首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The predominant function of tendons is to position the limb during locomotion. Specific tendons also act as energy stores. Energy-storing (ES) tendons are prone to injury, the incidence of which increases with age. This is likely related to their function; ES tendons are exposed to higher strains and require a greater ability to recoil than positional tendons. The specialized properties of ES tendons are thought to be achieved through structural and compositional differences. However, little is known about structure–function relationships in tendons. This study uses fascicles from the equine superficial digital flexor (SDFT) and common digital extensor (CDET) as examples of ES and positional tendons. We hypothesized that extension and recoil behaviour at the micro-level would differ between tendon types, and would alter with age in the injury-prone SDFT. Supporting this, the results show that extension in the CDET is dominated by fibre sliding. By contrast, greater rotation was observed in the SDFT, suggesting a helical component to fascicles in this tendon. This was accompanied by greater recovery and less hysteresis loss in SDFT samples. In samples from aged SDFTs, the amount of rotation and the ability to recover decreased, while hysteresis loss increased. These findings indicate that fascicles in the ES SDFT may have a helical structure, enabling the more efficient recoil observed. Further, the helix structure appears to alter with ageing; this coincides with a reduction in the ability of SDFT fascicles to recoil. This may affect tendon fatigue resistance and predispose aged tendons to injury.  相似文献   

2.
Although the predominant function of all tendons is to transfer force from muscle to bone and position the limbs, some tendons additionally function as energy stores, reducing the energetic cost of locomotion. To maximise energy storage and return, energy‐storing tendons need to be more extensible and elastic than tendons with a purely positional function. These properties are conferred in part by a specialisation of a specific compartment of the tendon, the interfascicular matrix, which enables sliding and recoil between adjacent fascicles. However, the composition of the interfascicular matrix is poorly characterised and we therefore tested the hypothesis that the distribution of elastin and proteoglycans differs between energy‐storing and positional tendons, and that protein distribution varies between the fascicular matrix and the interfascicular matrix, with localisation of elastin and lubricin to the interfascicular matrix. Protein distribution in the energy‐storing equine superficial digital flexor tendon and positional common digital extensor tendon was assessed using histology and immunohistochemistry. The results support the hypothesis, demonstrating enrichment of lubricin in the interfascicular matrix in both tendon types, where it is likely to facilitate interfascicular sliding. Elastin was also localised to the interfascicular matrix, specifically in the energy‐storing superficial digital flexor tendon, which may account for the greater elasticity of the interfascicular matrix in this tendon. A differential distribution of proteoglycans was identified between tendon types and regions, which may indicate a distinct role for each of these proteins in tendon. These data provide important advances into fully characterising structure–function relationships within tendon.  相似文献   

3.
Usually the four lumbrical muscles arise from the tendons of flexor digitorum profundus and insert into the extensor expansions on the radial side of the corresponding fingers. This special case showed a very rare variation of a unipennate fourth lumbrical muscle of the right hand; the muscle fibre bundles originated on the radial side of the flexor digitorum profundus and coursed horizontal on its radial side, deep to the palmar aponeurosis and in front of the deep transverse metacarpal ligament over the fifth metacarpophalangeal joint. At the level of this joint, its tendon divided into one radial and one ulnar slips. Both heads surrounded the tendons of the flexor digitorum superficialis and profundus muscles, and found their insertion into the flexor digitorum superficialis tendon, as well as their bony attachment into the proximal and even more into the middle phalanx.  相似文献   

4.
A novel constitutive model that describes stress relaxation in transversely isotropic soft collagenous tissues such as ligaments and tendons is presented. The model is formulated within the nonlinear integral representation framework proposed by Pipkin and Rogers (J. Mech. Phys. Solids. 16:59?C72, 1968). It represents a departure from existing models in biomechanics since it describes not only the strain dependent stress relaxation behavior of collagenous tissues but also their finite strains and transverse isotropy. Axial stress?Cstretch data and stress relaxation data at different axial stretches are collected on rat tail tendon fascicles in order to compute the model parameters. Toward this end, the rat tail tendon fascicles are assumed to be incompressible and undergo an isochoric axisymmetric deformation. A comparison with the experimental data proves that, unlike the quasi-linear viscoelastic model (Fung, Biomechanics: Mechanics of Living Tissues. Springer, New York, 1993) the constitutive law can capture the observed nonlinearities in the stress relaxation response of rat tail tendon fascicles.  相似文献   

