首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We sought to determine if the velocity of an acute bout of eccentric contractions influenced the duration and severity of several common indirect markers of muscle damage. Subjects performed 36 maximal fast (FST, n = 8: 3.14 rad x s(-1)) or slow (SLW, n = 7: 0.52 rad x s(-1)) velocity isokinetic eccentric contractions with the elbow flexors of the non-dominant arm. Muscle soreness, limb girth, plasma creatine kinase (CK) activity, isometric torque and concentric and eccentric torque at 0.52 and 3.14 rad x s(-1) were assessed prior to and for several days following the eccentric bout. Peak plasma CK activity was similar in SLW (4030 +/- 1029 U x 1(-1)) and FST (5864 +/- 2664 U x 1(-1)) groups, (p > 0.05). Both groups experienced similar decrement in all strength variables during the 48 hr following the eccentric bout. However, recovery occurred more rapidly in the FST group during eccentric (0.52 and 3.14 rad x s(-1)) and concentric (3.14 rad x s(-1)) post-testing. The severity of muscle soreness was similar in both groups. However, the FST group experienced peak muscle soreness 48 hr later than the SLW group (24 hr vs. 72 hr). The SLW group experienced a greater increase in upper arm girth than the FST group 20 min, 24 hr and 96 hr following the eccentric exercise bout. The contraction velocity of an acute bout of eccentric exercise differentially influences the magnitude and time course of several indirect markers of muscle damage.  相似文献   

2.
PURPOSE: The present study was designed to determine to what extent muscle damage induced by repetitive eccentric exercise with maximal voluntary effort (ECC) affects the time course of central and peripheral fatigue during sustained maximal voluntary contraction (MVC). METHODS: Ten healthy male volunteers were asked to perform brief (control MVC) and sustained MVC (fatigue test of 60 s in duration) with elbow flexion before and 2 and 4 d after ECC. Transcranial magnetic stimulation (TMS) was applied to the motor cortex to determine changes in voluntary activation (VA), the size of the motor evoked potential (MEP), and length of electromyographic (EMG) silencing. The ratio of the root mean square value for the surface EMG of the biceps brachii and exerted force within 50 ms before TMS was also calculated (RMS/F). RESULTS: In two subjects, no significant changes in MVC and muscle soreness were seen after ECC so that their data was excluded from further analysis. Control MVC and muscle soreness was significantly decreased and increased, respectively, 2 and 4 d after ECC compared with that before ECC (P < 0.001). During the fatigue test, VA, which was determined by a phasic increase in the twitch force after TMS, significantly decreased 2 and 4 d after ECC compared with that beforehand (P < 0.01). In addition, the RMS/F was significantly increased 2 and 4 d after ECC (P < 0.001). Although the degree of facilitation of the MEP was significantly increased (P < 0.05), the length of EMG silencing was less affected by ECC. CONCLUSIONS: Muscle damage and/or muscle soreness induced by repetitive eccentric exercise with maximal effort may be a strong modifier of central and peripheral fatigue during sustained MVC.  相似文献   

