首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
An antiserum against conjugated histamine was used to study the distribution of histaminergic neurons in the CNS of the lamprey Lampetra fluviatilis. Numerous histamine-immunoreactive cell bodies were detected in the dorsal and ventral hypothalamic nuclei and in the adjacent postinfundibular commissural nucleus. Histamine-immunoreactive fibers of high density were present in the ventral hypothalamus, and fibers could also be traced dorsally from the hypothalamus to the corpus striatum and septal nucleus where they appeared to terminate in dense plexuses. Another, smaller group of histamine-immunoreactive perikarya was observed in the border area between mesencephalon and rhombencephalon, near the caudal pole of the mesencephalic reticular nucleus. Sparsely distributed histamine-immunoreactive fibers were present in the ventral mesencephalon. The distribution of histaminergic neurons in cyclostomes, which diverged very early from the main vertebrate line, shows similarities with the corresponding systems in the CNS of amphibians and mammals, which suggests that histaminergic neuronal systems are phylogenetically old and have been conserved during evolution.  相似文献   

2.
To accumulate phylogenetic information on the central histaminergic system, we investigated the histaminergic system in the brain of a teleost, the jack mackerel (Trachurus trachurus), using the indirect immunofluorescent method with antiserum against histamine. A small number of histamine-immunoreactive cell bodies were observed in the posterior hypothalamus around the posterior recess. Histamine-immunoreactive fibers innervated the telencephalon, diencephalon, tegmentum, and rostral part of the medulla oblongata. The immunoreactive fibers were very sparse or absent in the olfactory bulb, optic tectum, cerebellum, caudal part of the medulla oblongata, spinal cord, and hypophysis. Ascending fiber bundles were seen in the basal hypothalamus, supplying fiber collaterals to the telencephalon and diencephalon, whereas descending fibers were observed in the midline of the lower brainstem. These findings suggest that the central histaminergic system of the jack mackerel is homologous to those of mammals, reptiles, and amphibians, although poorly developed compared with them. The histamine-immunoreactive neuronal cell bodies found in the border area between the mesencephalon and rhombencephalon of the river lamprey were not detected in the brain of the jack mackerel.  相似文献   

3.
4.
Histamine-immunoreactive nerve fibers in the mammalian spinal cord   总被引:1,自引:0,他引:1  
New sensitive antisera against histamine were used to study the distribution of histamine-immunoreactive nerve fibers in the spinal cord of several mammalian species. Tissues were fixed with carbodiimide by transcardiac perfusion or immersion. A few immunoreactive nerve fibers were found in the cervical spinal cord of the rat in the superficial laminae of the dorsal horn, around the central canal and scattered in the anterior horn. The density of immunoreactive fibers in the cervical spinal cord of the guinea pig and tree shrew was higher, but still low. The densest networks of histamine-immunoreactive fibers were seen in the cervical spinal cord of the pig. The laminar distribution of histamine-immunoreactive fibers was similar in all species. Histamine-immunoreactive fibers were densest in lamina X, followed by laminae I-II. Scattered fibers were also seen in the white matter in the lateral and posterior funiculus in the pig. In the rat and the guinea pig, no histamine-immunoreactive cell bodies were seen in the spinal sensory ganglia. The results suggest that the histamine-immunoreactive nerve fibers in the spinal cord may originate from the brain, probably from the posterior hypothalamus, and the fiber projection is more extensive in higher mammalian species. The role of histamine in the spinal cord is not known, but it may be involved in, e.g., pain sensation.  相似文献   

