首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Wang XS  Ong WY  Connor JR 《Neuroscience》2003,120(1):21-29
The present investigation was carried out to elucidate the effect of the antimalarial drug quinacrine on levels of expression of the non-heme iron transporter, divalent metal transporter-1 (DMT1) and iron, in the hippocampus of rats after kainate treatment. The untreated hippocampus was lightly stained for DMT1, while an increase in DMT1 staining in astrocytes in the degenerating cornu ammonis (CA) fields, after kainate lesions. The increased DMT1 immunoreactivity was correlated with increased levels of Fe3+ and Fe2+ staining in the CA fields, as demonstrated by iron histochemistry (Perl's and Turnbull's blue stain for Fe3+ and Fe2+). The increases in DMT1 and iron staining were significantly attenuated by quinacrine. Rats injected with kainate and daily i.p. injections of quinacrine (5 mg/kg) for 7 days or 2 weeks showed significantly lower levels of DMT1 immunoreactivity and iron staining, compared with rats injected with kainate and saline. These results show that DMT1 expression is closely linked to iron levels, and provide further support for a crucial role that DMT1 plays in iron accumulation in the degenerating hippocampus.  相似文献   

3.
4.
目的 探讨在脑铁代谢中发挥重要生理作用的二价金属转运蛋白1(DMT1)的表达及其调控机制.方法 大鼠(n=6)侧脑室注射右旋糖酐铁3d和7d后,采用铁组织化学法检测脑内铁含量的变化,免疫组织化学技术检测大脑皮层中DMT1的两种亚型,即DMT1(+IRE)和DMT1(-IRE)蛋白表达的变化.结果 铁组织化学染色结果显示,大鼠侧脑室注射右旋糖酐铁500μg/(只·d)7d后,大脑皮层中二价铁和三价铁均显著增高.同时,免疫组织化学结果表明,与对照组相比,脑内达高铁状态时大脑皮层DMT1(+IRE)蛋白表达显著升高,而DMT1(-IRE)蛋白表达无显著变化.结论 在大鼠大脑皮层中,DMT1(+IRE)蛋白对铁水平的升高更为敏感,其表达与脑铁水平(尤其是二价铁)呈正相关.高铁对脑内不同区域内不同亚型DMT1表达的影响存在特异性.  相似文献   

5.
The DMT1(Nramp2/DCT1) is a newly discovered proton-coupled metal-ion transport protein. The cellular localization and functional characterization of DMT1 suggest that it might play a role in physiological iron transport in the brain. In the study, we evaluated effects of dietary iron and age on iron content and DMT1 expression in four brain regions: cortex, hippocampus, striatum, substantia nigra. Total iron content in all regions was significantly lower in the low-iron diet rats and higher in the high-iron diet rats than that in the control animals, showing that dietary iron treatment for 6-weeks can alter brain iron levels. Contrary to our expectation, there was no significant alternation in DMT1(+IRE) and (-IRE) mRNA expression and protein content in all brain regions examined in spite of the existence of the altered iron levels in these regions after 6-weeks' diet treatment although TfR mRNA expression and protein level were affected significantly, as was expected. The data demonstrates that expression of DMT1(+IRE) and (-IRE) was not regulated by iron in these regions of adult rats. The lack of response of DMT1 to iron status in the brain suggests that the IRE of brain DMT1 mRNA might be not really iron-responsive and that DMT1-mediated iron transport might be not the rate-limiting step in brain iron uptake in adult rats. Our findings also showed that development can significantly affect brain iron and DMT1(+IRE) and (-IRE) expression but the effect varies in different brain regions, indicating a regionally specific regulation in the brain.  相似文献   

6.
目的:探讨脑缺血对大鼠皮层、海马二价金属离子转运体1(DMT1)表达的影响。方法:雄性Wistar大鼠随机分为脑缺血1、3、7、28 d和假手术组。结扎双侧颈总动脉建立脑缺血模型组,假手术组仅分离双侧颈总动脉但不结扎。采用RT-PCR测定DMT1+/-IRE mRNA的表达;采用免疫组化染色测定大鼠皮层及海马组织DMT1的表达。结果:大鼠皮层和海马DMT1+/-IRE mRNA的表达随缺血时间的延长逐渐增加。与假手术组比较,皮层DMT1+/-IRE mRNA的表达在缺血1、3 d时无差异(P>0.05);缺血7 d时表达增加(P<0.01),缺血28d时增加更明显(P<0.01)。海马DMT1-IRE mRNA表达除在缺血1 d时与假手术组无差异外(P>0.05),其余时间点DMT1+/-IRE mRNA表达均高于假手术组(P<0.01)。随缺血时间的延长,大鼠皮层、海马的锥体细胞、颗粒细胞及血管内皮细胞DMT1的表达逐渐增加。DMT1的表达除缺血1 d组与假手术组无差别外(P>0.05),其余各组均高于假手术组(P<0.05)。结论:脑缺血可诱导大鼠皮层及海马DMT1表达升高,DMT1表达的改变可能参与了脑缺血引起大鼠脑铁含量升高及神经元铁沉积过程。  相似文献   