3.
BACKGROUND: Exercise induced muscle damage (EIMD) from strenuous unaccustomed eccentric exercise is well documented. So too is the observation that a prior bout of eccentric exercise reduces the severity of symptoms of EIMD. This has been attributed to an increase in sarcomeres in series. Recent studies have suggested that prior concentric training increases the susceptibility of muscle to EIMD following eccentric exercise. This has been attributed to a reduction of sarcomeres in series, which decreases muscle compliance and changes the length-tension relation of muscle contraction. OBJECTIVE: To assess the effects of prior concentric training on the severity of EIMD. METHODS: Four men and four women (mean (SD) age 21.1 (0.8) years) followed a four week concentric training programme. The elbow flexor musculature of the non-dominant arm was trained at 60% of one repetition maximum dynamic concentric strength performance, three times a week, increasing to 70% by week 3. After three days of rest, participants performed 50 maximal isokinetic eccentric contractions on both arms. All participants gave written informed consent before taking part in this study, which was approved by the school ethics committee. Strength, relaxed arm angle (RAA), arm circumference, and soreness on active extension and flexion were recorded immediately before eccentric exercise, one hour after, and at 24 hour intervals for three days. Data were analysed with fully repeated measures analyses of variance. RESULTS: Strength retention was significantly (p<0.01) greater in the control arm than the trained arm (84.0 (13.7)%, 90.4 (14.7)%, 95.2 (10.5)%, 103.5 (7.6)% v 75.5 (11.3)%, 77.6 (15.3)%, 80.1 (13.9)%, 80.9 (12.5)%) at one, 24, 48, and 72 hours respectively. Similarly, soreness was greater in the trained arm (0.7 (0.6), 3.1 (1.4), 3.0 (1.5), 1.9 (2.3)) than in the untrained arm (0 (0.2), 1.6 (1.3), 1.4 (0.6), 0.6 (0.4)) at one, 24, 48, and 72 hours respectively (p<0.05). Concentric training induced a significant reduction in RAA (165.2 (6.7) degrees v 157.3 (4.9) degrees ) before the eccentric exercise bout (p<0.01). This was further reduced and remained lower in the trained arm at all time points after the eccentric exercise (p<0.01). The arm circumference of the concentrically trained arm was significantly greater than baseline (p<0.05) at 72 hours (30.3 (2.9) v 29.8 (3.3) cm). CONCLUSIONS: These findings extend the understanding of the effects of prior concentric training in increasing the severity of EIMD to an upper limb exercise model. The inclusion of concentric conditioning in rehabilitation programmes tends to exacerbate the severity of EIMD in subsequent unaccustomed exercise. However, where concentric conditioning is indicated clinically, the net effect of conditioning outcome and EIMD may still confer enhanced strength performance and capability to dynamically stabilise a joint system.  相似文献   

4.
5.
To examine the effects of eccentric exercise (EE) and ischemia/reperfusion (I/R) on the markers of muscle damage, 72 rats were randomly assigned to the EE group, I/R group and control group (C), respectively. The rats in EE ran downhill on a treadmill with a 16° inclination at a constant speed for 90 min, and the rats in the I/R group underwent 90 min of four‐limb ischemia, followed by 24, 48 and 72 h of reperfusion. Blood and tissue samples were collected immediately, 24, 48 and 72 h after exercise or reperfusion. Quantitative analyses showed that the I/R group had a significantly larger mitochondrial volume at 24 h after reperfusion compared with the C, and there were more disrupted Z‐lines in the EE group and more disrupted mitochondria in the I/R group at 24 h after exercise or reperfusion. When compared with the C, a significantly lower total antioxidant capacity and higher interleukin‐6 value were observed after exercise or reperfusion. Our data suggest that although EE and I/R result in some similar changes in the muscle damage markers, there are still some differences. The EE‐ and I/R‐induced muscle damage may be due to different mechanisms.  相似文献   

6.
To examine the effects of knee extensors muscle damage on walking and running biomechanics in healthy males. Muscle damage was caused by 60 (6x10) maximal eccentric knee flexions of both legs, selected in a random order, at an angular velocity of 1.05rad/s in 10 volunteers (mean age 20+/-1.0 years). Muscle damage indicators (creatine kinase (CK), lactate dehydrogenase (LDH), delayed onset muscle soreness (DOMS), eccentric and isometric (110 degrees knee flexion) peak torque), pelvic three dimensional (3D) orientation, as well as hip, knee and ankle-joint flexion/extension angles during gait (walking at 1.2m/s and running at 2.8m/s) were assessed pre- and 48h post-eccentric exercise. All muscle damage indicators revealed significant changes post- compared to pre-exercise data (P<0.05) confirming that muscle damage did occur. Kinematic analysis revealed that muscle damage significantly decreased the knee-joint angle range of movement at the stance and swing phases during walking (P<0.05) and running (P<0.05), respectively. These changes were accompanied by corresponding increases of pelvic rotation (P<0.05) and decrease of pelvic tilt (P<0.05). The present data demonstrate that damage of knee extensors result in changes of treadmill walking and running kinematics at both knee joint and pelvis. The fact that these alterations occur at different gait phases could be attributed to the speed of movement and to a self-protection mechanism to prevent further damage.  相似文献   

