首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

Fish consumption is considered the primary pathway of methylmercury (MeHg) exposure for most people in the world. However, in the inland regions of China, most of the residents eat little fish, but they live in areas where a significant amount of mercury (Hg) is present in the environment.

Objectives

We assessed concentrations of total Hg and MeHg in samples of water, air, agricultural products, and other exposure media to determine the main exposure pathway of Hg in populations in inland China.

Methods

We selected Guizhou Province for our study because it is highly contaminated with Hg and therefore is representative of other Hg-contaminated areas in China. We selected four study locations in Guizhou Province: three that represent typical environments with severe Hg pollution [due to Hg mining and smelting (Wanshan), traditional zinc smelting (recently closed; Weining), and heavy coal-based industry (Qingzhen)], and a village in a remote nature reserve (Leigong).

Results

The probable daily intake (PDI) of MeHg for an adult population based on 60 kg body weight (bw) was considerably higher in Wanshan than in the other three locations. With an average PDI of 0.096 μg/kg bw/day (range, 0.015–0.45 μg/kg bw/day), approximately 34% of the inhabitants in Wanshan exceeded the reference dose of 0.1 μg/kg bw/day established by the U.S. Environmental Protection Agency. The PDI of MeHg for residents in the three other locations were all well below 0.1 μg/kg bw/day (averages from 0.017 to 0.023 μg/kg bw/day, with a maximum of 0.095 μg/kg bw/day). In all four areas, rice consumption accounted for 94–96% of the PDI of MeHg.

Conclusion

We found that rice consumption is by far the most important MeHg exposure route; however, most of the residents (except those in Hg-mining areas) have low PDIs of MeHg.  相似文献   

3.

Background

Increasing evidence suggests that high selenium levels are associated with diabetes and other cardiometabolic risk factors.

Objectives

We evaluated the association of serum selenium concentrations with fasting plasma glucose, glycosylated hemoglobin levels, and diabetes in the most recently available representative sample of the U.S. population.

Methods

We used a cross-sectional analysis of 917 adults ≥ 40 years of age who had a fasting morning blood sample in the National Health and Nutrition Examination Survey 2003–2004. We evaluated the association of serum selenium, measured by inductively coupled plasma-dynamic reaction cell-mass spectrometry, and diabetes, defined as a self-report of current use of hypoglycemic agents or insulin or as fasting plasma glucose ≥ 126 mg/dL.

Results

Mean serum selenium was 137.1 μg/L. The multivariable adjusted odds ratio [95% confidence interval (CI)] for diabetes comparing the highest quartile of serum selenium (≥ 147 μg/L) with the lowest (< 124 μg/L) was 7.64 (3.34–17.46). The corresponding average differences (95% CI) in fasting plasma glucose and glycosylated hemoglobin were 9.5 mg/dL (3.4–15.6 mg/dL) and 0.30% (0.14–0.46%), respectively. In spline regression models, the prevalence of diabetes as well as glucose and glycosylated hemoglobin levels increased with increasing selenium concentrations up to 160 μg/L.

Conclusions

In U.S. adults, high serum selenium concentrations were associated with higher prevalence of diabetes and higher fasting plasma glucose and glycosylated hemoglobin levels. Given high selenium intake in the U.S. population, further research is needed to determine the role of excess selenium levels in the development or the progression of diabetes.  相似文献   

4.
5.

Background

High-molecular-weight phthalates, such as diisononyl phthalate (DINP) and diisodecyl phthalate (DIDP), are used primarily as polyvinyl chloride plasticizers.

Objectives

We assessed exposure to DINP and DIDP in a representative sample of persons ≥ 6 years of age in the U.S. general population from the 2005–2006 National Health and Nutrition Examination Survey (NHANES).

Methods

We analyzed 2,548 urine samples by using online solid-phase extraction coupled to isotope dilution high-performance liquid chromatography–tandem mass spectrometry.