5.
We provide quantitative anatomical data on the muscle-tendon units of the equine pelvic limb. Specifically, we recorded muscle mass, fascicle length, pennation angle, tendon mass and tendon rest length. Physiological cross sectional area was then determined and maximum isometric force estimated. There was proximal-to-distal reduction in muscle volume and fascicle length. Proximal limb tendons were few and, where present, were relatively short. By contrast, distal limb tendons were numerous and long in comparison to mean muscle fascicle length, increasing potential for elastic energy storage. When compared with published data on thoracic limb muscles, proximal pelvic limb muscles were larger in volume and had shorter fascicles. Distal limb muscle architecture was similar in thoracic and pelvic limbs with the exception of flexor digitorum lateralis (lateral head of the deep digital flexor), the architecture of which was similar to that of the pelvic and thoracic limb superficial digital flexors, suggesting a functional similarity.  相似文献   

6.
《Journal of anatomy》2017,231(6):921-930
Bipedal hopping is used by macropods, including rat‐kangaroos, wallabies and kangaroos (superfamily Macropodoidea). Interspecific scaling of the ankle extensor muscle‐tendon units in the lower hindlimbs of these hopping bipeds shows that peak tendon stress increases disproportionately with body size. Consequently, large kangaroos store and recover more strain energy in their tendons, making hopping more efficient, but their tendons are at greater risk of rupture. This is the first intraspecific scaling analysis on the functional morphology of the ankle extensor muscle‐tendon units (gastrocnemius, plantaris and flexor digitorum longus) in one of the largest extant species of hopping mammal, the western grey kangaroo Macropus fuliginosus (5.8–70.5 kg post‐pouch body mass). The effective mechanical advantage of the ankle extensors does not vary with post‐pouch body mass, scaling with an exponent not significantly different from 0.0. Therefore, larger kangaroos balance rotational moments around the ankle by generating muscle forces proportional to weight‐related gravitational forces. Maximum force is dependent upon the physiological cross‐sectional area of the muscle, which we found scales geometrically with a mean exponent of only 0.67, rather than 1.0. Therefore, larger kangaroos are limited in their capacity to oppose large external forces around the ankle, potentially compromising fast or accelerative hopping. The strain energy return capacity of the ankle extensor tendons increases with a mean exponent of ~1.0, which is much shallower than the exponent derived from interspecific analyses of hopping mammals (~1.4–1.9). Tendon safety factor (ratio of rupture stress to estimated peak hopping stress) is lowest in the gastrocnemius (< 2), and it decreases with body mass with an exponent of −0.15, extrapolating to a predicted rupture at 160 kg. Extinct giant kangaroos weighing 250 kg could therefore not have engaged in fast hopping using ‘scaled‐up’ lower hindlimb morphology of extant western grey kangaroos.  相似文献   

7.
We provide quantitative anatomical data on the muscle-tendon architecture of the hare thoracic limb (specifically muscle mass, fascicle length, pennation angle, tendon mass and length). In addition, moment arms of major thoracic limb muscles were measured. Maximum isometric force and power of muscles, the moment of force about a joint, and tendon stress and strain were estimated. Data are compared with those from other cursorial mammals. The thoracic limb of the hare consists predominantly of extrinsic musculature with long parallel fascicles, specialised for generating force over a large range. A large shoulder flexor/elbow extensor muscle mass is present, in particular Triceps brachii. The pennate nature of the long head of this muscle suggests it has an important role in stabilising the elbow joint during stance, whilst moment arm curves suggest that it may also play a role in initiating shoulder flexion. In addition, Supraspinatus and Infraspinatus are capable of generating high forces, potentially to stabilise the shoulder joint during the stance phase of locomotion. Supraspinatus may in addition play an important role in forelimb protraction. The Subscapularis muscle was capable of generating surprisingly high forces, suggesting that the hare must be able to withstand/produce high forces during activities that need medio-lateral stability, such as turning. Distally, tendons were relatively short, showing little potential for elastic energy storage when compared with both their pelvic limb counterparts and their equivalents in the horse thoracic limb. Thus, a 'stiffer' thoracic limb may be beneficial in terms of behaving like a strut, simply supporting and deflecting the body during high-speed running. This more distal/less proximal distribution of limb mass is also likely to be important in retaining the manipulative/adaptive/non-locomotor capabilities of the limb.  相似文献   