7.
PURPOSE: To test whether active and passive warm-up conducted before eccentric exercise attenuates clinical markers of muscle damage. METHODS: Untrained subjects were exposed to one of five conditions: low-heat passive warm-up (N = 10), high-heat passive warm-up (N = 4), or active warm-up (N = 9), preceding eccentric exercise; eccentric exercise without warm-up (N = 10); or high-heat passive warm-up without eccentric exercise (N = 10). Passive warm-up of the elbow flexors was achieved using pulsed short-wave diathermy, and active warm-up was achieved by concentric contraction. Creatine kinase (CK) activity, strength, range of motion, swelling, and muscle soreness were observed before treatment (baseline) and 24, 48, 72, and 168 h after treatment. RESULTS: High-heat passive warm-up without eccentric exercise did not affect any marker of muscle damage and was used as our control group. Markers of muscle damage were not different between groups that did or did not conduct warm-up before eccentric exercise. The active warm-up and eccentric groups exhibited a greater circumferential increase than controls (P < 0.0002), however, that was not observed after passive warm-up. Additionally, the active warm-up group exhibited a greater CK response than controls at 72 h (P < 0.05). The high-heat passive warm-up before eccentric exercise group exhibited significant change from controls at the least number of time points, but due to a small sample size (N = 4), these data should be viewed as preliminary. CONCLUSION: Our observations suggest that passive warm-up performed before eccentric exercise may be more beneficial than active warm-up or no warm-up in attenuating swelling but does not prevent, attenuate, or resolve more quickly the other clinical symptoms of eccentric muscle damage as produced in this study.  相似文献   

8.
9.
This study examined localization of muscle damage within the quadriceps femoris induced by different types of eccentric exercises by using transverse relaxation time (T 2)‐weighted magnetic resonance imaging (MRI ). Thirty‐three young males performed either of the following three exercises: single‐joint eccentric contraction of the knee extensors (KE ), eccentric squat (S), or downhill walking (DW ) (n=11/exercise). KE and S consisted of 5‐set×10‐lowering of 90% one‐repetition maximum load. DW was performed for 60 minutes with −10% slope, 6 km/h velocity, and 20% body mass load carried. At pre‐ and 24‐, 48‐, and 72‐hours post‐exercise, T 2‐MRI was scanned and T 2 values for the rectus femoris (RF ), vastus intermedius (VI ), vastus lateralis (VL ), and vastus medialis (VM ) at proximal, middle, and distal sites were calculated. Additionally, soreness felt when static pressure was applied to these sites and maximal isometric knee extension torque were measured. Maximal torque significantly (P <.05) decreased (7%‐15%) at 24‐48 hours after all exercises. T 2 significantly increased (3%‐9%) at 24‐72 hours after all exercises, with heterogeneities within the muscles found in each exercise. Effect size and peak change of T 2, as well as soreness, overall indicated that the proximal RF after KE and middle VM after S and DW were most affected by these exercises. The VL did not show any significant T 2 increase after all exercises. These results suggest that muscle damage specifically localizes at the proximal RF by KE and at the middle VM by S and DW , while the VL is least damaged regardless of the exercises.  相似文献   

10.
Eccentric strength training alters muscle architecture, but it is also an important factor for the prevention of hamstring injuries. The purpose was to determine the architectural adaptations of the biceps femoris long head (BFlh) after eccentric strength training with nordic hamstring exercise (NHE), followed by a subsequent detraining period. The participants in this intervention (n=23) completed a period of 13 weeks consisting of a first week of control and prior training, followed by 8 weeks of eccentric strength training with NHE, and concluding with a 4‐week period of detraining. The architectural characteristics of the BFlh were measured at rest using two‐dimensional ultrasound before (M1—week 1) and after (M2—week 9) the eccentric strength training, and at the end of the detraining period (M3—week 13). The muscle fascicle length significantly increased (t =−7.73, d =2.28, P <.001) in M2 compared to M1, as well as the muscle thickness (t =−5.23, d =1.54, P <.001), while the pennation angle presented a significant decrease (t =7.81, d =2.3, P <.001). The muscle fascicle length decreased significantly (t =6.07, d =1.79, P <.001) in M3 compared to M2, while the pennation angle showed a significant increase (t =−4.63, d =1.36, P <.001). The results provide evidence that NHE may cause alterations in the architectural conditions of the BFlh and may have practical implications for injury prevention and rehabilitation programs.  相似文献   