Results

We detected monocarboxyisooctyl phthalate (MCOP), a metabolite of DINP, and monocarboxyisononyl phthalate (MCNP), a metabolite of DIDP, in 95.2% and 89.9% of the samples, respectively. We detected monoisononyl phthalate (MNP), a minor metabolite of DINP, much less frequently (12.9%) and at concentration ranges (> 0.8 μg/L–148.1 μg/L) much lower than MCOP (> 0.7 μg/L– 4,961 μg/L). Adjusted geometric mean concentrations of MCOP and MCNP were significantly higher (p < 0.01) among children than among adolescents and adults.

Conclusions

The general U.S. population, including children, was exposed to DINP and DIDP. In previous NHANES cycles, the occurrence of human exposure to DINP by using MNP as the sole urinary biomarker has been underestimated, thus illustrating the importance of selecting the most adequate biomarkers for exposure assessment.  相似文献   

6.

Background

Arsenic exposure in drinking water disproportionately affects small communities in some U.S. regions, including American Indian communities. In U.S. adults with no seafood intake, median total urine arsenic is 3.4 μg/L.

Objective

We evaluated arsenic exposure and excretion patterns using urine samples collected over 10 years in a random sample of American Indians from Arizona, Oklahoma, and North and South Dakota who participated in a cohort study from 1989 to 1999.

Methods

We measured total urine arsenic and arsenic species [inorganic arsenic (arsenite and arsenate), methylarsonate (MA), dimethylarsinate (DMA), and arsenobetaine] concentrations in 60 participants (three urine samples each, for a total of 180 urine samples) using inductively coupled plasma/mass spectrometry (ICPMS) and high-performance liquid chromatography/ICPMS, respectively.

Results

Median (10th, 90th percentiles) urine concentration for the sum of inorganic arsenic, MA, and DMA at baseline was 7.2 (3.1, 16.9) μg/g creatinine; the median was higher in Arizona (12.5 μg/g), intermediate in the Dakotas (9.1 μg/g), and lower in Oklahoma (4.4 μg/g). The mean percentage distribution of arsenic species over the sum of inorganic and methylated species was 10.6% for inorganic arsenic, 18.4% for MA, and 70.9% for DMA. The intraclass correlation coefficient for three repeated arsenic measurements over a 10-year period was 0.80 for the sum of inorganic and methylated species and 0.64, 0.80, and 0.77 for percent inorganic arsenic, percent MA, and percent DMA, respectively.

Conclusions

This study found low to moderate inorganic arsenic exposure and confirmed long-term constancy in arsenic exposure and urine excretion patterns in American Indians from three U.S. regions over a 10-year period. Our findings support the feasibility of analyzing arsenic species in large population-based studies with stored urine samples.  相似文献   

7.

Background

Little is known about the carcinogenic potential of arsenic in areas with low to moderate concentrations of arsenic (< 100 μg/L) in drinking water.

Objectives

We examined associations between arsenic and lung cancer.

Methods

A population-based case–control study of primary incident lung cancer was conducted in 10 counties in two U.S. states, New Hampshire and Vermont. The study included 223 lung cancer cases and 238 controls, each of whom provided toenail clippings for arsenic exposure measurement by inductively coupled–plasma mass spectrometry. We estimated odds ratios (ORs) of the association between arsenic exposure and lung cancer using unconditional logistic regression with adjustment for potential confounders (age, sex, race/ethnicity, smoking pack-years, education, body mass index, fish servings per week, and toenail selenium level).

Results

Arsenic exposure was associated with small-cell and squamous-cell carcinoma of the lung [OR = 2.75; 95% confidence interval (CI), 1.00–7.57] for toenail arsenic concentration ≥ 0.114 μg/g, versus < 0.05 μg/g. A history of lung disease (bronchitis, chronic obstructive pulmonary disease, or fibrosis) was positively associated with lung cancer (OR = 2.86; 95% CI, 1.39–5.91). We also observed an elevated risk of lung cancer among participants with a history of lung disease and toenail arsenic ≥ 0.05 μg/g (OR = 4.78; 95% CI, 1.87–12.2) than among individuals with low toenail arsenic and no history of lung disease.