5.
An immunohistochemical method that utilizes carbodiimide as a fixative and antisera directed against histamine was applied to investigate the location of histamine in the rat pineal complex. Numerous histamine-immunoreactive cell bodies were observed in different subdivisions of the tuberomammillary nucleus of the posterior hypothalamus, and a few cell bodies were present in the posterior and dorsal part of the periventricular hypothalamic nucleus. Histamine-immunoreactive fibers were observed to leave the posterior hypothalamus in various directions of which one dorsally projecting tract was followed in the periventricular area of the caudal diencephalon to the epithalamus. Several histamine-immunoreactive nerve fibers of this tract continued through the posterior commissure directly into the deep pineal gland. A few immunoreactive fibers were also observed in the habenular commissure. In midsagittal sections, histamine-immunoreactive nerve fibers were observed to enter the pineal stalk from the deep pineal gland. Most of histamine-immunoreactive fibers in the stalk continued towards the superficial pineal gland, but their number decreased in more distal locations of the stalk, indicating that some fibers terminate in the stalk as well. A few fibers were found to terminate in the most rostral part of the superficial pineal gland. The immunoreactive nerve fibers in the epithalamus and pineal complex were endowed with prominent varicosities. Taken together, these results indicate that histaminergic nerve fibers, originating from the posterior hypothalamus, project to the pineal complex of the rat. Histamine must therefore be considered a putative neurotransmitter contained in the central innervation of the pineal gland, but its function in pineal physiology has so far not been elucidated.  相似文献   

6.
The ontogenetic development of the serotoninergic system in the embryonic as well as in posthatching chick brain was studied with an indirect immunohistochemical technique with the aid of a specific antibody to serotonin (5-hydroxytryptamine). By embryonic day 4, rostral and caudal groups of serotonin-immunoreactive cell populations appeared in the mesencephalon and rostral and caudal rhombencephalon. At this stage, the rostral group had a considerable number of labelled cells that sent axons toward more rostral parts of brain, whereas the caudal group consisted of a small number of scattered serotonin-immunoreactive cells. The number of serotonin-positive cells increased with development, such that by embryonic day 8 almost all the serotoninergic cell groups found in the adult chick were already present. Serotoninergic-positive cells appeared in the paraventricular organ of the diencephalon as early as embryonic day 10. Judging from the cytoarchitectural organization of serotonin-immunoreactive cells, all of the serotoninergic cell groups in the chick brain seemed to be fully developed by embryonic day 16. On embryonic day 4, serotonin-immunoreactive fibers were found to enter into the marginal layer of the mesencephalon. Subsequently, serotonin-positive fibers ascended in the marginal layer of the brainstem up to the levels of the diencephalon and to the telencephalon on embryonic day 6 and 8, respectively. Serotonin-positive fibers, which first began to penetrate into the mantle layer on embryonic day 8, reached to the rostral pole of the telencephalon by embryonic day 10. In general, serotonin fibers were found in almost all brain regions by embryonic day 16. However, "terminal formation" in some nuclei did not seem to begin until the late embryonic or posthatching period. These observations indicate that the initial development of serotoninergic cell groups occurs during the first half of the 20th day of the incubation period of the chick. However, a longer time, ranging from early embryonic to posthatching stages, is necessary for the complete development of the serotoninergic projections.  相似文献   

7.
The anatomical distribution of neuropeptide tyrosine (NPY)-like immunoreactivity was investigated in the brain, olfactory organ and retina of the zebrafish, Danio rerio, during development and in juvenile specimens, by using the indirect immunofluorescence and the peroxidase-antiperoxidase methods. In 60 h post fertilization (hpf) embryos, NPY-like immunoreactive cell bodies appeared in the hypothalamus, within the posterior periventricular nucleus. Few positive nerve fibers were found in the hypothalamus and in the tegmentum of the mesencephalon. In 72 hpf embryos, a new group of NPY-like immunoreactive cells was found in the olfactory pit. At day 4 of development, NPY-like immunoreactive cell bodies were detected between the olfactory pit and the olfactory organ. In the hypothalamus the location of positive cell bodies was similar to that reported in the previous developmental stages. A few positive nerve fibers appeared in the tegmentum of the rhombencephalon. At days 7 and 15 of development, the distribution of NPY-like immunoreactivity was very similar to that reported at day 4. However, at day 15, NPY-like immunoreactivity appeared for the first time in amacrine cells of the retina and in nerve fibers of the tectum of the mesencephalon. In 1-month/3-month-old animals, additional groups of NPY-like immunoreactive cell bodies appeared in the glomerular layer of the olfactory bulbs, the terminal nerve, the lateral nucleus of the ventral telencephalic area, the entopeduncular nucleus and in the medial region of the reticular formation of the rhombencephalon. These results show that NPY-like immunoreactive structures appear early during ontogeny of zebrafish. The distribution of the immunoreactive system increases during the ontogeny, the juvenile stages, and reaches the complete development in mature animals. The location of NPY-like immunoreactivity indicates that, during development, NPY could be involved in several neuromodulatory functions, including the processing of visual and olfactory information. In 1-month/3-month-old animals, NPY-like immunoreactive nerve fibers are present in the pituitary, suggesting that, from these stages onward, NPY may influence the secretion of pituitary hormones.  相似文献   