11.
PURPOSE: This study investigated the hypothesis that maximal eccentric actions at a short muscle length would fail to confer a protective effect against muscle damage induced by maximal eccentric exercise at a long muscle length. METHODS: Eleven males performed 24 maximal eccentric actions of the nondominant elbow flexors over a short extension range from an elbow joint angle of 0.87-1.74 rad (S-ECC) followed 4 wk later by eccentric actions at a long range of 2.27-3.14 rad (L-ECC). A second group of 11 males performed L-ECC on two occasions using the nondominant arm separated by 4 wk. Changes in maximal isometric strength, range of motion, upper arm circumference, muscle soreness, plasma creatine kinase and aspartate aminotransferase activities, and B-mode ultrasound images were compared between bouts and between groups by two-way repeated measures ANOVA. RESULTS: All measures changed significantly (P < 0.01) after the first bout; however, the effects were significantly (P < 0.01) smaller after S-ECC compared with L-ECC. The second bout resulted in significantly (P < 0.01) reduced changes in all measures compared with the first bout in the subjects who performed L-ECC on both occasions. The subjects who performed S-ECC in the first bout displayed significantly smaller changes after L-ECC than those seen after L-ECC alone, with the degree of attenuation being around 50-70%. CONCLUSION: Contrary to the hypothesis, S-ECC provided partial but effective protection against L-ECC. This result suggests adaptations associated with the repeated bout effect were also produced after S-ECC, but the degree of adaptations was not as strong as that by L-ECC. Eccentric exercise at a short extension range can be used as a strategy to present severe muscle damage.  相似文献   

12.
Damage to skeletal muscle from eccentric exercise   总被引:5,自引:0,他引:5  
Evidence is provided for a mechanical event as the first step in the process leading to muscle damage after a series of eccentric contractions. Aspects discussed include the decline in active tension, increase in passive tension, shift in length-tension relation, soreness, swelling, and disturbed proprioception.  相似文献   

13.
PURPOSE: The purpose of this study was to compare changes in muscle damage indicators following 24 maximal eccentric actions of the elbow flexors (Max-ECC) between the arms that had been previously trained either eccentrically or concentrically for 8 wk. METHODS: Fifteen subjects performed three sets of 10 repetitions of eccentric training (ECC-T) with one arm and concentric training (CON-T) with the other arm once a week for 8 wk using a dumbbell representing 50% of maximal isometric force of the elbow flexors (MIF) determined at the elbow joint of 90 degrees (1.57 rad). The dumbbell was lowered from a flexed (50 degrees, 0.87 rad) to an extended elbow position (180 degrees, 3.14 rad) in 3 s for ECC-T, and lifted from the extended to the flexed position in 3 s for CON-T. Max-ECC was performed 4 wk after CON-T and 6 wk after ECC-T. Changes in MIF, range of motion (ROM), upper arm circumference (CIR), muscle soreness (SOR), and plasma creatine kinase (CK) activity were compared between the ECC-T and CON-T arms. RESULTS: The first ECC-T session produced larger decreases in MIF and ROM, and larger increases in CIR and SOR compared with CON-T. CK increased significantly (P < 0.01) and peaked 4 d after the first training session, but did not increase in the following sessions. All measures changed significantly (P < 0.01) following Max-ECC; however, the changes were not significantly different between ECC-T and CON-T arms. CONCLUSION: These results showed that ECC-T did not mitigate the magnitude of muscle damage more than CON-T, and CON-T did not exacerbate muscle damage.  相似文献   