Conclusion

Although this study supports the possibility of an increased risk of specific lung cancer histologic types at lower levels of arsenic exposure, we recommend large-scale population-based studies.  相似文献   

8.

Background

Ambient coarse, fine, and ultrafine particles have been associated with mortality and morbidity. Few studies have compared how various particle size fractions affect systemic biomarkers.

Objectives

We examined changes of blood and urinary biomarkers following exposures to three particle sizes.

Methods

Fifty healthy nonsmoking volunteers, mean age of 28 years, were exposed to coarse (2.5–10 μm; mean, 213 μg/m3) and fine (0.15–2.5 μm; mean, 238 μg/m3) concentrated ambient particles (CAPs), and filtered ambient and/or medical air. Twenty-five participants were exposed to ultrafine CAP (< 0.3 μm; mean, 136 μg/m3) and filtered medical air. Exposures lasted 130 min, separated by ≥ 2 weeks. Blood/urine samples were collected preexposure and 1 hr and 21 hr postexposure to determine blood interleukin-6 and C-reactive protein (inflammation), endothelin-1 and vascular endothelial growth factor (VEGF; vascular mediators), and malondialdehyde (lipid peroxidation); as well as urinary VEGF, 8-hydroxy-deoxy-guanosine (DNA oxidation), and malondialdehyde. Mixed-model regressions assessed pre- and postexposure differences.

Results

One hour postexposure, for every 100-μg/m3 increase, coarse CAP was associated with increased blood VEGF (2.41 pg/mL; 95% CI: 0.41, 4.40) in models adjusted for O3, fine CAP with increased urinary malondialdehyde in single- (0.31 nmol/mg creatinine; 95% CI: 0.02, 0.60) and two-pollutant models, and ultrafine CAP with increased urinary 8-hydroxydeoxyguanosine in single- (0.69 ng/mg creatinine; 95% CI: 0.09, 1.29) and two-pollutant models, lasting < 21 hr. Endotoxin was significantly associated with biomarker changes similar to those found with CAPs.

Conclusions

Ambient particles with various sizes/constituents may influence systemic biomarkers differently. Endotoxin in ambient particles may contribute to vascular mediator changes and oxidative stress.

Citation

Liu L, Urch B, Poon R, Szyszkowicz M, Speck M, Gold DR, Wheeler AJ, Scott JA, Brook JR, Thorne PS, Silverman FS. 2015. Effects of ambient coarse, fine, and ultrafine particles and their biological constituents on systemic biomarkers: a controlled human exposure study. Environ Health Perspect 123:534–540; http://dx.doi.org/10.1289/ehp.1408387  相似文献   

9.

Background

Determining arsenic exposure in groups based on geographic location, dietary behaviors, or lifestyles is important, as even moderate exposures may lead to health concerns.

Objectives/Methods

The Korean community in Washington State, represents a group warranting investigation, as they consume foods (e.g., shellfish, rice, finfish, and seaweed) known to contain arsenic. As part of the Arsenic Mercury Intake Biometric Study, we examined the arsenic levels in hair and urine along with the diets of 108 women of childbearing age from within this community. Arsenic levels in indoor air and drinking water were also investigated, and shellfish commonly consumed were collected and analyzed for total and speciated arsenic.

Results

The six shellfish species analyzed (n = 667) contain total arsenic (range, 1–5 μg/g) but are a small source of inorganic arsenic (range, 0.01–0.12 μg/g). Six percent of the individuals may have elevated urinary inorganic arsenic levels (> 10 μg/L) due to diet. Seaweed, rice, shellfish, and finfish are principal sources for total arsenic intake/excretion based on mass balance estimates. Rice consumption (163 g/person/day) may be a significant source of inorganic arsenic. Air and water are not significant sources of exposure. Hair is a poor biometric for examining arsenic levels at low to moderate exposures.

