首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An anti-CD70 antibody conjugated to monomethylauristatin F (MMAF) via a valine-citrulline dipeptide containing linker has been shown previously to have potent antitumor activity in renal cell cancer xenograft studies. Here, we generated a panel of humanized anti-CD70 antibody IgG variants and conjugated them to MMAF to study the effect of isotype (IgG1, IgG2, and IgG4) and Fcgamma receptor binding on antibody-drug conjugate properties. All IgG variants bound CD70(+) 786-O cells with an apparent affinity of approximately 1 nmol/L, and drug conjugation did not impair antigen binding. The parent anti-CD70 IgG1 bound to human FcgammaRI and FcgammaRIIIA V158 and mouse FcgammaRIV and this binding was not impaired by drug conjugation. In contrast, binding to these Fcgamma receptors was greatly reduced or abolished in the variant, IgG1v1, containing the previously described mutations, E233P:L234V:L235A. All conjugates had potent cytotoxic activity against six different antigen-positive cancer cell lines in vitro with IC(50) values of 30 to 540 pmol/L. The IgGv1 conjugate with MMAF displayed improved antitumor activity compared with other conjugates in 786-O and UMRC3 models of renal cell cancer and in the DBTRG05-MG glioblastoma model. All conjugates were tolerated to >/=40 mg/kg in mice. Thus, the IgG1v1 MMAF conjugate has an increased therapeutic index compared with the parent IgG1 conjugate. The improved antitumor activity of the IgG1v1 auristatin conjugates may relate to increased exposure as suggested by pharmacokinetic analysis. The strategy used here for enhancing the therapeutic index of antibody-drug conjugates is independent of the antigen-binding variable domains and potentially applicable to other antibodies. [Mol Cancer Ther 2008;7(9):2913-23].  相似文献   

2.
The present data showed that 10-methoxy-9-nitrocamptothecin (MONCPT), a family of camptothecin analogues, possessed high antitumor activity in vitro and in vivo. Cytotoxicity assays showed that MONCPT was a potential and highly efficient antitumor compound with IC50 values of 0.1 to 500 nmol/L in nine tumor cell lines. The high cytotoxic potency of MONCPT was paralleled with its ability to increase the cellular accumulation of DNA damage. DNA relaxation assay also showed that MONCPT exerted high potency as a topoisomerase I inhibitor. Moreover, administration of MONCPT (5-20 mg/kg) for 15 to 17 days significantly inhibited tumor growth in human androgen-independent prostate tumor (PC3) and human non-small cell lung tumor (A549) xenografts; the inhibition rates ranged from 29.6% to 98%. The cytotoxic effect of 1,000 nmol/L of MONCPT in PC3 cells was associated with causing an arrest in G0-G1 phase, whereas that of 10 and 100 nmol/L MONCPT was relative to a persistent block in G2-M phase. Furthermore, down-regulation of CDK2, CDK4, and cyclin D1 was observed in PC3 cells treated with 1,000 nmol/L of MONCPT, whereas overexpression of CDK7, CDK1, and cyclin B1 was seen in PC3 cells treated with 10 and 100 nmol/L of MONCPT. These results suggested that cell cycle regulation might contribute to the anticancer properties of MONCPT and strongly support the further anticancer development of MONCPT.  相似文献   