8.
目的:测量人腕关节主要动力肌腱在腕运动过程中的力臂的大小。方法:运用7只新鲜成人尸体上肢标本,将运动腕关节的肌腱和旋转电压计相连,在腕关节分别从屈曲至伸直,桡偏至尺偏过程中,用计算机同时记录腕动力肌腱滑动距离和腕运动角度,根据腱滑动距离和腕运动角度计算出肌腱平均力臂和力臂变化。结果:桡侧腕长伸肌腱的腕桡偏力臂最大,桡侧腕短伸肌腱的伸腕力臂最大,尺侧腕伸肌腱和腕尺偏力臂最大,而伸腕力臂很小,桡侧、尺  相似文献   

9.
Injury to the energy-storing superficial digital flexor tendon is common in equine athletes and is age-related. Tenocytes in the superficial digital flexor tendon of adult horses appear to have limited ability to respond adaptively to exercise or prevent the accumulation of strain-induced microdamage. It has been suggested that conditioning exercise should be introduced during the growth period, when tenocytes may be more responsive to increased quantities or intensities of mechanical strain. Tenocytes are linked into networks by gap junctions that allow coordination of synthetic activity and facilitate strain-induced collagen synthesis. We hypothesised that there are reductions in cellular expression of the gap junction proteins connexin (Cx) 43 and 32 during maturation and ageing of the superficial digital flexor tendon that do not occur in the non-injury-prone common digital extensor tendon. Cryosections from the superficial digital flexor tendon and common digital extensor tendon of 5 fetuses, 5 foals (1-6 months), 5 young adults (2-7 years) and 5 old horses (18-33 years) were immunofluorescently labelled and quantitative confocal laser microscopy was performed. Expression of Cx43 and Cx32 protein per tenocyte was significantly higher in the fetal group compared with all other age groups in both tendons. The density of tenocytes was found to be highest in immature tissue. Higher levels of cellularity and connexin protein expression in immature tendons are likely to relate to requirements for tissue remodelling and growth. However, if further studies demonstrate that this correlates with greater gap junctional communication efficiency and synthetic responsiveness to mechanical strain in immature compared with adult tendons, it could support the concept of early introduction of controlled exercise as a means of increasing resistance to later injury.  相似文献   

10.
IntroductionMusculoskeletal findings in MPS can progress after enzyme replacement. Our aim was to examine synovial recesses, tendons, retinacula and pulleys using ultrasonography for structural and inflammatory changes.Material and methodsThe wrist, metacarpophalangeal (MCP), proximal and distal interphalangeal (PIP and DIP) joints, the finger flexor tendons and the knee including entheses of quadriceps and patella tendons were assessed clinically.Ultrasonography of the various synovial recesses of the wrist as well as the extensor retinaculum, carpal tunnel, MCP, PIP and DIP joints of the second finger, extensor and flexor tendons, A1-5 pulleys and the knee joint including relevant entheses followed. Significance of differences between patient values and available normative data were assessed using t-tests.ResultsUltrasonography showed significant abnormal intraarticular material in the wrist without a clear distribution to synovial recesses and without effusions. Doppler signals were found in a perisynovial distribution and not intrasynovial as expected in in inflammatory arthritis. Findings were similar in the knee but not the fingers. Flexor and extensor tendons were also mostly normal in their structure but significant thickening of retinaculae and the flexor tendon pulleys was seen (p<0.0001 compared to normal).ConclusionMPS I patients showed intraarticular deposition of abnormal material in the wrist and knee but not in the finger joints where significant thickening of retinaculae/pulleys controlling tendon position was dominant. No ultrasound findings of inflammatory pathology were demonstrated but rather a secondary reaction to abnormal deposition and direct damage of GAG.  相似文献   