Conclusions

We conclude that a portion of this community may have dietary inorganic arsenic exposure resulting in urine levels exceeding 10 μg/L. Although their exposure is below that associated with populations exposed to high levels of arsenic from drinking water (> 100 μg/L), their exposure may be among the highest in the United States.  相似文献   

10.

Background

The relationship of fine particulate matter < 2.5 μm in diameter (PM2.5) air pollution with mortality and cardiovascular disease is well established, with more recent long-term studies reporting larger effect sizes than earlier long-term studies. Some studies have suggested the coarse fraction, particles between 2.5 and 10 μm (PM10–2.5), may also be important. With respect to mortality and cardiovascular events, questions remain regarding the relative strength of effect sizes for chronic exposure to fine and coarse particles.

Objectives

We examined the relationship of chronic PM2.5 and PM10–2.5 exposures with all-cause mortality and fatal and nonfatal incident coronary heart disease (CHD), adjusting for time-varying covariates.

Methods

The current study included women from the Nurses’ Health Study living in metropolitan areas of the northeastern and midwestern United States. Follow-up was from 1992 to 2002. We used geographic information systems–based spatial smoothing models to estimate monthly exposures at each participant’s residence.

Results

We found increased risk of all-cause mortality [hazard ratio (HR), 1.26; 95% confidence interval (CI), 1.02–1.54] and fatal CHD (HR = 2.02; 95% CI, 1.07–3.78) associated with each 10-μg/m3 increase in annual PM2.5 exposure. The association between fatal CHD and PM10–2.5 was weaker.

Conclusions

Our findings contribute to growing evidence that chronic PM2.5 exposure is associated with risk of all-cause and cardiovascular mortality.  相似文献   

11.

Background

Previous studies have reported increased risk of myocardial infarction (MI) after increases in ambient particulate matter (PM) air pollution concentrations in the hours and days before MI onset.

Objectives

We hypothesized that acute increases in fine PM with aerodynamic diameter ≤ 2.5 μm (PM2.5) may be associated with increased risk of MI and that chronic obstructive pulmonary disease (COPD) and diabetes may increase susceptibility to PM2.5. We also explored whether both transmural and nontransmural infarctions were acutely associated with ambient PM2.5 concentrations.

Methods

We studied all hospital admissions from 2004 through 2006 for first acute MI of adult residents of New Jersey who lived within 10 km of a PM2.5 monitoring site (n = 5,864), as well as ambient measurements of PM2.5, nitrogen dioxide, sulfur dioxide, carbon monoxide, and ozone.

Results

Using a time-stratified case-crossover design and conditional logistic regression showed that each interquartile-range increase in PM2.5 concentration (10.8 μg/m3) in the 24 hr before arriving at the emergency department for MI was not associated with an increased risk of MI overall but was associated with an increased risk of a transmural infarction. We found no association between the same increase in PM2.5 and risk of a nontransmural infarction. Further, subjects with COPD appeared to be particularly susceptible, but those with diabetes were not.

Conclusions

This PM–transmural infarction association is consistent with earlier studies of PM and MI. The lack of association with nontransmural infarction suggests that future studies that investigate the triggering of MI by ambient PM2.5 concentrations should be stratified by infarction type.  相似文献   

12.

Background

High concentrations of lithium in drinking water were previously discovered in the Argentinean Andes Mountains. Lithium is used worldwide for treatment of bipolar disorder and treatment-resistant depression. One known side effect is altered thyroid function.

Objectives

We assessed associations between exposure to lithium from drinking water and other environmental sources and thyroid function.