7.
The present study aimed to elucidate sPLA2 activity in the normal and kainate-lesioned hippocampus using selective inhibitors of sPLA2. In normal rats the highest levels of sPLA2 were observed in the hippocampus, pons, and medulla, followed by the cerebral neocortex and caudate nucleus. After intracerebroventricular kainate injections an increase in total PLA2 activity was observed in the rat hippocampus. Using a selective sPLA2 inhibitor 12-epi-scalaradial, sPLA2 activity was found to be significantly increased by 2.5-fold on the side of the intracerebroventricular injection compared to the contralateral side. A peptide P-NT.II, derived from the amino acid sequence of "PLA2-inhibitory protein," discovered in the serum of the reticulated python, also showed potent sPLA2 inhibitory activity in homogenates from the kainate-injected hippocampus. These results show that there is a high level of sPLA2 activity in the normal hippocampus, pons, and medulla oblongata, and that the level increases further in the hippocampus after kainate-induced excitotoxic injury. The increased PLA2 activity was inhibited by P-NT.II, indicating a potential use of this peptide as a PLA2 inhibitory agent in the brain. Electronic Publication  相似文献   

8.
The cellular localization of DMT1 and its functional characterization suggest that DMT1 may play an important role in the physiological brain iron transport. But the regulation of DMT1 expression by iron in the brain is still not clearly understood. In this study, both the contents of ferric and ferrous iron as well as DMT1 expression were evaluated in CPu and SN after ICV of 500 μg iron dextran/rat/day for 3 or 7 days. It was found that the iron levels in CPu and SN were not altered obviously until ICV for 7 days. Immunohistochemistry results indicated that the expression of DMT1 (?IRE) in CPu and SN was not altered significantly after 3 days of ICV. Whereas the expression of DMT1 (?IRE) decreased significantly after 7 days of ICV when ferrous iron was increased significantly. Contrary to that of DMT1 (?IRE) in the same regions, there were no significant alterations in DMT1 (+IRE) expression in CPu and SN in spite of the existence of the altered iron levels, compared with that of control groups. The results demonstrate that DMT1 (?IRE) expression was correlated probably with brain iron levels; especially, its regulation was correlated with ferrous iron (not ferric iron) in CPu and SN in adult rats, compared with those of saline‐injected control rats. The effect of ferrous iron on the expression of DMT1 (?IRE) in the brain also suggests that it might play a major physiological role in brain iron uptake and transport, but further studies are needed to clarify these issues. Anat Rec, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

9.
Adverse effects of lead exposure at low-dose (<10 μg/dL) in children showed a growing interest over the last decades. Black ethnicity is usually associated with elevated blood lead levels (BLLs), independently of age and socioeconomic conditions. The gastrointestinal uptake of lead represents a key step in the process of lead kinetic and toxicity. The involvement of divalent metal transporter 1 (DMT1) in the lead absorption has been previously presumed and reported. I postulate that inter-ethnic differences in DMT1 expression may explain a large part of the racial disparity in children’s BLLs, and suggest a few analyses to test this hypothesis. The hypothesis rests on some observations from previous researches. The inverse association between BLLs and iron intake has been reported in both cross-sectional and follow-up studies. It appears that no study specifically addressed the modifying effect of ethnicity in this association. Previous reports suggest that DMT1 is the primary mechanism for gastrointestinal iron absorption. There are four forms of DMT1 expressed in the enterocytes, which did not respond similarly to iron changes. It is not excluded that some children be more likely to uptake ingested lead depending on DMT1 isoform expressed. I hypothesize that the expression of the more active DMT1 isoform (+1A/+IRE) is more common in Non-Hispanic Black compared with Non-Hispanic White children, and I suggest how to test this hypothesis. If the hypothesis is confirmed, this would suggest that the prevention of iron-deficiency must be included in the primary programs for preventing increase of BLLs in Non-Hispanic Black children, rather than as part of secondary prevention. Moreover, thorough studies would be useful to characterize the interaction between environmental lead levels and DMT1 expression in relation to BLLs in young children.  相似文献   

