstrates that neurons have the capacity to synthesize preproatriopeptin identical to that produced in the heart. Bioactive peptides produced from this precursor may be endogenous central neuromodulators as well as a circulating hormone.  相似文献   

6.
7.
The melanocortin 4 receptor (MC4-R) plays a pivotal role in maintaining energy homeostasis in rodents and humans. For example, MC4-R deletion or mutation results in obesity, hyperphagia, and insulin resistance. Additionally, subsets of leptin-induced autonomic responses can be blocked by melanocortin receptor antagonism, suggesting that MC4-R-expressing neurons are downstream targets of leptin. However, the critical autonomic control sites expressing MC4-Rs are still unclear. In the present study, we systematically examined the distribution of MC4-R mRNA in the adult rat central nervous system, including the spinal cord, by using in situ hybridization histochemistry (ISHH) with a novel cRNA probe. Autonomic control sites expressing MC4-R mRNA in the hypothalamus included the anteroventral periventricular, ventromedial preoptic, median preoptic, paraventricular, dorsomedial, and arcuate nuclei. The subfornical organ, dorsal hypothalamic, perifornical, and posterior hypothalamic areas were also observed to express MC4-R mRNA. Within extrahypothalamic autonomic control sites, MC4-R-specific hybridization was evident in the infralimbic and insular cortices, bed nucleus of the stria terminalis, central nucleus of the amygdala, periaqueductal gray, lateral parabrachial nucleus, nucleus of the solitary tract, dorsal motor nucleus of the vagus (DMV), and intermediolateral nucleus of the spinal cord (IML). By using dual-label ISHH, we confirmed that the cells expressing MC4-R mRNA in the IML and DMV were autonomic preganglionic neurons as cells in both sites coexpressed choline acetyltransferase mRNA. The distribution of MC4-R mRNA is consistent with the proposed roles of central melanocortin systems in feeding and autonomic regulation.  相似文献   

8.
Receptor tyrosine kinase RYK is a mammalian homologue of Drosophila Lio, which is involved in learning and memory and in axon guidance. We cloned a rat ryk gene and characterized its expression pattern in the central nervous system. Northern blot analysis of the whole brain revealed that the RYK mRNA was abundant during the period from 13 to 18 embryonic days (E13-18) and it decreased by E20. In the postnatal brain, the RYK signal was higher in postnatal one week (P1W) cerebrum and in P2W cerebellum than in later stages. In situ hybridization revealed that RYK was expressed throughout the central nervous system, mainly in the ventricular zone on E11 and E13. On E18 and E20, the remarkable level of RYK mRNA was detected in the ventricular zone as well as in the cortical plate of the forebrain. These two regions overlapped the immunoreactive areas of nestin and MAP2, a neural stem cell marker and a mature neural marker, respectively. Moreover, the double-labeling analysis showed that the same cells expressed both RYK and nestin in the ventricular zone. In the postnatal brain, RYK was predominantly expressed in neurons of various regions. These observations suggest that RYK plays a contributory role as a multifunctional molecule in the differentiation and maturation of neuronal cells in the central nervous system.  相似文献   

9.
10.
Distribution of preprovasopressin mRNA in the rat central nervous system.   总被引:6,自引:0,他引:6  
Vasopressin released in the central nervous system has been shown to be involved both in homeostatic mechanisms (e.g., water balance, thermoregulation, cardiovascular regulation, metabolism, and antinociception) and in higher brain functions (e.g., social recognition and communication, and learning and memory). Many nuclear groups have been proposed to synthesize vasopressin, but available data are conflicting. We have used a sensitive in situ hybridization technique to identify the distribution of the neurons that may be the origin of the vasopressin in the central nervous system of the male Sprague-Dawley rat. Vasopressin mRNA-expressing neurons were most abundant in the hypothalamus (e.g., the paraventricular, supraoptic, and suprachiasmatic nuclei) but were also seen in the medial amygdaloid nucleus, the bed nucleus of stria terminalis, and the nucleus of the horizontal diagonal band. Previously unreported vasopressinergic neurons were seen in the entorhinal and piriform cortices, the ventral lateral portion of the parabrachial nucleus, the pedunculopontine nucleus, and the rostral part of the ventral periaqueductal gray matter and the adjacent portion of the mesencephalic reticular nucleus. Vasopressin mRNA expression suggestive of neuronal labeling was seen in the pyramidal layer of the CA1-3 fields and the dentate gyrus of the hippocampus. In addition, vasopressin mRNA expression, probably representing axonal mRNA, was detected over the hypothalamopituitary tract. No or insignificant preprovasopressin mRNA expression was present in the cerebellum, locus coeruleus, subcoeruleus, or the spinal cord. These findings provide novel information on the distribution of vasopressin neurons that are important for our understanding of how vasopressin acts in the brain.  相似文献   