3.
Deregulation of the phosphoinositide 3-kinase (PI3K) signaling pathway such as by PTEN loss or PIK3CA mutation occurs frequently in human cancer and contributes to resistance to antitumor therapies. Inhibition of key signaling proteins in the pathway therefore represents a valuable targeting strategy for diverse cancers. PF-04691502 is an ATP-competitive PI3K/mTOR dual inhibitor, which potently inhibited recombinant class I PI3K and mTOR in biochemical assays and suppressed transformation of avian fibroblasts mediated by wild-type PI3K γ, δ, or mutant PI3Kα. In PIK3CA-mutant and PTEN-deleted cancer cell lines, PF-04691502 reduced phosphorylation of AKT T308 and AKT S473 (IC(50) of 7.5-47 nmol/L and 3.8-20 nmol/L, respectively) and inhibited cell proliferation (IC(50) of 179-313 nmol/L). PF-04691502 inhibited mTORC1 activity in cells as measured by PI3K-independent nutrient stimulated assay, with an IC(50) of 32 nmol/L and inhibited the activation of PI3K and mTOR downstream effectors including AKT, FKHRL1, PRAS40, p70S6K, 4EBP1, and S6RP. Short-term exposure to PF-04691502 predominantly inhibited PI3K, whereas mTOR inhibition persisted for 24 to 48 hours. PF-04691502 induced cell cycle G(1) arrest, concomitant with upregulation of p27 Kip1 and reduction of Rb. Antitumor activity was observed in U87 (PTEN null), SKOV3 (PIK3CA mutation), and gefitinib- and erlotinib-resistant non-small cell lung carcinoma xenografts. In summary, PF-04691502 is a potent dual PI3K/mTOR inhibitor with broad antitumor activity. PF-04691502 has entered phase I clinical trials.  相似文献   

4.
BACKGROUND: Plant-derived cardenolides reportedly possess anticancer properties in human leukemic cells via selective induction of apoptosis, cell cycle arrest, and differentiation. Selective induction of apoptosis with mammalian-derived digoxin-like immunoreactive factor (DLIF) could provide new strategies for anticancer drug development or the identification of biomarkers for cancer. We investigated whether DLIFs selectively induce apoptosis in human lymphoblastic leukemic cells. METHODS: We compared the relative potencies of digoxin, ouabain, and DLIF on induction of programmed cell death in Jurkat cells (an acute T-leukemic cell line), K-562 (a myelogenous leukemia cell line), and nonpathologic human peripheral blood mononuclear cells (PBMCs). Apoptosis was measured by flow cytometry with the annexin V/propidium iodide method. RESULTS: Digoxin and ouabain induced apoptosis in Jurkat cells [digoxin 50% inhibitory concentration (IC(50)), 24 nmol/L; ouabain IC(50), 26 nmol/L]. Neither digoxin nor ouabain induced apoptosis in K-562 cells or PBMCs. DLIF was more potent (IC(50), 1.9 nmol/L) and >2-fold more effective than digoxin or ouabain at inducing maximum apoptosis in Jurkat cells. The IC(50) values in the apoptosis assays were >100-fold lower (DLIF) and 20-fold lower (digoxin and ouabain) than the IC(50) required for Na(+)- and K(+)-dependent ATPase (DLIF, 200 nmol/L; digoxin, 910 nmol/L; ouabain, 600 nmol/L). CONCLUSION: DLIF selectively induces apoptosis in a human acute T-cell lymphoblastic leukemia cell line but not in K-562 cells or PBMCs. These data suggest a new physiological role for these endogenous hormone-like factors.  相似文献   

5.
6.
Human Eg5, a member of the kinesin superfamily, plays a key role in mitosis, as it is required for the formation of a bipolar spindle. We describe here the first in vitro microtubule-activated ATPase-based assay for the identification of small-molecule inhibitors of Eg5. We screened preselected libraries obtained from the National Cancer Institute and identified S-trityl-L-cysteine as the most effective Eg5 inhibitor with an IC50 of 1.0 micromol/L for the inhibition of basal ATPase activity and 140 nmol/L for the microtubule-activated ATPase activity. Subsequent cell-based assays revealed that S-trityl-L-cysteine induced mitotic arrest in HeLa cells (IC50, 700 nmol/L) with characteristic monoastral spindles. S-trityl-L-cysteine is 36 times more potent for inducing mitotic arrest than the well-studied inhibitor, monastrol. Gossypol, flexeril, and two phenothiazine analogues were also identified as Eg5 inhibitors, and we found that they all result in monoastral spindles in HeLa cells. It is notable that all the Eg5 inhibitors identified here have been shown previously to inhibit tumor cell line growth in the NCI 60 tumor cell line screen, and we conclude that their antitumor activity may at least in part be explained by their ability to inhibit Eg5 activity.  相似文献   