14.
ObjectivesTo analyze the effects of a single bout and repeated bouts of stretching on indirect markers of exercise-induced muscle damage.DesignA randomized controlled clinical trial at a university human research laboratory was conducted.MethodsFifty-six untrained males were randomly divided into four groups. (I) a single stretching group underwent a single bout of stretching on the quadriceps muscle; (II) an eccentric exercised group underwent eccentric quadriceps muscle contractions until exhaustion; (III) an eccentric exercise group followed by a single bout of stretching; (IV) an eccentric exercised group submitted to repeated bouts of stretching performed immediately and 24, 48, and 72 h post-exercise. Muscle stiffness, muscle soreness, maximal concentric peak torque, and plasma creatine kinase activity were assessed before exercise and 1, 24, 48, 72, and 96 h post-exercise.ResultsAll exercised groups showed significant reduction in maximal concentric peak torque and significant increases in muscle soreness, muscle stiffness, and plasma creatine kinase. There were no differences between these groups in all assessed variables, with the exception of markers of muscle stiffness, which were significantly lower in the eccentric exercise group followed by single or repeated bouts. The single stretching group showed no change in any assessed variables during the measurement period.ConclusionsMuscle stretching performed after exercise, either as single bout or as repeated bouts, does not influence the levels of the main markers of exercise-induced muscle damage; however, repeated bouts of stretching performed during the days following exercise may have favorable effects on muscle stiffness.  相似文献   

15.
The aim of this study was to investigate whether a subsequent bout of eccentric exercise inducing larger decreases in force than the initial bout would exacerbate muscle damage and retard recovery. Changes in indirect markers of muscle damage were measured over 14 days when 24 maximal eccentric actions of the elbow flexors were performed on days 1 (ECC1) and 7 (ECC2], with electrical stimulation superimposed percutaneously to the elbow flexors during maximal eccentric actions in ECC2. Maximal isometric force (MIF), range of motion (ROM), upper arm circumference, muscle soreness, B-mode ultrasound, and several muscle proteins in the blood were assessed before, immediately after and for 5 days after both bouts. Magnetic resonance Imaging (MRI) was assessed 4 days after both bouts. MIF decreased to 45% of the pre-exercise value immediately after ECC 1 and recovered to 59% by day 7 post-exercise. MIF decreased to 22% of pre-ECC1 value immediately after ECC2, but recovered to 105% of pre-ECC2 value 5 days following ECC2. Recovery of MIF and ROM was slightly retarded for 1-2 days after ECC2. However circumference, muscle soreness, and biochemical parameters did not increase following ECC2. There were no signs of additional damage in ultrasound and MRI after ECC2. It was concluded that a second bout of maximal eccentric exercise with electrical stimulation slightly retarded recovery of muscle function with minimal muscle damage.  相似文献   

16.
This study examined markers of muscle damage following a repeated bout of maximal isokinetic eccentric exercise performed prior to full recovery from a previous bout. Twenty non-resistance trained volunteers were randomly assigned to a control (CON, n=10) or experimental (EXP, n=10) group. Both groups performed 36 maximal isokinetic eccentric contractions of the elbow flexors of the non-dominant arm (ECC1). The EXP group repeated the same eccentric exercise bout two days later (ECC2). Total work and peak eccentric torque were recorded during each set of ECC1 and ECC2. Isometric torque, delayed onset muscle soreness (DOMS), flexed elbow angle and plasma creatine kinase (CK) activity were measured prior to and immediately following ECC1 and ECC2. at 24h intervals for 7 days following ECC1 and finally on day 11. In both groups, all dependent variables changed significantly during the 2 days following ECC1. A further acute post-exercise impairment in isometric torque (30 +/- 5%) and flexed elbow angle (20 +/- 4%) was observed following ECC2 (p<0.05), despite EXP subjects producing uniformly lower work and peak eccentric torque values during ECC2 (p<0.05). No other significant differences between the CON and EXP groups were observed throughout the study (p>0.05). These findings suggest that when maximal isokinetic eccentric exercise is repeated two days after experiencing of contraction-induced muscle damage, the recovery time course is not significantly altered.  相似文献   