Methods

Women (n = 202) were recruited in four Andean villages in northern Argentina. Lithium exposure was assessed based on concentrations in spot urine samples, measured by inductively coupled plasma mass spectrometry. Thyroid function was evaluated by plasma free thyroxine (T4) and pituitary gland thyroid-stimulating hormone (TSH), analyzed by routine immunometric methods.

Results

The median urinary lithium concentration was 3,910 μg/L (5th, 95th percentiles, 270 μg/L, 10,400 μg/L). Median plasma concentrations (5th, 95th percentiles) of T4 and TSH were 17 pmol/L (13 pmol/L, 21 pmol/L) and 1.9 mIU/L, (0.68 mIU/L, 4.9 mIU/L), respectively. Urine lithium was inversely associated with T4 [β for a 1,000-μg/L increase = −0.19; 95% confidence interval (CI), −0.31 to −0.068; p = 0.002] and positively associated with TSH (β = 0.096; 95% CI, 0.033 to 0.16; p = 0.003). Both associations persisted after adjustment (for T4, β = −0.17; 95% CI, −0.32 to −0.015; p = 0.032; for TSH: β = 0.089; 95% CI, 0.024 to 0.15; p = 0.007). Urine selenium was positively associated with T4 (adjusted T4 for a 1 μg/L increase: β = 0.041; 95% CI, 0.012 to 0.071; p = 0.006).

Conclusions

Exposure to lithium via drinking water and other environmental sources may affect thyroid function, consistent with known side effects of medical treatment with lithium. This stresses the need to screen for lithium in all drinking water sources.  相似文献   

13.

Background

Epidemiologic and health impact studies of fine particulate matter with diameter < 2.5 μm (PM2.5) are limited by the lack of monitoring data, especially in developing countries. Satellite observations offer valuable global information about PM2.5 concentrations.

Objective

In this study, we developed a technique for estimating surface PM2.5 concentrations from satellite observations.

Methods

We mapped global ground-level PM2.5 concentrations using total column aerosol optical depth (AOD) from the MODIS (Moderate Resolution Imaging Spectroradiometer) and MISR (Multiangle Imaging Spectroradiometer) satellite instruments and coincident aerosol vertical profiles from the GEOS-Chem global chemical transport model.

Results

We determined that global estimates of long-term average (1 January 2001 to 31 December 2006) PM2.5 concentrations at approximately 10 km × 10 km resolution indicate a global population-weighted geometric mean PM2.5 concentration of 20 μg/m3. The World Health Organization Air Quality PM2.5 Interim Target-1 (35 μg/m3 annual average) is exceeded over central and eastern Asia for 38% and for 50% of the population, respectively. Annual mean PM2.5 concentrations exceed 80 μg/m3 over eastern China. Our evaluation of the satellite-derived estimate with ground-based in situ measurements indicates significant spatial agreement with North American measurements (r = 0.77; slope = 1.07; n = 1057) and with noncoincident measurements elsewhere (r = 0.83; slope = 0.86; n = 244). The 1 SD of uncertainty in the satellite-derived PM2.5 is 25%, which is inferred from the AOD retrieval and from aerosol vertical profile errors and sampling. The global population-weighted mean uncertainty is 6.7 μg/m3.

Conclusions

Satellite-derived total-column AOD, when combined with a chemical transport model, provides estimates of global long-term average PM2.5 concentrations.  相似文献   

14.

Background

Past studies reported evidence of associations between air pollution and respiratory symptoms and morbidity for children. Few studies examined associations between air pollution and emergency room (ER) visits for wheezing, and even fewer for gastroenteric illness. We conducted a multicity analysis of the relationship between air pollution and ER visits for wheezing and gastroenteric disorder in children 0–2 years of age.

Methods

We obtained ER visit records for wheezing and gastroenteric disorder from six Italian cities. A city-specific case–crossover analysis was applied to estimate effects of particulate matter (PM), nitrogen dioxide, sulfur dioxide, ozone, and carbon monoxide, adjusting for immediate and delayed effects of temperature. Lagged effects of air pollutants up to 6 prior days were examined. The city-specific results were combined using a random-effect meta-analysis.