7.
Cyclin-dependent kinases (Cdk) and their associated pathways represent some of the most attractive targets for the development of anticancer therapeutics. Based on antitumor activity in animal models, a variety of Cdk inhibitors are undergoing clinical evaluation either as a single agent or in combination with other approved drugs. In our anticancer drug discovery program, a novel series of flavones have been synthesized for evaluation against the activity of Cdk4-D1. This enzyme catalyzes the phosphorylation of retinoblastoma protein, thus inhibiting its function. We have identified a series of potent Cdk4-D1 inhibitors with IC(50) below 250 nmol/L. In this report, we have described the properties of one of the best compound, P276-00 of the flavone's series. P276-00 shows 40-fold selectivity toward Cdk4-D1, compared with Cdk2-E. The specificity toward 14 other related and unrelated kinases was also determined. P276-00 was found to be more selective with IC(50)s <100 nmol/L for Cdk4-D1, Cdk1-B, and Cdk9-T1, as compared with other Cdks, and less selective for non-Cdk kinases. It showed potent antiproliferative effects against various human cancer cell lines, with an IC(50) ranging from 300 to 800 nmol/L and was further compared for its antiproliferative activity against cancer and normal fibroblast cell lines. P276-00 was found to be highly selective for cancer cells as compared with normal fibroblast cells. To delineate its mechanism of action, the effect of P276-00 on cell cycle proteins was studied in human breast cancer cell line (MCF-7) and human non-small cell lung carcinoma (H-460). A significant down-regulation of cyclin D1 and Cdk4 and a decrease in Cdk4-specific pRb Ser(780) phosphorylation was observed. P276-00 produced potent inhibition of Cdk4-D1 activity that was found to be competitive with ATP and not with retinoblastoma protein. The compound also induced apoptosis in human promyelocytic leukemia (HL-60) cells, as evidenced by the induction of caspase-3 and DNA ladder studies. These data suggest that P276-00 has the potential to be developed as an anti-Cdk chemotherapeutic agent.  相似文献   

8.
We have developed biologically stable semisynthetic viridins as inhibitors of phosphoinositide (PtdIns)-3-kinases. The most active compound was PX-866 (acetic acid (1S,4E,10R,11R,13S,14R)-[4-diallylaminomethylene-6-hydroxy-1-methoxymethyl-10,13-dimethyl-3,7,17-trioxo-1,3,4,7,10,11,12,13,14,15,16,17-dodecahydro-2-oxa-cyclopenta[a]phenanthren-11-yl ester), which inhibited purified PtdIns-3-kinase with an IC50 of 0.1 nmol/L and PtdIns-3-kinase signaling measured by phospho-Ser473-Akt levels in HT-29 colon cancer cells with an IC50 of 20 nmol/L. PX-866 administered to mice at 10 mg/kg inhibited phospho-Ser473-Akt in HT-29 colon tumor xenografts up to 80% with recovery taking >48 hours after p.o. administration but more rapidly after i.v. or i.p. administration. PX-866 was eliminated from mouse plasma with a half-life of 18 minutes and a clearance of 360 mL/min/kg following i.v. administration and, when administered i.p. or p.o., showed first-pass metabolism with sequential N-deallylation. Synthetic standards of the N-deallylated metabolites of PX-866 inhibited PtdIns-3-kinase at low nanomolar per liter concentrations. PX-866 exhibited in vivo antitumor activity against s.c. OvCar-3 human ovarian cancer and A-549 human lung cancer xenografts in immunodeficient mice with log cell kills up to 1.2. PX-866 also increased the antitumor activity of cisplatin against A-549 xenografts and radiation treatment against OvCar-3 xenografts. The results show that PX-866 is a biologically stable broad-spectrum PtdIns-3-kinase inhibitor with good pharmacokinetics that causes prolonged inhibition of PtdIns-3-kinase signaling in human tumor xenografts. PX-866 exhibits single agent in vivo antitumor activity and increases the antitumor effects of cisplatin and radiation treatment.  相似文献   