11.
The aim of the present study was to detect entheseal abnormalities by means of ultrasonography (US) in patients with psoriasis. We evaluated 24 patients with psoriasis who underwent clinical and ultrasonographic examination of both lower limbs at the calcaneal insertions of the Achilles tendons and at the flexor and extensor tendons of all fingers of the hand. Fourteen patients with psoriatic arthritis were used as controls. US was performed using a real-time scanner (ATL SDI 3000) with a 5-12 MHz linear array transducer. Longitudinal and transverse scans of the talocrural joints, Achilles tendons and both the flexor and extensor tendons of the fingers of both hands were obtained at rest and during active and passive movements. On clinical examination no entheseal site was abnormal, but on US examination 33% of patients showed abnormalities. In particular, six psoriasis patients (25%) who were asymptomatic showed effusion around the extensor tendon of the first digit of the left hand and around the extensor tendon of the third and fourth digits of both hands; two patients (8.3%) showed a hypoechoic nodular formation of the flexor tendon sheath of the left hand. We conclude that entheseal abnormalities not detected at clinical examination were present in 33% of patients with psoriasis who underwent US examination. Therefore, we suggest the routine use of ultrasonography in the early diagnosis and in treatment and follow-up of patients with tendon enthesopathy, since these factors may have implications for therapy.  相似文献   

12.
Ultrasonography was used to measure changes in length of muscle fascicles in relaxed human tibialis anterior and gastrocnemius during passively imposed changes in joint angle. Changes in the length of muscle fascicles were compared to changes in the length of the whole muscle-tendon units calculated from joint angles and anthropometric data. Relaxed muscle fascicles underwent much smaller changes in length than their muscle-tendon units. On average, muscle fascicles in tibialis anterior [saw] 55 ± 13 % (mean ± s.d. ) of the total change in muscle-tendon length. This indicates nearly half of the total change in muscle-tendon length was taken up by stretch of tendon. In gastrocnemius, which has relatively long tendons, only 27 ± 9 % of the total change in muscle-tendon length was transmitted to muscle fascicles. Thus, the tendency for passive movement to be taken up by the tendon was greater for gastrocnemius than tibialis anterior ( P = 0.002). For these muscles, the relatively large changes in tendon length across much of the physiological range of muscle-tendon lengths could not wholly be explained by tendon slackness, changes in fibre pennation, or stretch or contraction history of the muscle. Our data confirm that when joints are moved passively, length changes [seen] by muscle fascicles can be much less than changes in the distance between muscle origin and insertion. This occurs because tendons undergo significant changes in length, even at very low forces.  相似文献   

13.
Tendons exhibit complex viscoelastic behaviors during relaxation and recovery. Recovery is critical to predicting behavior in subsequent loading, yet is not well studied. Our goal is to explore time-dependent recovery of these tendons after loading. As a prerequisite, their strain-dependent viscoelastic behaviors during relaxation were also characterized. The porcine digital flexor tendon was used as a model of tendon behavior. Strain-dependent relaxation was observed in tests at 1, 2, 3, 4, 5, and 6% strain. Recovery behavior of the tendon was examined by performing relaxation tests at 6%, then dropping to a low but nonzero strain level. Results show that the rate of relaxation in tendon is indeed a function of strain. Unlike previously reported tests on the medial collateral ligament (MCL), the relaxation rate of tendons increased with increased levels of strain. This strain-dependent relaxation contrasts with quasilinear viscoelasticity (QLV), which predicts equal time dependence across various strains. Also, the tendons did not recover to predicted levels by nonlinear superposition models or QLV, though they did recover partially. This recovery behavior and behavior during subsequent loadings will then become problematic for both quasilinear and nonlinear models to correctly predict.  相似文献   

14.
Tendons and ligaments play key roles in the musculoskeletal system in both man and animals. Both tissues can undergo traumatic injury, age‐related degeneration and chronic disease, causing discomfort, pain and increased susceptibility to wider degenerative joint disease. To date, tendon and ligament ultrastructural biology is relatively under‐studied in healthy, non‐diseased tissues. This information is essential to understand the pathology of these tissues with regard to function‐related injury and to assist with the future development of tissue‐engineered tendon and ligament structures. This study investigated the morphological, compositional and extracellular matrix protein distribution differences between tendons and ligaments around the non‐diseased canine stifle joint. The morphological, structural characteristics of different regions of the periarticular tendons and ligaments (the intra‐articular anterior cruciate ligament, the extra‐articular medial collateral ligament, the positional long digital extensor tendon and energy‐storing superficial digital flexor tendons) were identified using a novel semi‐objective histological scoring analysis and by determining their biochemical composition. Protein distribution of extracellular matrix collagens, proteoglycans and elastic fibre proteins in anterior cruciate ligament and long digital extensor tendon were also determined using immunostaining techniques. The anterior cruciate ligament was found to have significant morphological differences in comparison with the other three tissues, including less compact collagen architecture, differences in cell nuclei phenotype and increased glycosaminoglycan and elastin content. Intra‐ and interobserver differences of histology scoring resulted in an average score 0.7, indicative of good agreement between observers. Statistically significant differences were also found in the extracellular matrix composition in terms of glycosaminoglycan and elastin content, being more prominent in the anterior cruciate ligament than in the other three tissues. A different distribution of several extracellular matrix proteins was also found between long digital extensor tendon and anterior cruciate ligament, with a significantly increased immunostaining of aggrecan and versican in the anterior cruciate ligament. These findings directly relate to the different functions of tendon and ligament and indicate that the intra‐articular anterior cruciate ligament is subjected to more compressive forces, reflecting an adaptive response to normal or increased loads and resulting in different extracellular matrix composition and arrangement to protect the tissue from damage.  相似文献   