8.
9.
The immunocytochemical distribution of galanin-containing perikarya and nerve terminals in the brain of Rana esculenta and Xenopus laevis was determined with antisera directed toward either porcine or rat galanin. The pattern of galanin-like immunoreactivity appeared to be identical with antisera directed toward either target antigen. The distribution of galanin-like immunoreactivity was similar in Rana esculenta and Xenopus laevis except for the absence of a distinct laminar distribution of immunoreactivity in the optic tectum of Xenopus laevis. Galanin-containing perikarya were located in all major subdivisions of the brain except the metencephalon. In the telencephalon, immunoreactive perikarya were detected in the pars medialis of the amygdala and the preoptic area. In the diencephalon, immunoreactive perikarya were detected in the caudal half of the suprachiasmatic nucleus, the nucleus of the periventricular organ, the ventral hypothalamus, and the median eminence. In the mesencephalon, immunoreactive perikarya were detected near the midline of the rostroventral tegmentum, in the torus semicircularis and, occasionally, in lamina A and layer 6 of the optic tectum. In the myelencephalon, labelled perikarya were detected only in the caudal half of the nucleus of the solitary tract. Immunoreactive nerve fibers of varying density were observed in all subdivisions of the brain with the densest accumulations of fibers occurring in the pars lateralis of the amygdala and the preoptic area. Dense accumulations of nerve fibers were also found in the lateral septum, the medial forebrain bundle, the periventricular region of the diencephalon, the ventral hypothalamus, the median eminence, the mesencephalic central gray, the laminar nucleus of the torus semicircularis, several laminae of the optic tectum, the interpeduncular nucleus, the isthmic nucleus, the central gray of the rhombencephalon, and the dorsolateral caudal medulla. The extensive system of galanin-containing perikarya and nerve fibers in the brain of representatives of two families of anurans showed many similarities to the distribution of galanin-containing perikarya and nerve fibers previously described for the mammalian brain.  相似文献   

10.
The NILE (nerve growth factor-inducible large external) glycoprotein is a 230,000-dalton molecule found on the surface of PC12 cells. Immunologically cross-reactive glycoproteins in the molecular weight range of 215,000 to 230,000 have been found on many types of neurons in culture. Using immunohistochemical methods, we have shown that NILE-related glycoproteins are present in neuronal fiber tracts of the developing rat brain. Antibody against the NILE glycoprotein specifically labels processes that appear identical to those recognized by antibodies against the neurofilament triplet of proteins. These processes are clearly distinct from the radial glial fibers recognized by antibody against the intermediate filament protein vimentin. NILE glycoprotein is not distributed uniformly over the entire neuronal surface but is concentrated on neurites and is much less abundant on cell bodies. NILE-positive fiber tracts are first seen in the spinal cord and rhombencephalon on embryonic day 11 and over the next 2 days appear in the mesencephalon and diencephalon. Staining in the telencephalon is not seen until embryonic day 15. The appearance of NILE immunoreactivity in these various regions closely parallels the appearance of neurofilament polypeptides, suggesting that NILE-related glycoproteins are present during the early phases of fiber tract formation. This idea is supported by the finding that the NILE glycoprotein can be found postnatally in parts of the nervous-system such as the cerebellar cortex and olfactory bulb which undergo major histogenesis during the postnatal period. In the cerebellum the appearance of NILE immunoreactivity in the two major fiber zones, the molecular layer and the white matter, parallels the development of the fiber structure of these layers. These findings support tissue culture studies which suggest a role for the NILE glycoprotein in mediating nerve fiber fasciculation.  相似文献   