11.
The FXYD family is a small single-span membrane protein family; recently, we have identified a novel member of this family from the cDNA library of the rat hippocampus and named phosphohippolin (Php) (Mol. Br. Res. vol. 86, 2001). The deduced amino acid sequence of this novel Php comprises 93 residues with a core motif of FXYD and a single transmembrane domain. This indicates that Php belongs to FXYD6 subfamily of the seven FXYD subfamilies (FXYD1-7). Php shows a 48.1% homology with rat phospholemman (FXYD1), a transmembrane family protein. In this study, polyclonal antibodies against the carboxyl-terminal sequence of rat Php were raised and purified. The spatial expression of the Php protein was in the neuronal fibers of the medial part of lateral habenula nucleus, thalamus, hypothalamus, stria terminalis, zona incerta, amygdaloid body and cingulum, olfactory bulb, hippocampus, cerebral cortex and cerebellum. A unique Php distribution was identified in the cerebellum, with a predominant expression pattern in the granule layer of lobules VI-IX of the posterior lobe. Developmental studies demonstrated that the highest level of Php expression was seen in the postnatal (PN) 3-week-old rat brain, and a significant amount of Php still existed in the adult brain. These findings suggest that Php may play an important role in the excitability of neurons in the central nervous system during postnatal development, as well as those in the adult brain.  相似文献   

12.
The purpose of this study was to identify brain sites that may be sensitive to the adrenal steroid aldosterone. After a survey of the entire brain for mineralocorticoid receptor (MR) immunoreactivity, we discovered unique clusters of dense nuclear and perinuclear MR in a restricted distribution within the nucleus of the solitary tract (NTS). These same cells were found to contain the glucocorticoid-inactivating enzyme 11-beta-hydroxysteroid dehydrogenase type 2 (HSD2), a signature of aldosterone-sensitive tissues. Immunoreactivity for various other NTS marker molecules failed to colocalize with HSD2 in these putative aldosterone target neurons, so they may represent a unique neuronal phenotype. Finally, the entire rat CNS was examined for evidence of HSD2 protein expression. Outside the NTS, HSD2-immunoreactive neurons were found in only two other sites: the ventrolateral division of the ventromedial hypothalamic nucleus and a few scattered neurons in the medial vestibular nucleus, just rostral to the NTS. HSD2 immunoreactivity was also found in the ependymal cells that form the subcommissural organ. In summary, few brain sites contain neurons that may be aldosterone sensitive, and only one of these sites, the NTS, contains neurons that express HSD2 and contain dense nuclear MR. The HSD2 neurons in the NTS may represent an important target for aldosterone action in the brain.  相似文献   

13.
Tuberoinfundibular peptide of 39 residues (TIP39) has been recently purified and identified as a selective ligand for the parathyroid hormone 2 receptor. As a next step toward understanding its functions, we report the expression and distribution of TIP39 in the rat central nervous system. In situ hybridization histochemistry and immunocytochemistry revealed TIP39-containing cell bodies in three distinct areas. The major one comprises the subparafascicular area posterior through the intralaminar nucleus of the thalamus; a second is the medial paralemniscal nucleus at the pontomesencephalic junction; and a third is in the dorsal and dorsolateral hypothalamic areas, which contained a few, scattered cell bodies. We found, in contrast to the highly restricted localization of TIP39-containing cell bodies, a much more widespread localization of TIP39-containing fibers. The highest density of fibers was observed in limbic areas such as the septum, the amygdala, and the bed nucleus of the stria terminalis; in areas involved in endocrine regulation, such as the hypothalamic dorsomedial, paraventricular, periventricular, and arcuate nuclei; in auditory areas, such as the ectorhinal and temporal cortices, inferior colliculus, medial geniculate body, and some of the nuclei of the superior olivary complex; and in the dorsolateral funiculus of the spinal cord. The localization of TIP39-containing nuclei and fibers provides an anatomical basis for previously demonstrated endocrine and nociceptive effects of TIP39 and suggests additional functions for TIP39, one apparent candidate being the regulation of auditory information processing.  相似文献   

14.
Free radicals and the oxidative stress they impose can cause serious injury in the nervous system and contribute to pathology associated with a wide variety of degenerative and traumatic disorders. In this study, we examined the expression of an antioxidant defense gene,nkef, in human tissue and isolated populations of rat brain cells using Western and Northern blot analysis. NKEF protein was expressed in human brain, liver, kidney, muscle, and lung. The human endothelial cell line ECV expressed a 25-kDa band in addition to the 22-kDa band normally observed. In the central nervous system, a 22-kDa NKEF band was present in cortical gray and white matter, hippocampus, cerebellum, and spinal cord in roughly similar amounts. Expression of NKEF-A and NKEF-B subtypes was evaluated by Northern analysis of cultured cell types from embryonic rat brain. Astrocyte and microglia expressed both 22- and 25-kDa bands, whereas cortical neurons and oligodendrocytes contained only the 22-kDa protein band. Northern blot analysis of these cell types revealed low levels of NKEF-A message in neurons and oligodendrocytes, and relatively low levels of NKEF-B in microglia. Differential expression of these antioxidant defense genes may contribute to the selective vulnerability of brain cell types to specific kinds of oxidative stress.  相似文献   