9.
A novel series of 2-amino-4-(3-bromo-4,5-dimethoxy-phenyl)-3-cyano-4H-chromenes was identified as apoptosis-inducing agents through our cell-based apoptosis screening assay. Several analogues from this series, MX-58151, MX-58276, MX-76747, MX-116214, MX-126303, and MX-116407, were synthesized and further characterized. MX-116407, a lead compound from this series, induced apoptosis with an EC50 of 50 nmol/L and inhibited cell growth with a GI50 of 37 nmol/L in T47D breast cancer cells. Treatment of cells with these analogues led to G2-M arrest, cleavage of essential proapoptotic caspase substrates, and induction of nuclear fragmentation. We identified these compounds as tubulin destabilizers with binding site at or close to the colchicine binding site. Compounds in this series were also active in drug-resistant cancer cell lines with a GI50 value for one of the analogues (MX-58151) of 2.5 nmol/L in paclitaxel-resistant, multidrug-resistant MES-SA/DX5 tumor cells. This series of compounds displayed high selectivity against proliferating versus resting cells. Interestingly, these compounds were shown to disrupt preformed endothelial cell capillary tubules in vitro and affect functional vasculature to induce tumor necrosis in vivo and are thus likely to work as tumor vasculature targeting agents. Among these compounds, MX-116407 showed capillary tubule disruption activity in vitro at concentrations well below the cytotoxic dose. In a separate study, we further characterized the antitumor efficacy and pharmacokinetic profile of this series of compounds and identified MX-116407 as a potent apoptosis-inducing agent with apparent activity as tumor vasculature targeting agent.  相似文献   

10.
The cyclin-dependent protein kinases are key regulators of cell cycle progression. Aberrant expression or altered activity of distinct cyclin-dependent kinase (CDK) complexes results in escape of cells from cell cycle control, leading to unrestricted cell proliferation. CDK inhibitors have the potential to induce cell cycle arrest and apoptosis in cancer cells, and identifying small-molecule CDK inhibitors has been a major focus in cancer research. Several CDK inhibitors are entering the clinic, the most recent being selective CDK2 and CDK4 inhibitors. We have identified a diaminopyrimidine compound, R547, which is a potent and selective ATP-competitive CDK inhibitor. In cell-free assays, R547 effectively inhibited CDK1/cyclin B, CDK2/cyclin E, and CDK4/cyclin D1 (K(i) = 1-3 nmol/L) and was inactive (K(i) > 5,000 nmol/L) against a panel of >120 unrelated kinases. In vitro, R547 effectively inhibited the proliferation of tumor cell lines independent of multidrug resistant status, histologic type, retinoblastoma protein, or p53 status, with IC(50)s 相似文献   

11.
Androgen-insensitive prostate cancer cells are highly resistant to several chemotherapeutic drugs and are characterized by the appearance of apoptosis-resistant cells. In this study, we identified the critical role of X-linked inhibitor of apoptosis protein (XIAP), a potent antiapoptotic factor, in conferring chemotherapy resistance in an androgen-insensitive DU145 human prostate cancer cell line. Results reveal that DU145 cells were highly resistant to cisplatin, but this resistance was overridden when the cells were treated for a prolonged time (>96 hours) with cisplatin (IC(50) = 27.5 to 35.5 micromol/L). A decrease in levels of XIAP and Akt/phospho-Akt and an increase in caspase-3 activity were identified to be key factors in cisplatin sensitivity (40% to 55% decrease in cell viability) at later time points. In contrast, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment caused a 40% to 50% decrease in cell viability within 6 hours (IC(50) = 135 to 145 ng/mL). However, increasing concentrations or prolonged treatment with TRAIL did not change drug potency. A significant increase in caspase-3 activity was observed with TRAIL treatment with no apparent change in XIAP levels. Specific inhibition of XIAP expression using an antisense XIAP phosphorodiamidate morpholino oligomer induced apoptosis and increased caspase-3 activity. Combination of cisplatin with XIAP antisense potentiated cisplatin sensitivity by decreasing the IC(50) from >200 micromol/L with cisplatin alone to 9 to 20 micromol/L and decreasing incubation time required for activity from 96 to 24 hours. Similarly, TRAIL in combination with XIAP antisense phosphorodiamidate morpholino oligomer enhanced TRAIL potency by 12- to 13-fold. In conclusion, abrogation of XIAP expression is essential for therapeutic apoptosis and enhanced chemotherapy sensitization in androgen-refractory prostate cancer cells.  相似文献   