11.
The distribution of histaminergic neurons in the sheep brain was studied by immunohistochemistry by using antibodies raised against histamine. For the first time in this species, the presence of histamine-immunoreactive neurons was described in the caudal diencephalon, around the mammillary bodies, and in the tuberomammillary area. The general pattern of distribution of these neurons was similar to that described previously in other species, i.e., rodents and humans. The distribution in the five neuronal groups described in rodents was not easy to demonstrate in sheep, because the boundaries between each group were not clear. The labeled neurons appeared to form a continuous cell system, as in humans. Numerous histamine-immunoreactive mast cells were found in the habenula and the thalamus. Histamine-immunoreactive fibers were found in almost all of the structures studied. The highest density of fibers was seen in the tuberomammillary area, from which dense bundles of fibers ran rostrally and dorsally along the third ventricle in a parasagittal plane. Numerous immunostained fibers were found close to the wall of the ventricles; some of them appeared to reach the cerebrospinal fluid through the ependymal cell layer. Some fibers were also observed in the optic tract, and the lowest density was found in the supraoptic and paraventricular nuclei. These results should be useful for developing further physiological studies on the role of histaminergic neuronal systems in sheep. J. Comp. Neurol. 400:317–333, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
The distribution of perikarya and nerve fibers containing neuromedin U-like immunoreactivity in the brain of Rana esculenta was determined with an antiserum directed toward the carboxyl terminus of the peptide. In the telencephalon, immunoreactive perikarya were found in the olfactory bulb, the medial septum, and the diagonal band. In the diencephalon, labeled perikarya were detected in the anterior and posterior preoptic areas, the dorsal nucleus of the hypothalamus, the caudal part of the infundibulum, and the posterior tuberculum. In the mesencephalon, immunoreactive cell bodies were found only in the laminar nucleus of the torus semicircularis and the anterodorsal tegmental nucleus. In the rhombencephalon, labeled perikarya were detected in the secondary visceral nucleus, the cerebellar nucleus, the central gray, and the nucleus of the solitary tract. Immunoreactive nerve fibers were observed in all areas of the brain that contained labeled perikarya. The densest accumulations were found in the nucleus accumbens; the dorsal part of the lateral septum; the periventricular region of the ventral thalamus; the lateral part of the infundibulum; the anterodorsal, anteroventral, posterodorsal, and posteroventral tegmental nuclei; and the periaqueductal region of the tegmentum. The distribution of neuromedin U-like immunoreactivity in the frog brain was substantially different from the distribution described for the rodent brain. © 1996 Wiley-Liss, Inc.  相似文献   

13.
The initial appearance of tyrosine hydroxylase (TH)-, serotonin (5-HT)-, gamma-aminobutyric acid (GABA)-, calcitonin gene-related peptide- (CGRP), substance P-, and synaptophysin-immunoreactivity in the rat pituitary gland, and in the related brain regions was investigated. Several groups of TH-immunoreactive neurons were first detected in the brain stem on day E17, and in the hypothalamus on day E18, followed by TH-immunoreactivity in the median eminence and infundibulum on E19–E20. TH-positive fibers appeared in the posterior lobe on day E20 and in the intermediate lobe on day P0. 5-HT-immunoreactivity was first detected on day E17 in neurons and nerve fibers in the brain stem and in the median eminence, respectively. On day E18, a few 5-HT-immunoreactive fibers were detected in the posterior lobe of the pituitary, although they were consistently seen in the infundibulum from day E19. In newborn rats, some 5-HT-immunoreactive fibers, but no neurons, were seen in the hypothalamus. GABA immunoreactivity appeared on day E17 in several nerve fibers of the infundibulum and the posterior lobe. Some neurons in the cortex and ventral hypothalamus transiently expressed GABA immunoreactivity on day E17. In newborn rats, a plexus of GABA-immunoreactive fibers was detected for the first time in the intermediate lobe. No CGRP-immunoreactive fibers could be detected in the prenatal pituitary. On day P10, CGRP-immunoreactive fibers were first observed in the anterior lobe. Later their number considerably increased, while only sporadic fibers could be found in the intermediate or posterior lobes. No substance P-immunoreactivity could be detected in any of the lobes in the embryonic or developing postnatal rat pituitary, instead the adult anterior lobe occasionally showed some substance P-immunoreactive fibers. Synaptophysin-immunoreactivity was first detected in the posterior lobe on day E20, followed shortly by its expression in the intermediate lobe in newborn rats. The time course of GABA and 5-HT expression revealed in the present study suggests that these transmitters, which are initially expressed in the developing pituitary clearly before synaptic maturation, may act as trophic molecules during the prenatal period.  相似文献   