Results

CO and SO2 were most strongly associated with wheezing, with a 2.7% increase [95% confidence interval (CI), 0.5–4.9] for a 1.04-μg/m3 increase in 7-day average CO and a 3.4% (95% CI, 1.5–5.3) increase for an 8.0-μg/m3 increase in SO2. Positive associations were also found for PM with aerodynamic diameter ≤ 10 μg and NO2. We found a significant association between the 3-day moving average CO and gastroenteric disorders [3.8% increase (95% CI, 1.0–6.8)]. When data were stratified by season, the associations were stronger in summer for wheezing and in winter for gastroenteric disorders.

Conclusion

Air pollution is associated with triggering of wheezing and gastroenteric disorders in children 0–2 years of age; more work is needed to understand the mechanisms to help prevent wheezing in children.  相似文献   

15.

Background

Both short- and long-term exposures to fine particulate matter (≤ 2.5 μm; PM2.5) are associated with mortality. However, whether the associations exist at levels below the new U.S. Environmental Protection Agency (EPA) standards (12 μg/m3 of annual average PM2.5, 35 μg/m3 daily) is unclear. In addition, it is not clear whether results from previous time series studies (fit in larger cities) and cohort studies (fit in convenience samples) are generalizable.

Objectives

We estimated the effects of low-concentration PM2.5 on mortality.

Methods

High resolution (1 km × 1 km) daily PM2.5 predictions, derived from satellite aerosol optical depth retrievals, were used. Poisson regressions were applied to a Medicare population (≥ 65 years of age) in New England to simultaneously estimate the acute and chronic effects of exposure to PM2.5, with mutual adjustment for short- and long-term exposure, as well as for area-based confounders. Models were also restricted to annual concentrations < 10 μg/m3 or daily concentrations < 30 μg/m3.

Results

PM2.5 was associated with increased mortality. In the study cohort, 2.14% (95% CI: 1.38, 2.89%) and 7.52% (95% CI: 1.95, 13.40%) increases were estimated for each 10-μg/m3 increase in short- (2 day) and long-term (1 year) exposure, respectively. The associations held for analyses restricted to low-concentration PM2.5 exposure, and the corresponding estimates were 2.14% (95% CI: 1.34, 2.95%) and 9.28% (95% CI: 0.76, 18.52%). Penalized spline models of long-term exposure indicated a larger effect for mortality in association with exposures ≥ 6 μg/m3 versus those < 6 μg/m3. In contrast, the association between short-term exposure and mortality appeared to be linear across the entire exposure distribution.

Conclusions

Using a mutually adjusted model, we estimated significant acute and chronic effects of PM2.5 exposure below the current U.S. EPA standards. These findings suggest that improving air quality with even lower PM2.5 than currently allowed by U.S. EPA standards may benefit public health.

Citation

Shi L, Zanobetti A, Kloog I, Coull BA, Koutrakis P, Melly SJ, Schwartz JD. 2016. Low-concentration PM2.5 and mortality: estimating acute and chronic effects in a population-based study. Environ Health Perspect 124:46–52; http://dx.doi.org/10.1289/ehp.1409111  相似文献   

16.

Background

Fundamental considerations indicate that, for certain phthalate esters, dermal absorption from air is an uptake pathway that is comparable to or greater than inhalation. Yet this pathway has not been experimentally evaluated and has been largely overlooked when assessing uptake of phthalate esters.

Objectives

This study investigated transdermal uptake, directly from air, of diethyl phthalate (DEP) and di(n-butyl) phthalate (DnBP) in humans.