15.
During limb movement and locomotion, animals store elastic energy in the tendons of the feet, legs, and other limbs. In the turkey, much of the force generated by the gastrocnemius muscle during locomotion is stored as elastic energy through deformation of the tendon. During growth and development, the leg tendons in some avians, including turkeys, mineralize and result in an increase in tensile strength and modulus. The purpose of our study was to evaluate the effects of mineralization on elastic energy storage and transmission in turkey tendons. Elastic and viscous stress-strain curves and elastic energy storage behavior were used to compare the behavior of mineralized turkey gastrocnemius tendons and mineralized self-assembled type I collagen fibers. Based on analysis of these two systems, we concluded that a simple mineralized fibrillar collagenous substrate can mimic the behavior of a more complex fibrillar collagenous substrate such as mineralized turkey tendon; however, the exact mechanism of mineralization may be different between the two substrates. Changes in mechanical properties of turkey tendon were consistent with a model in which mineralization appears to increase the effective collagen fibril length by efficiently transferring stress between neighboring collagen fibrils. Mineralization in self-assembled collagen fibers increased elastic energy storage less efficiently as compared with turkey tendon suggesting that the noncollagenous components of mineralizing tissue may act to promote collagen fibril to collagen fibril interactions.  相似文献   

16.
During limb movement and locomotion, animals store elastic energy in the tendons of the feet, legs, and other limbs. In the turkey, much of the force generated by the gastrocnemius muscle during locomotion is stored as elastic energy through deformation of the tendon. During growth and development, the leg tendons in some avians, including turkeys, mineralize and result in an increase in tensile strength and modulus. The purpose of our study was to evaluate the effects of mineralization on elastic energy storage and transmission in turkey tendons.

Elastic and viscous stress-strain curves and elastic energy storage behavior were used to compare the behavior of mineralized turkey gastrocnemius tendons and mineralized self-assembled type I collagen fibers. Based on analysis of these two systems, we concluded that a simple mineralized fibrillar collagenous substrate can mimic the behavior of a more complex fibrillar collagenous substrate such as mineralized turkey tendon; however, the exact mechanism of mineralization may be different between the two substrates. Changes in mechanical properties of turkey tendon were consistent with a model in which mineralization appears to increase the effective collagen fibril length by efficiently transferring stress between neighboring collagen fibrils. Mineralization in self-assembled collagen fibers increased elastic energy storage less efficiently as compared with turkey tendon suggesting that the noncollagenous components of mineralizing tissue may act to promote collagen fibril to collagen fibril interactions.  相似文献   

17.
指背腱膜的功能解剖及临床意义   总被引:12,自引:1,他引:11  
目的:进一步探讨指背腱膜的构成特点及临床意义。方法:在30只成人手标本上,通过模拟手术,对指背腱膜的构成特点进行了应用解剖学观测。结果:指背腱膜的构成复杂,其中的外侧腱束、外侧束、外侧腱和中央束在手指畸形的发生中有着特殊的临床意义。外侧腱束主要形成伸近节指间关节的功能解剖机制;其与外侧束形成的密切纤维联系而具有协同外侧腱的功能;该腱束与屈肌腱鞘有联系又使其具有平衡屈肌和伸肌肌力的作用。中央束在指背腱膜的整体协调、畸形的发生及矫正过程中起着重要的功能。结论:通过对指背腱膜的解剖研究,可用以解释因指屈、伸肌腱平衡被破坏后所形成的畸形,并可进一步探讨畸形的发生机理和解决这些畸形的新术式。  相似文献   