14.
To understand the molecular mechanisms underlying the developmental processes of the cerebral cortex, we screened genes whose mRNA expression was up-regulated in neonatal in the rat cortex to a greater extent than in adult by differential display and obtained five genes. Among these genes, we focused on pyrophosphate (isopentenyl diphosphate, dimethylallyl diphosphate: IPP) isomerase gene, the product of which is known as an enzyme of the mevalonate pathway. Rat IPP isomerase was recently cloned and the gene expression was shown to be dependent on the activation of the mevalonate pathway. Its expression and roles in the brain, however, have not been investigated hitherto. In the present study, Northern blots and in situ hybridization analysis showed that at embryonic stage weak signals for IPP mRNA were diffusely detected in the CNS, and the signal in the cortex became intense at postnatal day 1 and maximized in almost all neurons of all layers at postnatal day 7 with a subsequent reduction. At 8 weeks, the expression of IPP isomerase mRNA in neurons decreased, while it was detected in the oligodendrocytes in the regions containing abundant nerve fibers. These findings suggested that IPP isomerase contributes to postnatal neuronal maturation and myelination. We also demonstrated that IPP isomerase mRNA is induced after nerve axotomy, which suggests a relationship between neuronal regeneration and IPP isomerase. Taken together, these results suggest that elevation of IPP isomerase mRNA levels in neurons contributes to construction of nerve fibers both during the postnatal period in the cortex and their regeneration.  相似文献   

15.
The development of nitric oxide synthase (NOS) expression in the brain of Xenopus laevis tadpoles was studied by means of immunohistochemistry using specific antibodies against NOS and enzyme histochemistry for nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase. Both techniques yielded identical results and were equally suitable for demonstrating the nitrergic system in the brain. The only mismatches were observed in the olfactory nerve and glomeruli and in the terminal nerve; they were intensely labeled with the NADPH-diaphorase technique but failed to stain with NOS immunohistochemistry. As early as stage 33, nitrergic cells were observed in the caudal rhombencephalon within the developing inferior reticular nucleus. At later embryonic stages, different sets of reticular and tegmental neurons were labeled in the middle reticular nucleus and, more conspicuously, in the laterodorsal and pedunculopontine tegmental nuclei. As development proceeded, new nitrergic cell groups gradually appeared in the mesencephalon, diencephalon, and telencephalon. A general caudorostral temporal sequence was observed, both in the whole brain and within each main brain subdivision. The premetamorphic period was mainly characterized by the maturation of the cell populations developed in the embryonic period. During prometamorphosis, the nitrergic system reached an enormous development, and many new cell groups were observed for the first time, in particular in the telencephalon. By the climax of metamorphosis, the pattern of organization of nitrergic cells and fibers observed in the brain was similar to that present in the adult brain. Transient expression of NOS was not detected in any brain region. Our data suggest that nitric oxide plays an important role during brain development of Xenopus. Comparison with the developmental pattern of nitrergic systems in other vertebrates shows that amphibians possess more common features with amniotes than with anamniotes.  相似文献   