Methods

In a series of experiments, six human participants were exposed for 6 hr in a chamber containing deliberately elevated air concentrations of DEP and DnBP. The participants either wore a hood and breathed air with phthalate concentrations substantially below those in the chamber or did not wear a hood and breathed chamber air. All urinations were collected from initiation of exposure until 54 hr later. Metabolites of DEP and DnBP were measured in these samples and extrapolated to parent phthalate intakes, corrected for background and hood air exposures.

Results

For DEP, the median dermal uptake directly from air was 4.0 μg/(μg/m3 in air) compared with an inhalation intake of 3.8 μg/(μg/m3 in air). For DnBP, the median dermal uptake from air was 3.1 μg/(μg/m3 in air) compared with an inhalation intake of 3.9 μg/(μg/m3 in air).

Conclusions

This study shows that dermal uptake directly from air can be a meaningful exposure pathway for DEP and DnBP. For other semivolatile organic compounds (SVOCs) whose molecular weight and lipid/air partition coefficient are in the appropriate range, direct absorption from air is also anticipated to be significant.

Citation

Weschler CJ, Bekö G, Koch HM, Salthammer T, Schripp T, Toftum J, Clausen G. 2015. Transdermal uptake of diethyl phthalate and di(n-butyl) phthalate directly from air: experimental verification. Environ Health Perspect 123:928–934; http://dx.doi.org/10.1289/ehp.1409151  相似文献   

17.

Background

Proximity to traffic-related pollution has been associated with poor respiratory health in adults and children.

Objectives

We wished to test the hypothesis that particulate matter (PM) from high-traffic sites would display an enhanced capacity to elicit inflammation.

Methods

We examined the inflammatory potential of coarse [2.5–10 μm in aerodynamic diameter (PM2.5–10)] and fine [0.1–2.5 μm in aerodynamic diameter (PM0.1–2.5)] PM collected from nine sites throughout Europe with contrasting traffic contributions. We incubated murine monocytic-macrophagic RAW264.7 cells with PM samples from these sites (20 or 60 μg/cm2) and quantified their capacity to stimulate the release of arachidonic acid (AA) or the production of interleukin-6 and tumor necrosis factor-α (TNFα) as measures of their inflammatory potential. Responses were then related to PM composition: metals, hydrocarbons, anions/cations, and endotoxin content.

Results

Inflammatory responses to ambient PM varied markedly on an equal mass basis, with PM2.5–10 displaying the largest signals and contrasts among sites. Notably, we found no evidence of enhanced inflammatory potential at high-traffic sites and observed some of the largest responses at sites distant from traffic. Correlation analyses indicated that much of the sample-to-sample contrast in the proinflammatory response was related to the content of endotoxin and transition metals (especially iron and copper) in PM2.5–10. Use of the metal chelator diethylene triamine pentaacetic acid inhibited AA release, whereas recombinant endotoxin-neutralizing protein partially inhibited TNFα production, demonstrating that different PM components triggered inflammatory responses through separate pathways.

Conclusions

We found no evidence that PM collected from sites in close proximity to traffic sources displayed enhanced proinflammatory activity in RAW264.7 cells.  相似文献   

18.

Background

In late 2006, the seaside community in Esperance, Western Australia, was alerted to thousands of native bird species dying. The source of the lead was thought to derive from the handling of Pb carbonate concentrate from the Magellan mine through the port of Esperance, begun in July 2005. Concern was expressed for the impact of this process on the community.

Objective

This study was designed to evaluate the source of Pb in blood of a random sample of the community using Pb isotope ratios.

Methods

The cohort comprised 49 children (48 < 5 years of age) along with 18 adults (> 20 years of age) with a bias toward higher blood lead (PbB) values to facilitate source identification.

Results

Mean PbB level of the children was 7.5 μg/dL (range, 1.5–25.7 μg/dL; n = 49; geometric mean, 6.6 μg/dL), with four children whose PbB was > 12 μg/dL. The isotopic data for blood samples lay around two distinct arrays. The blood of all children analyzed for Pb isotopes contained a contribution of Pb from the Magellan mine, which for young children ranged from 27% up to 93% (mean, 64%; median, 71%). Subtraction of the ore component gave a mean background PbB of 2.3 μg/dL. Several children whose PbB was > 9 μg/dL and most of the older subjects have complex sources of Pb.