18.
Cyclic and static loading regimes are commonly used to study tenocyte metabolism in vitro and to improve our understanding of exercise-associated tendon pathologies. The aims of our study were to investigate if cyclic and static stress relaxation affected the mechanical properties of tendon fascicles differently, if this effect was reversible after a recovery period, and if the removal of glycosaminoglycans (GAGs) affected sample recovery. Tendon fascicles were dissected frombovine-foot extensors and subjected to 14% cyclic (1 Hz) or static tensile strain for 30 min. Additional fascicles were incubated overnight in buffer with 0.5 U chondroitinase ABC or in buffer alone prior to the static stress-relaxation regime. To assess the effect of different stress-relaxation regimes, a quasi-static test to failure was carried out, either directly post loading or after a 2 h recovery period, and compared with unloaded control fascicles. Both stress-relaxation regimes led to a significant reduction in fascicle failure stress and strain, but this was more pronounced in the cyclically loaded specimens. Removal of GAGs led to more stress relaxation and greater reductions in failure stress after static loading compared to controls. The reduction in mechanical properties was partially reversible in all samples, given a recovery period of 2 h. This has implications for mechanical testing protocols, as a time delay between fatiguing specimens and characterization of mechanical properties will affect the results. GAGs appear to protect tendon fascicles from fatigue effects, possibly by enabling sample hydration.  相似文献   

19.
The healing process of ruptured tendons is suboptimal, taking months to achieve tissue with inferior properties to healthy tendon. Mechanical loading has been shown to positively influence tendon healing. However, high frequency low magnitude (HFLM) loads, which have shown promise in maintaining healthy tendon properties, have not been studied with in vitro injury models. Here, we present and validate an in vitro scratch tendon tissue injury model to investigate effects of HFLM loading on the properties of injured rat tail tendon fascicles (RTTFs). A longitudinal tendon tear was simulated using a needle aseptically to scratch a defined length along individual RTTFs. Tissue viability, biomechanical, and biochemical parameters were investigated before and 7 days after culture . The effects of static, HFLM (20 Hz), and low frequency (1 Hz) cyclic loading or no load were also investigated. Tendon viability was confirmed in damaged RTTFs after 7 days of culture, and the effects of a 0.77 ± 0.06 cm scratch on the mechanical property (tangent modulus) and tissue metabolism in damaged tendons were consistent, showing significant damage severity compared with intact tendons. Damaged tendon fascicles receiving HFLM (20 Hz) loads displayed significantly higher mean tangent modulus than unloaded damaged tendons (212.7 ± 14.94 v 92.7 ± 15.59 MPa), and damaged tendons receiving static loading (117.9 ± 10.65 MPa). HFLM stimulation maintained metabolic activity in 7-day cultured damaged tendons at similar levels to fresh tendons immediately following damage. Only damaged tendons receiving HFLM loads showed significantly higher metabolism than unloaded damaged tendons (relative fluorescence units —7021 ± 635.9 v 3745.1 ± 641.7). These validation data support the use of the custom-made in vitro injury model for investigating the potential of HFLM loading interventions in treating damaged tendons.  相似文献   

20.
There is a lack of clinical and experimental studies of the treatment of incompletely transected tendons. The controversy concerning the source of flexor tendon nutrients is of important clinical concern in healing of the injured tendon; thus, the flexor tendon blood supply has cited as a reason for using specific tendon suture techniques, and as a rationale for preserving the superficialis tendon and its vincula during tendon repair surgery. Our knowledge of the normal physiology of digital flexor tendons and the mechanism of their healing process is deficient. The aim of this study was to investigate the relative importance of the synovial fluid and the blood supply respectively for the healing of partially severed flexor tendons. We observed the sequential histological and vascular changes which occur in healing of the partial lacerations in the dorsal and plantar aspects of the tendons. We observed the vascularities of the two partially severed tendon groups after injection of microfil and india ink through the femoral artery. In the healing process there was no sequential histological difference between the dorsal and the plantar severed tendons. The vascularity patterns of the healing tendons were significantly increased and the hypervascularity of dorsal severed tendons was greater than that of plantar severed tendons. Partially severed tendons were completely healed without surgical repair with dense collagen fibers without adhesion in most cases. We concluded from this study that the blood vessels appeared to play a significant role in the healing of the severed flexor tendons. An intact synovial environment did not seem to be required for healing of the severed tendon. It is not necessary to surgically repair the partially severed tendon for prevention of rupture and adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号