10.
关鹏  王娜  段相林  常彦忠 《解剖学报》2008,39(6):795-799
目的 探讨谷氨酸、γ-氨基丁酸(GABA)对大鼠尾壳核铁代谢的影响.方法 大鼠立体定位后,向大脑黑质分别注射谷氨酸钠(MSG)和GABA,观察大鼠尾壳核铁含量,黑质多巴胺能神经元酪氨酸羟化酶(TH)的变化以及尾壳核的无铁反应元件结构的二价金属离子转运体1(DMT1-IRE)、膜铁转运辅助蛋白(HP)含量的变化.结果 与对照组相比,MSG组大鼠尾壳核铁含量显著增加,GABA组与对照组相比没有显著差异;谷氨酸钠组和GABA组大鼠黑质TH免疫阳性细胞平均吸光度(AA)与对照组相比均无显著差异;与对照组相比,谷氨酸钠组大鼠尾壳核DMT1-IRE表达均显著增加,而GABA组DMT1-IRE表达有明显降低;谷氨酸钠组大鼠尾壳核HP表达显著降低,GABA组HP表达显著增高.结论 黑质的谷氨酸和GABA可能通过影响尾壳核DMT1-IRE和HP的表达影响纹状体尾壳核的铁代谢.  相似文献   

11.
12.
To examine lesions caused by seizures in the developing brain, seizures were induced by the intraperitoneal injection of kainate and nicotine into juvenile mice. After a week, whole brain sections were examined using histochemistry and the gene expression profiles in the neocortices and hippocampi were analyzed using a DNA microarray. Propidium iodide and Fluoro-Jade C staining revealed that kainate but not nicotine-induced degeneration of the hippocampal pyramidal neurons. Comparative analyses of 12,488 probe sets on the microarray chip revealed the differential expression of 208 and 1243 probe sets in the neocortices and hippocampi of kainate-injected mice, respectively, as well as that of 535 and 436 probe sets in the neocortices and hippocampi of nicotine-injected mice, respectively, the patterns of change were largely drug-specific and region-specific. Among a variety of kainate-modified genes including those representing neurodegeneration and astrogliosis, we identified an increased gene expression of the lysosomal cysteine protease cathepsin S in the hippocampi of kainate-injected mice. Western blot analysis of the hippocampal homogenates revealed that kainate induced a 3.3-fold increase in cathepsin S expression. Immunohistochemistry using cell type-specific markers showed that cathepsin S was induced in microglia, especially those surrounding degenerating pyramidal neurons, but not in neurons themselves or astroglia, in the hippocampal CA1 region of kainate-injected mice. These results indicate that seizures induced by kainate elicit neurodegeneration, astrogliosis, and microglial activation accompanied by the expression of cathepsin S while those induced by nicotine do not.  相似文献   

13.
Neurogenesis in the mammalian dentate gyrus occurs throughout life, is believed to be important for the laying down of episodic memory and diminishes significantly with increasing age. Pathological insults such as seizures, hypoxia and traumatic brain injury increase dentate neurogenesis compared to age matched controls. Using unilateral intracerebroventricular kainate we show that although baseline neurogenesis is significantly lower in 3 month old rats compared to 1 month old rats, kainate increases neurogenesis to reach similar levels in both age groups. Additionally, this effect is bilateral after a unilateral intracerebroventricular kainate injection. We conclude that the potential for dentate neurogenesis is maintained despite diminishing baseline levels with increasing age and that injury signals override the age related suppression of neurogenesis.  相似文献   

14.
目的 探讨铁调素(hepcidin)在小鼠脑内的表达及其对膜铁转运蛋白1(ferroportir 1)和二价金属离子转运体1(DMT1)表达的调节作用.方法 应用RT-PCR技术检测铁调素在正常小鼠各脑区的表达分布,并观察了脑室内注射铁调素对DMT1、膜铁转运蛋白1表达的影响 结果 铁调素在小鼠脑内有广泛表达,且不同脑区表达程度不同,脉络丛部分表达较高.结论 侧脑室内注射铁调素后,能够显著影响DMT1、膜铁转运蛋白1表达,且具有明显的区域特异性.  相似文献   