16.
The cellular distribution of insulin-like growth factor I (IGF-I) immunoreactivity was examined in the rat brain from embryonic day 15 to maturity. IGF-I immunoreactivity was found in the perikarya of neurons distributed along the entire extension of the neuronal tube in all the embryonic ages studied (E15, E17, E19 and E21). In E21 animals, the majority of immunoreactive neurons was located in the olfactory bulb, cerebral cortex, hippocampus, striatum, diencephalon, mesencephalic colliculi, trigeminal ganglion and in motoneurons of the brainstem. In 10- and 20-day-old rats, in addition to the above areas, IGF-I immunoreactivity was also observed in capillary walls, ependymal cells, choroid plexus, glial cells and most fiber paths. In postnatal ages, immunoreactivity in neuronal somas mainly restricted to the cell nuclei. However, IGF-I immunoreactivity in the neuron cytoplasm was observed in 20-day-old rats treated with colchicine while fiber paths and neuronal cell nuclei were negative in these animals. In the telencephalon of 20-day-old rats injected with colchicine, the most intense immunoreactive neurons were observed in the olfactory bulb, cerebral cortex, tenia tecta, hippocampus, islands of Calleja, septal nuclei, striatum, endopyriform nucleus and amygdala. Most diencephalic nuclei, the substantia nigra, the mesencephalic colliculi, Purkinje cells in the cerebellar cortex and several nuclei in mesencephalon, pons and medulla oblongata were also immunoreactive. In adult rats injected with colchicine, IGF-I immunoreactivity was located in the same areas as in 20-day-old rats. The number of immunoreactive cells and the intensity of the staining was reduced in adult rats as compared to that found in young postnatal animals. Glial cells were negative in adults. The distribution of IGF-I in the developing and mature rat brain supports the proposed roles of this peptide as a neuromodulator and neurotrophic factor.  相似文献   

17.
The development of glycine immunoreactivity in the brain of the sea lamprey was studied by use of immunofluorescence techniques at embryonic to larval stages. Glycine distribution was also compared with that of γ‐aminobutyric acid (GABA) by use of double immunofluorescence. The first glycine‐immunoreactive (ir) cells appeared in the caudal rhombencephalon of late embryos, diencephalon of early prolarvae, and mesencephalon of late prolarvae, in which glycine‐ir cells were observed in several prosencephalic regions (preoptic nucleus, hypothalamus, ventral thalamus, dorsal thalamus, pretectum, and nucleus of the medial longitudinal fascicle), mesencephalon (M5), isthmus, and rhombencephalon. In larvae, glycine‐ir populations were observed in the olfactory bulbs, preoptic nucleus and thalamus (prosencephalon), M5 and oculomotor nucleus (mesencephalon), dorsal isthmic gray, isthmic reticular formation, and various alar and basal plate rhombencephalic populations. No glycine‐ir cells were observed in the larval optic tectum or torus semicircularis, which contain glycine‐ir populations in adults. A wide distribution of glycine‐ir fibers was observed, which suggests involvement of glycine in the function of most lamprey brain regions. Colocalization of GABA and glycine in prolarvae was found mainly in cell groups of the diencephalon, in the ventral isthmic group, and in trigeminal populations. In larvae, colocalization of GABA and glycine was principally observed in the M5 nucleus, the reticular formation, and the dorsal column nucleus. The present results reveal for the first time the complex developmental pattern of the glycinergic system in lamprey, including early glycine‐ir populations, populations transiently expressing glycine, and late‐appearing populations, in relation to maturation changes that occur during metamorphosis. J. Comp. Neurol. 512:747–767, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