12.
目的研究鱼藤素对人类白血病细胞株U937细胞体外抗肿瘤作用,研究其引起细胞周期与核孔蛋白Nup98和Nup88的改变,探讨其抗癌作用的分子机制。方法采用MTT法检测细胞增殖活性,流式细胞术检测细胞周期分布,激光共聚焦显微镜检测Nup98和Nup88蛋白表达变化,免疫电镜和流式细胞术观测鱼藤素对Nup98和Nup88的调控,Western blot检测鱼藤素对U937细胞Nup98和Nup88蛋白表达的影响。结果①鱼藤素对U937细胞具有明显的增殖抑制作用,其抑制作用呈时间和剂量依赖性。②鱼藤素作用U937细胞后细胞周期发生变化,0、5、10、20、40、80nmol/L鱼藤素处理U937细胞24h,主要使细胞阻滞于S期和G2/M期,而G1/G0期细胞呈浓度依赖性降低。G1/G0期细胞比例依次为73.01%、71.15%、68.42%、52.45%、43.99%和22.82%,S期细胞比例依次为17.18%、16.30%、18.09%、27.56%、31.21%和46.85%,G2/M期细胞比例依次为9.75%、12.31%、13.09%、18.99%、24.83%和27.79%。③鱼藤素可以调节U937细胞Nup98和Nup88的表达,低浓度即可使Nup98表达上调,而使Nup88表达下调。结论鱼藤素能够抑制U937细胞增殖,使细胞阻滞于S期和G2/M期,而G1/G0期细胞呈浓度依赖性降低。其抗肿瘤机制可能通过参与调控U937细胞Nup98和Nup88的表达,使Nup98表达上调,而使Nup88表达下调有关。  相似文献   

13.
The prostate-specific membrane antigen (PSMA) is a well-characterized surface antigen, overexpressed in the most advanced, androgen-resistant human prostate cancer cells. We sought to exploit PSMA cell surface properties as a target for short peptides that will potentially guide protein-based therapeutics, such as viral vectors, to prostate cancer cells. Two separate phage display peptide strategies were applied, in parallel, to purified PSMA protein bound to two separate substrates. We reasoned that peptide sequences common to both substrate selections would be specific binders of PSMA. Additionally, the design allowed for stringent cross-selections, where phage populations from one selection condition could be applied to the alternative substrate. These strategies resulted in a series of phage displayed peptides able to bind to PSMA by ELISA and direct binding assays, both with purified protein and in prostate cancer cells. Cell binding is competitively inhibited by purified PSMA. The synthesized peptides are capable of enhancing PSMA carboxypeptidase enzymatic activity, suggesting protein folding stabilization. The discovery of these peptides provides the foundation for subsequent development of peptide targeted therapeutics against prostate cancer.  相似文献   