Conclusions

The death of the birds acted as a sentinel event; otherwise, the exposure of the community, arising from such a toxic form of Pb, could have been tragic. Isotopic data and mineralogic and particle size analyses indicate that, apart from the recognized pathway of Pb exposure by hand-to-mouth activity in children, the inhalation pathway could have been a significant contributor to PbB for some of the very young children and in some parents.  相似文献   

19.

Background

Limited epidemiologic studies have examined the association between maternal low-level lead exposure [blood lead (PbB) < 10 μg/dL] and fetal growth.

Objective

We examined whether maternal low-level lead exposure is associated with decreased fetal growth.

Methods

We linked New York State Heavy Metals Registry records of women who had PbB measurements with birth certificates to identify 43,288 mother–infant pairs in upstate New York in a retrospective cohort study from 2003 through 2005. We used multiple linear regression with fractional polynomials and logistic regression to relate birth weight, preterm delivery, and small for gestational age to PbB levels, adjusting for potential confounders. We used a closed-test procedure to identify the best fractional polynomials for PbB among 44 combinations.

Results

We found a statistically significant association between PbB (square root transformed) and birth weight. Relative to 0 μg/dL, PbBs of 5 and 10 μg/dL were associated with an average of 61-g and 87-g decrease in birth weight, respectively. The adjusted odds ratio for PbBs between 3.1 and 9.9 μg/dL (highest quartile) was 1.04 [95% confidence interval (CI), 0.89–1.22] for preterm delivery and 1.07 (95% CI, 0.93–1.23) for small for gestational age, relative to PbBs ≤ 1 μg/dL (lowest quartile). No clear dose–response trends were evident when all of the quartiles were assessed.

Conclusions

Low-level PbB was associated with a small risk of decreased birth weight with a supralinear dose–response relationship, but was not related to preterm birth or small for gestational age. The results have important implications regarding maternal PbB.  相似文献   

20.

Background

Although studies have demonstrated that air pollution is associated with exacerbation of asthma symptoms in children with asthma, little is known about the susceptibility of subgroups, particularly those with atopy.

Objective

This study was designed to evaluate our a priori hypothesis that identifiable subgroups of asthmatic children are more likely to wheeze with exposure to ambient air pollution.

Methods

A cohort of 315 children with asthma, 6–11 years of age, was recruited for longitudinal follow-up in Fresno, California (USA). During the baseline visit, children were administered a respiratory symptom questionnaire and allergen skin-prick test. Three times a year, participants completed 14-day panels during which they answered symptom questions twice daily. Ambient air quality data from a central monitoring station were used to assign exposures to the following pollutants: particulate matter ≤ 2.5 μm in aerodynamic diameter, particulate matter between 2.5 and 10 μm in aerodynamic diameter (PM10–2.5), elemental carbon, nitrogen dioxide (NO2), nitrate, and O3.

Results

For the group as a whole, wheeze was significantly associated with short-term exposures to NO2 [odds ratio (OR) = 1.10 for 8.7-ppb increase; 95% confidence interval (CI), 1.02–1.20] and PM10–2.5 (OR = 1.11 for 14.7-μg/m3 increase; 95% CI, 1.01–1.22). The association with wheeze was stronger for these two pollutants in children who were skin-test positive to cat or common fungi and in boys with mild intermittent asthma.

Conclusion

A pollutant associated with traffic emissions, NO2, and a pollutant with bioactive constituents, PM10–2.5, were associated with increased risk of wheeze in asthmatic children living in Fresno, California. Children with atopy to cat or common fungi and boys with mild intermittent asthma were the subgroups for which we observed the largest associations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号