18.
Immunohistochemical methods were utilized to systematically map the distribution of corticotropin-releasing-factor-like immunoreactivity (CRF-LI) in the diencephalon, mesencephalon, and rhombencephalon of two monkey species (Saimiri sciureus and Macaca fascicularis). A primary antiserum directed against the human form of the peptide was utilized. Immunoreactive neuronal perikarya and processes were evident in numerous areas, and the distributions of these elements were similar for the two species. As previously reported for rats, monkeys, and human, intense immunoreactivity was evident in putative hypophyseal neurons in the parvicellular component of the paraventricular nucleus of the hypothalamus and in fibers extending from this area into the median eminence. The results for other brainstem regions, most of which have been previously examined for CRF-LI only in rats, indicate that many similarities exist between rats and monkeys in the distribution of this peptide in brainstem extrahypophyseal neuronal circuits, although substantial differences are also evident. For example, immunoreactive perikarya previously observed in other hypothalamic nuclei in rats were not evident in monkeys. Conversely, in monkeys, unlike rats, labeled perikarya were evident in several thalamic nuclei, especially in the intralaminar complex. Also, two large groups of immunoreactive neurons which have generally not been observed in rat studies were present in the mesencephalon and rhombencephalon. In the mesencephalon this consisted of a group of neurons just lateral to the mesencephalic tegmentum, extending throughout the rostral-caudal extent of the midbrain. In the rhombencephalon, labeled perikarya were observed throughout the inferior olive. Some of the differences between rats and monkeys in the locations of labeled perikarya may be due to differences in antiserum specificity and/or sensitivity, or they may result from the fact that colchicine pretreatment was not utilized in the present study. The distributions of immunoreactive fibers also exhibited similarities and differences between monkeys and rats. The most striking terminal fields observed in the present study which have not been previously described are a moderate-to-dense field within and adjacent to presumed dopamine-containing neurons in the substantia nigra pars compacta, a dense innervation of certain subdivisions of the interpeduncular nucleus, and a regionally and parasagittally organized distribution of fibers in the Purkinje cell and molecular layers of the cerebellar cortex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
It has previously been demonstrated that neurons immunoreactive for the enzyme adenosine deaminase (ADA) have a highly restricted distribution pattern in the adult rat brain. In order to determine whether the pattern of ADA expression is equally limited during the period of brain development, the localization of ADA was investigated immunohistochemically in brains of embryonic, early postnatal and young adult rats. No immunostaining for ADA was detected on the 12th embryonic day. On embryonic day 15, ADA-immunoreactive cells were first observed in the hypoglossal motor nucleus, and on day 18 in cingulate, retrosplenial and visual cortex, in the posterior basal hypothalamus, and in the facial motor nucleus. On the 20th embryonic day ADA-immunoreactive neurons appeared in various olfactory and related systems and in the superior colliculus. On the 1st postnatal day, immunoreactivity was intensified in all structures in which it was observed at preceeding ages and, in addition, appeared in several brainstem regions. On postnatal day 10 and 15, immunostained neurons appeared in several subcortical structures whereas the number of these decreased in the anterior olfactory nucleus and some related cortical areas. In animals 25 days of age the intensity of immunostaining continued to increase, essentially producing the adult pattern in all except olfactory areas where there was a dramatic loss of ADA-immunoreactive cells. These results show that the restricted pattern of ADA-immunostaining observed in adult rat brain is generated over a protracted period of development, various stages of which are characterized predominantly by the expression of ADA in greater abundance, at least to the extent this can be gleaned immunohistochemically, in greater numbers of neurons and to a minor degree by a decreased capacity to express this enzyme.  相似文献   

20.
The distribution of immunoreactive catecholamine neurons and fibers was investigated in brindled mottled mouse, a murine model of Kinky hair syndrome (KHS), using antisera against tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH). In all mice, including normal littermate controls, a transient increase of TH-immunoreactive neurons (TH-IN) was observed in the cerebral cortex during the second postnatal week. The numbers of TH-IN were more pronounced in hemizygous brindled males (MObr/y). In addition, TH-IN appeared and rapidly increased in number in the striatum of MObr/y after postnatal day 11 (P11). Striatal TH-IN were rarely detected in controls. After cupric chloride (CuCl2) treatment, TH-IN in the striatum of some of the MObr/y mice became less conspicuous. In the substantia nigra and ventral tegmental area where TH-IN are normally present, no differences either in the immunostaining of TH-IN or the pattern of TH immunoreactive fibers were detected between MObr/y and controls. In MObr/y, a superficial plexus of DBH immunoreactive fibers was more pronounced than in controls but there were no DBH immunoreactive neurons in the cerebral cortex or striatum in any of the mice examined. Neurochemical analysis revealed a marked decrease in norepinephrine levels and increase of serotonin and its metabolites in the brain in MObr/y. Together, these data suggest that the unusual expression of TH-IN in MObr/y represents perturbations of normal development of catecholamine neurons in this copper deficient mutant mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号