15.
The distribution of neuronal perikarya containing somatostatin mRNA in the developing rat brain was investigated with in situ hybridization histochemistry. This study describes the expression of somatostatin mRNA during selected perinatal stages and demonstrates regional changes in somatostatin mRNA expression at the single cell level. The mRNA expression closely parallels previously reported developmental localization of the peptide (Inagaki et al., 1982; Shiosaka et al., 1982). As early as embryonic day 13 (E13), somatostatin mRNA was observed in discrete spinal cord and brainstem regions. At birth, densely hybridized somata could be seen primarily in ventral and caudal brain areas with small scattered neurons in the hippocampus and dorsal neocortex. After birth, somatostatin mRNA increased in forebrain regions, such as the hippocampus, dorsal neocortex, and caudate. By postnatal day 14 (P14), the distribution in the telencephalic and diencephalic regions approached that of the adult brain. Several brain regions manifested large changes in the density of somatostatin mRNA hybridization during development. For example, the cerebellar vermis and brainstem contained somatostatin mRNA perikarya during early postnatal development but decreased in these regions in the adult. During perinatal development, increases in somatostatin mRNA content were the results of increases in both the number of neurons containing somatostatin mRNA as well as in the amount of this mRNA expressed in each cell. As the brain differentiates, the apparent numbers of somatostatin mRNA containing neurons in certain brain regions are reduced. These data provide evidence for transient somatostatinergic neurons during early development in discrete areas of the occipital cortex, pyriform cortex, cerebellum, and brainstem and suggest that this peptide may play a role in the development of these regions.  相似文献   

16.
cpQSOx1 is a member of the QSOx family of proteins, expressed in the guinea pig (Cavia porcellus) and ortholog of the rat rQSOx1. In this study, in vitro experiments were conducted and showed that, as other member of this family, cpQSOx1 has a sulfydryl oxidase activity, and is a secreted protein. Then, the expression of this enzyme was researched in the guinea pig brain, as very little information exists yet on the expression of QSOx family members in the central nervous system. By immunohistochemistry, RT-PCR and in situ hybridization, cpQSOx1 is synthesized by neurons throughout the whole guinea pig central nervous system. Reticular structures as the basal forebrain, reticular thalamic nucleus and reticular nuclei of the brainstem contained the densest labeling. These results are discussed in terms of putative roles of this protein in synaptic strengthening and in redox activities.  相似文献   

17.
Vasopressin (VP) and oxytocin (OT) have been identified in a number of extrahypothalamic areas, both by immunohistochemistry and by radioimmunoassay. Because of the incomplete nature of the data available, we have conducted a survey of the VP and OT concentrations in the rat central nervous system. VP and OT were readily detectable in all areas studied. With the exception of the amygdala, OT concentrations were generally 2-4 times those of VP. The physiological function of neurohypophysial hormones in these extrahypothalamic areas is essentially unknown.  相似文献   

18.
19.
Aspartoacylase (ASPA) catalyzes deacetylation of N-acetylaspartate (NAA) to generate acetate and aspartate. Mutations in the gene for ASPA lead to reduced acetate availability in the CNS during development resulting in the fatal leukodystrophy Canavan disease. Highly specific polyclonal antibodies to ASPA were used to examine CNS expression in adult rats. In white matter, ASPA expression was associated with oligodendrocyte cell bodies, nuclei, and some processes, but showed a dissimilar distribution pattern to myelin basic protein and oligodendrocyte specific protein. Microglia expressed ASPA in all CNS regions examined, as did epiplexus cells of the choroid plexus. Pial and ependymal cells and some endothelial cells were ASPA positive, as were unidentified cellular nuclei throughout the CNS. Astrocytes did not express ASPA in their cytoplasm. In some fiber pathways and nerves, particularly in the brainstem and spinal cord, the axoplasm of many neuronal fibers expressed ASPA, as did some neurons. Acetyl coenzyme A synthase immunoreactivity was also observed in the axoplasm of many of the same fiber pathways and nerves. All ASPA-immunoreactive elements were unstained in brain sections from tremor rats, an ASPA-null mutant. The strong expression of ASPA in oligodendrocyte cell bodies is consistent with a lipogenic role in myelination. Strong ASPA expression in cell nuclei is consistent with a role for NAA-derived acetate in nuclear acetylation reactions, including histone acetylation. Expression of ASPA in microglia may indicate a role in lipid synthesis in these cells, whereas expression in axons suggests that some neurons can both synthesize and catabolize NAA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号