14.
Gemcitabine shows a marked antitumor effect as a result of its cytotoxic action toward proliferative cells. In this article, we aim to investigate the potential antitumor and antiangiogenic effect of gemcitabine following a metronomic schedule that involves the regular administration of cytotoxic drugs at doses lower than standard treatment. In vitro results showed that human endothelial cells are more sensitive to gemcitabine (IC(50) 3 nmol/L) than pancreatic tumor cells (IC(50) 20 nmol/L). For in vivo studies, we used an orthotopic implantation model of human pancreatic carcinoma in nude mice. Gemcitabine was administered i.p. following a low-dose schedule (1 mg/kg/d for a month) and compared with the conventional schedule (100 mg/kg days 0, 3, 6, and 9 postimplantation). Metronomic treatment effect on established tumor was equivalent to standard administration. The measure of CD31 endothelial marked area allowed us to show an in vivo antiangiogenic effect of this drug that was further enhanced by using metronomic administration. This effect correlated with an induction of thrombospondin-1, a natural inhibitor of angiogenesis. Our results allow us to hypothesize that, in addition to a direct antiproliferative or cytotoxic antiendothelial cell effect, a secondary effect involving thrombospondin-1 induction might provide an explanation for the specificity of the effects of metronomic gemcitabine treatment.  相似文献   

15.
We compared the antitumor activities of the multitargeted tyrosine kinase inhibitors imatinib, sorafenib, and sunitinib to determine which inhibitor is best suited to be used for the treatment of acute myelogenous leukemia (AML). In nine human AML cell lines, sorafenib and sunitinib were more potent inhibitors of cellular proliferation than imatinib (IC50, 0.27 to >40, 0.002-9.1, and 0.007-13 micromol/L for imatinib, sorafenib, and sunitinib, respectively). Sorafenib and sunitinib were potent inhibitors of cells with fms-like tyrosine kinase 3 internal tandem duplication (IC50, 2 and 7 nmol/L) and c-KIT N822K mutations (IC50, 23 and 40 nmol/L). In four cell lines (MV4-11, Kasumi-1, KG-1, and U937) that spanned a range of drug sensitivities, sorafenib and sunitinib had similar activity in apoptosis and cell cycle assays, except that sunitinib did not promote apoptosis in U937 cells. Both drugs inhibited mitogen-activated protein kinase signaling but had no effect on AKT signaling in most of the cell lines tested. Sorafenib was substantially more bound than sunitinib in human plasma (unbound fraction, 0.59% versus 8.4%) and cell culture medium (unbound fraction, 1.3% versus 39%), indicating that sorafenib was more potent than sunitinib and that unbound sorafenib concentrations with activity against most AML cell lines are achievable in vivo. There was more intracellular accumulation of sorafenib than of sunitinib and imatinib in AML cells. Between 1 and 10 micromol/L, sorafenib inhibited the proliferation of six of nine primary AML blast samples by > or =50%. Our results highlight the pharmacologic features of sorafenib that may provide it an advantage in the treatment of AML.  相似文献   

16.
We have reported the synthesis and biological evaluation of a prodrug to a doxorubicin active metabolite. Under physiologic conditions, release of the active metabolite, a conjugate of doxorubicin with formaldehyde, occurs with a half-life of 1 hour. To direct this prodrug to tumor, we designed two conjugates of the prodrug, doxsaliform, with the alphavbeta3-targeting peptides, CDCRGDCFC (RGD-4C) and cyclic-(N-Me-VRGDf) (Cilengitide). We now report the synthesis of these doxsaliform-peptide conjugates and their evaluation using MDA-MB-435 cancer cells. A hydroxylamine ether tether was used to attach 5'-formyldoxsaliform to RGD-4C in its acyclic form via an oxime functional group. The construct acyclic-RGD-4C-doxsaliform showed good binding affinity for alphavbeta3 in the vitronection cell adhesion assay (IC50 = 10 nmol/L) and good growth inhibition of MDA-MB-435 breast cancer cells (IC50 = 50 nmol/L). In its bicyclic forms, RGD-4C showed less affinity for alphavbeta3 and significantly less water solubility. Cyclic-(N-Me-VRGDf) was modified by substitution of D-4-aminophenylalanine for D-phenylalanine to provide a novel attachment point for doxsaliform. The conjugate, cyclic-(N-Me-VRGDf-NH)-doxsaliform, maintained a high affinity for alphavbeta3 (IC50 = 5 nmol/L) in the vitronectin cell adhesion assay relative to the peptide bearing only the tether (0.5 nmol/L). The IC50 for growth inhibition of MDA-MB-435 cells was 90 nmol/L. Flow cytometry and growth inhibition experiments suggest that the complete drug construct does not penetrate through the plasma membrane, but the active metabolite does on release from the targeting group. These drug conjugates could have significantly reduced side effects and are promising candidates for in vivo evaluation in tumor-bearing mice.  相似文献   