15.
Distribution of divalent metal transporter-1 in the monkey basal ganglia   总被引:8,自引:0,他引:8  
Huang E  Ong WY  Connor JR 《Neuroscience》2004,128(3):487-496
An accumulation of iron occurs in the brain with age, and it is thought that this may contribute to the pathology of certain neurodegenerative diseases, including Parkinson's disease. In this study, we elucidated the distribution of divalent metal transporter-1 (DMT1) in the monkey basal ganglia by immunocytochemistry, and compared it with the distribution of ferrous iron in these nuclei by Turnbull's Blue histochemical staining. We observed a general correlation between levels of DMT1, and iron staining. Thus, regions such as the caudate nucleus, putamen, and substantia nigra pars reticulata contained dense staining of DMT1 in astrocytic processes, and were also observed to contain large numbers of ferrous iron granules. The exceptions were the globus pallidus externa and interna, which contained light DMT1 staining, but large numbers of ferrous iron granules. The thalamus, subthalamic nucleus, and substantia nigra pars compacta contained neurons that were lightly stained for DMT1, but few or no iron granules. The high levels of DMT1 expression in some of the nuclei of the basal ganglia, particularly the caudate nucleus, putamen, and substantia nigra pars reticulata, may account for the high levels of iron in these regions.  相似文献   

16.
Zhang S  Wang J  Song N  Xie J  Jiang H 《Neurobiology of aging》2009,30(9):1466-1476
Apoptosis has been identified as one of the important mechanisms involved in the degeneration of dopaminergic neurons in Parkinson's disease (PD). Our previous study showed increased iron levels in the substantia nigra as well as loss of dopaminergic neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced PD mouse models. 1-Methyl-4-phenylpyridinium (MPP+) is commonly used to establish a cellular model of PD. Although intracellular iron plays a crucial role in MPP+-induced apoptosis, the molecular mechanism linking increased iron and MPP+-induced neurodegeneration is largely unknown. In the present study, we investigate the involvement of divalent metal transporter 1 (DMT1) that accounts for the ferrous iron transport in MPP+-treated MES23.5 cells. In the treated cells, a significant influx of ferrous iron was observed. This resulted in a decreased mitochondrial membrane potential. Additionally, an elevated level of ROS production and activation of caspase-3 were also detected, as well as the subsequent cell apoptosis. These effects could be fully abolished by iron chelator desferal (DFO). Increased DMT1 (−IRE) expression but not DMT1 (+IRE) accounted for the increased iron influx. However, there were no changes for iron regulatory protein 1 (IRP1), despite decreased expression of IRP2. Iron itself had no effect on IRP1 and IRP2 expression. Our data suggest that although DMT1 mRNA contains an iron responsive element, its expression is not totally controlled by this. MPP+ could up-regulate the expression of DMT1 (−IRE) in an IRE/IRP-independent manner. Our findings also show that MPP+-induced apoptosis in MES23.5 cells involves DMT1-dependent iron influx and mitochondria dysfunction.  相似文献   

17.
Dietary iron is present in the intestine as Fe(II) and Fe(III). Since enterocytes take up Fe(II) by the divalent metal transporter (DMT1), Fe(III) must be reduced. Whether other Fe(III) transport processes are present is unknown. Release of iron from the enterocyte into the plasma involves the iron-regulated transporter-1/metal transporter protein-1 (IREG-1/MTP-1, ferroportin) but ferroportin is also found on the apical membrane. We compared the uptake of iron from Fe(II):ascorbate and Fe(III):citrate using the rat intestinal enterocyte cell line-6 (IEC-6), in the presence of ferrous chelators, a blocking antibody to ferroportin, at different pH and during the over-expression of DMT1. Firstly, surface ferrireduction was absent. Secondly, blocking ferroportin partly and totally reduced Fe(II) and Fe(III) uptake, respectively. Thirdly, optimal Fe(II) uptake occurred at pH5.5 but Fe(III) uptake was unaffected by pH and, fourthly, over-expression of DMT1 increased uptake of Fe(II) and Fe(III). This indicates that an increased extracellular H+ concentration facilitates DMT1-mediated Fe(II) uptake at the cell membrane. However, since Fe(III) uptake required DMT1, but not cell surface ferrireduction, and was independent of variations in extracellular pH, it appears that Fe(III) is internalised before ferrireduction and transport by DMT1. Ferroportin may function as a modulator of DMT1 activity and play a role in Fe(III) uptake, possibly by affecting the number or affinity of citrate binding sites.  相似文献   