17.
The purpose of the study is to evaluate the effects of therapeutic ultrasound (TUS) on pain, muscle strength, range of motion (ROM), muscle edema, and creatine kinase level (CK) in individuals with exercise-induced muscle damage. The systematic review with meta-analysis was conducted. The search included the bases Cochrane CENTRAL, EMBASE, MEDLINE (via PubMed), and PEDro, from their beginning until December 2015. Randomized clinical trials comparing TUS with placebo or control groups, in individuals with eccentric exercise-induced muscle damage, were included. The outcome measure was pain, ROM, muscle strength, muscle edema, and CK. On meta-analysis, the outcome measure was pain and ROM at 24, 48, and 72 h. Of 274 articles found, 9 studies were included in the systematic review and 5 in the meta-analysis. As compared with the placebo or control groups, TUS did not produce significant changes in pain and ROM at 24, 48, and 72 h after muscle damage—pain 24 h (?0.66; 95% CI ?1.65 to 0.33), pain 48 h (?0.11; 95% CI ?0.92 to 0.70), pain 72 h (?0.17; 95% CI ?1.14 to 0.80); and ROM with relaxed elbow at 24 h (0.09°; 95% CI ?3.08 to 3.26), 48 h (?1.80°; 95% CI ?4.50 to 0.90), and 72 h (?0.70°; 95% CI ?3.96 to 2.55). It was concluded that TUS produced no significant effect on the variables analyzed after eccentric and concentric exercise-induced muscle damage.  相似文献   

18.
19.
We examined the effect of curcumin (CUR) ingestion before or after exercise on changes in muscle damage and inflammatory responses after exercise. We conducted two parallel experiments with different CUR ingestion timings using a double‐blind crossover. In Exp. 1, ten healthy men ingested 180 mg d?1 of CUR or placebo (PLA) 7 days before exercise. In Exp. 2, ten other healthy men ingested 180 mg d?1 of CUR or PLA 7 days after exercise. They performed 30 maximal isokinetic (120°s?1) eccentric contractions of the elbow flexors using an isokinetic dynamometer, and this was repeated with the other arm ≥4 weeks later. Maximal voluntary contraction (MVC) torque of the elbow flexors, elbow joint range of motion (ROM), muscle soreness, and serum creatine kinase (CK) activity were measured before, immediately after, and 1‐7 days after exercise. Plasma interleukin‐8 (IL‐8) was measured before, immediately after, 12 hours after, and 1‐7 days after exercise. The changes were compared over time. In Exp. 1, no significant differences were found between CUR and PLA subjects for each parameter. However, increases in IL‐8 were significantly reduced 12 hours after exercise when CUR was ingested before exercise. In Exp. 2, compared to the PLA subjects, MVC torque and ROM were higher 3‐7 days and 2‐7 days after exercise (P < 0.05), respectively, whereas muscle soreness and CK activity were lower 3‐6 days and 5‐7 days after exercise (P < 0.05), respectively, in CUR subjects. CUR ingestion before exercise could attenuate acute inflammation, and after exercise could attenuate muscle damage and facilitate faster recovery.  相似文献   

20.
The study examined which of a number of different magnetic resonance (MR) methods were sensitive to detecting muscle damage induced by eccentric exercise. Seventeen healthy, physically active participants, with muscle damage confirmed by non‐MR methods were tested 24 h after performing eccentric exercise. Techniques investigated whether damage could be detected within the quadriceps muscle as a whole, and individually within the rectus femoris, vastus lateralis (VL), vastus medialis (VM), and vastus intermedius (VI). Relative to baseline values, significant changes were seen in leg and muscle cross‐sectional areas and volumes and the resting inorganic phosphate concentration. Significant time effects over all muscles were also seen in the transverse relaxation time (T2) and apparent diffusion coefficient (ADC) values, with individually significant changes seen in the VL, VM, and VI for T2 and in the VI for ADC. A significant correlation was found between muscle volume and the average T2 change (r = 0.59) but not between T2 and ADC or Pi alterations. There were no significant time effects over all muscles for magnetization transfer contrast images, for baseline pH, phosphocreatine (PCr), phosphodiester, or ATP metabolite concentrations or the time constant describing the rate of PCr recovery following exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号