17.
Vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 play a central role in angiogenesis, which is necessary for solid tumors to expand and metastasize. Specific inhibitors of VEGFR-2 tyrosine kinase are therefore thought to be useful for treating cancer. We showed that the quinazoline urea derivative KRN633 inhibited tyrosine phosphorylation of VEGFR-2 (IC50 = 1.16 nmol/L) in human umbilical vein endothelial cells. Selectivity profiling with recombinant tyrosine kinases showed that KRN633 was highly selective for VEGFR-1, -2, and -3. KRN633 also blocked the activation of mitogen-activated protein kinases by VEGF, along with human umbilical vein endothelial cell proliferation and tube formation. The propagation of various cancer cell lines in vitro was not inhibited by KRN633. However, p.o. administration of KRN633 inhibited tumor growth in several in vivo tumor xenograft models with diverse tissue origins, including lung, colon, and prostate, in athymic mice and rats. KRN633 also caused the regression of some well-established tumors and those that had regrown after the cessation of treatment. In these models, the trough serum concentration of KRN633 had a more significant effect than the maximum serum concentration on antitumor activity. KRN633 was well tolerated and had no significant effects on body weight or the general health of the animals. Histologic analysis of tumor xenografts treated with KRN633 revealed a reduction in the number of endothelial cells in non-necrotic areas and a decrease in vascular permeability. These data suggest that KRN633 might be useful in the treatment of solid tumors and other diseases that depend on pathologic angiogenesis.  相似文献   

18.
Cediranib is a potent inhibitor of the VEGF receptor (VEGFR)-2 and VEGFR-3 tyrosine kinases. This study assessed the activity of cediranib against the VEGFR-1 tyrosine kinase and the platelet-derived growth factor receptor (PDGFR)-associated kinases c-Kit, PDGFR-α, and PDGFR-β. Cediranib inhibited VEGF-A-stimulated VEGFR-1 activation in AG1-G1-Flt1 cells (IC(50) = 1.2 nmol/L). VEGF-A induced greatest phosphorylation of VEGFR-1 at tyrosine residues Y1048 and Y1053; this was reversed by cediranib. Potency against VEGFR-1 was comparable with that previously observed versus VEGFR-2 and VEGFR-3. Cediranib also showed significant activity against wild-type c-Kit in cellular phosphorylation assays (IC(50) = 1-3 nmol/L) and in a stem cell factor-induced proliferation assay (IC(50) = 13 nmol/L). Furthermore, phosphorylation of wild-type c-Kit in NCI-H526 tumor xenografts was reduced markedly following oral administration of cediranib (≥1.5 mg/kg/d) to tumor-bearing nude mice. The activity of cediranib against PDGFR-β and PDGFR-α was studied in tumor cell lines, vascular smooth muscle cells (VSMC), and a fibroblast line using PDGF-AA and PDGF-BB ligands. Both receptor phosphorylation (IC(50) = 12-32 nmol/L) and PDGF-BB-stimulated cellular proliferation (IC(50) = 32 nmol/L in human VSMCs; 64 nmol/L in osteosarcoma cells) were inhibited. In vivo, ligand-induced PDGFR-β phosphorylation in murine lung tissue was inhibited by 55% following treatment with cediranib at 6 mg/kg but not at 3 mg/kg or less. In contrast, in C6 rat glial tumor xenografts in mice, ligand-induced phosphorylation of both PDGFR-α and PDGFR-β was reduced by 46% to 61% with 0.75 mg/kg cediranib. Additional selectivity was showed versus Flt-3, CSF-1R, EGFR, FGFR1, and FGFR4. Collectively, these data indicate that cediranib is a potent pan-VEGFR kinase inhibitor with similar activity against c-Kit but is significantly less potent than PDGFR-α and PDGFR-β.  相似文献   