18.
Converging evidence from clinical observations, brain imaging and pathological findings strongly indicate impaired brain iron regulation in restless legs syndrome (RLS). Animal models with mutation in (DMT1) divalent metal transporter 1 gene, an important brain iron transporter, demonstrate a similar iron deficiency profile as found in RLS brain. The human DMT1 gene, mapped to chromosome 12q near the RLS1 locus, qualifies as an excellent functional and possible positional candidate for RLS. DMT1 protein levels were assessed in lymphoblastoid cell lines from RLS patients and controls. Linkage analyses were carried out with markers flanking and within the DMT1 gene. Selected patient samples from RLS families with compatible linkage to the RLS1 locus on 12q were fully sequenced in both the coding regions and the long stretches of UTR sequences. Finally, selected sequence variants were further studied in case/control and family-based association tests. A clinical association of anemia and RLS was further confirmed in this study. There was no detectable difference in DMT1 protein levels between RLS patient lymphoblastoid cell lines and normal controls. Non-parametric linkage analyses failed to identify any significant linkage signals within the DMT1 gene region. Sequencing of selected patients did not detect any sequence variant(s) compatible with DMT1 harboring RLS causative mutation(s). Further studies did not find any association between ten SNPs, spanning the whole DMT1 gene region, and RLS affection status. Finally, two DMT1 intronic SNPs showed positive association with RLS in patients with a history of anemia, when compared to RLS patients without anemia.  相似文献   

19.
Little is known about changes in sterols, in particular cholesterol, and cholesterol oxidation products (COPs) in oxidative injury in neural tissues. We have therefore examined changes in cholesterol and COPs using a model of excitotoxic injury. Intracerebroventricular injections of kainate in rats resulted in an increase in immunoreactivity to cholesterol in the affected CA fields of the hippocampus. The increase was confirmed by increased filipin staining of cholesterol in adjacent sections from the same animals, and in hippocampal slice or neuronal cultures after kainate treatment. In neuronal cultures, addition of lovastatin, an inhibitor of cholesterol synthesis, attenuated the increased filipin staining after kainate treatment, indicating that the increase in cholesterol could involve increased cholesterol synthesis. Furthermore, gas chromatographic mass spectrometric (GC/MS) analysis of cholesterol and COPs in kainate-injected rat brain showed a marked increase in cholesterol and COPs including 7-ketocholesterol, 3 days after kainate treatment. The addition of some COPs, including 7-ketocholesterol and cholesterol epoxides to hippocampal slices resulted in neuronal injury as reflected by decreased staining of a neuronal marker in the affected CA fields. The ability of these COPs to produce neuronal injury was attenuated by glutathione, suggesting that oxidative mechanisms are involved in neuronal injury induced by these products. These results, together with GC/MS results that showed significant increase in 7-ketocholesterol at 3 days post-kainate injury suggest that 7-ketocholesterol may be a factor in aggravating oxidative damage to neurons, after the initial stages of kainate-induced neuronal injury.  相似文献   

20.
OBJECTIVE: Studies using cerebrospinal fluid, magnetic resonance imaging, and autopsy tissue have implicated a primary role for brain iron insufficiency in restless legs syndrome (RLS). If the abnormalities of brain iron regulation reflect a basic disturbance of iron metabolism, then this might be expressed at least partially in some peripheral systems. Thus the study aim was to determine whether patients with RLS and control subjects show differences in lymphocyte iron regulator proteins. METHODS: Fasting morning blood samples were used to obtain common serum measures of iron status and to determine lymphocyte iron management proteins. Twenty-four women with early-onset RLS and 25 control women without RLS symptoms were studied. RESULTS: RLS and control subjects were matched for age, hemoglobin, and serum iron profile. However, transferrin receptor (TfR) and DMT1 (divalent metal transporter 1 protein) levels in lymphocytes were significantly higher for RLS patients than for controls. No significant differences in ferritin subtypes or transferrin levels were found. No significant correlations were found between lymphocyte and serum indices of iron status. INTERPRETATION: RLS lymphocytes showed an increase in ferroportin, implying increased cellular iron excretion, in the face of increased iron need (increased TfR and DMT1). In the absence of changes in H-ferritin, the findings indicate a balance between input and output with no net iron change but probable overall increase in iron turnover. The lack of any significant correlation between serum and lymphocyte iron indices indicates that iron management proteins from lymphocytes are at a minimum an alternative and independent marker of cellular iron metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号