19.
Role of prostate apoptosis response-4 (PAR-4) has been well described in prostate cancer. However, its significance in other cancers has not been fully elucidated. For the current study, we selected four pancreatic cancer cell lines (BxPC-3, Colo-357, L3.6pl, and HPAC) that showed differential endogenous expression of PAR-4. We found that nonpeptidic small-molecule inhibitors (SMI) of Bcl-2 family proteins (apogossypolone and TW-37; 250 nmol/L and 1 mumol/L, respectively) could induce PAR-4-dependent inhibition of cell growth and induction of apoptosis. Sensitivity to apoptosis was directly related to the expression levels of PAR-4 (R = 0.92 and R(2) = 0.95). Conversely, small interfering RNA against PAR-4 blocked apoptosis, confirming that PAR-4 is a key player in the apoptotic process. PAR-4 nuclear localization is considered a prerequisite for cells to undergo apoptosis, and we found that the treatment of Colo-357 and L3.6pl cells with 250 nmol/L SMI leads to nuclear localization of PAR-4 as confirmed by 4',6-diamidino-2-phenylindole staining. In combination studies with gemcitabine, pretreatment with SMI leads to sensitization of Colo-357 cells to the growth-inhibitory and apoptotic action of a therapeutic drug, gemcitabine. In an in vivo setting, the maximum tolerated dose of TW-37 in xenograft of severe combined immunodeficient mice (40 mg/kg for three i.v. injections) led to significant tumor inhibition. Our results suggest that the observed antitumor activity of SMIs is mediated through a novel pathway involving induction of PAR-4. To our knowledge, this is the first study reporting SMI-mediated apoptosis involving PAR-4 in pancreatic cancer. [Mol Cancer Ther 2008;7(9):2884-93].  相似文献   

20.
ABT-869 is a structurally novel, receptor tyrosine kinase (RTK) inhibitor that is a potent inhibitor of members of the vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptor families (e.g., KDR IC50 = 4 nmol/L) but has much less activity (IC50s > 1 micromol/L) against unrelated RTKs, soluble tyrosine kinases, or serine/threonine kinases. The inhibition profile of ABT-869 is evident in cellular assays of RTK phosphorylation (IC50 = 2, 4, and 7 nmol/L for PDGFR-beta, KDR, and CSF-1R, respectively) and VEGF-stimulated proliferation (IC50 = 0.2 nmol/L for human endothelial cells). ABT-869 is not a general antiproliferative agent because, in most cancer cells, >1,000-fold higher concentrations of ABT-869 are required for inhibition of proliferation. However, ABT-869 exhibits potent antiproliferative and apoptotic effects on cancer cells whose proliferation is dependent on mutant kinases, such as FLT3. In vivo ABT-869 is effective orally in the mechanism-based murine models of VEGF-induced uterine edema (ED50 = 0.5 mg/kg) and corneal angiogenesis (>50% inhibition, 15 mg/kg). In tumor growth studies, ABT-869 exhibits efficacy in human fibrosarcoma and breast, colon, and small cell lung carcinoma xenograft models (ED50 = 1.5-5 mg/kg, twice daily) and is also effective (>50% inhibition) in orthotopic breast and glioma models. Reduction in tumor size and tumor regression was observed in epidermoid carcinoma and leukemia xenograft models, respectively. In combination, ABT-869 produced at least additive effects when given with cytotoxic therapies. Based on pharmacokinetic analysis from tumor growth studies, efficacy correlated more strongly with time over a threshold value (cellular KDR IC50 corrected for plasma protein binding = 0.08 microg/mL, >or=7 hours) than with plasma area under the curve or Cmax. These results support clinical assessment of ABT-869 as a therapeutic agent for cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号