首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genotyping for the G6PD (AC)n and (CTT)n microsatellites in a sample of 58 Mexican Mestizos with common G6PD African variants was carried out. The second mutation that defines to the variants G6PD A(-202A/376G), G6PD Santamaria(376G/542T) and G6PD A(-376G/968C) very probably occurred on G6PD A(376G) chromosomes with the compound haplotypes, intragenic silent polymorphisms and microsatellites, Pvu-II/Pst-I/Bcl-I/Nla-III/(AC)n/(CTT)n: +/+/-/+/166 bp/195 bp, -/+/-/+/166 bp/201 bp, and -/+/-/+/166 bp/204 bp respectively. The structure of the repeat sequences for the AC-166 bp allele in the 3 variants was (TA)5(AA)1(TA)9(CA)10 whereas the repeat sequences for the CTT-195 bp, CTT-201 bp and CTT-204 bp alleles were (CTT)11(ATT)6, (CTT)7(ATT)12 and (CTT)7(ATT)13 in the first, second and third variants respectively. Genotyping for the G6PD microsatellites can be a useful tool with several applications.  相似文献   

2.
Introduction: Glucose‐6‐phosphate dehydrogenase (G6PD; E.C. 1.1.1.49) deficiency is the commonest inborn error of metabolism with more than 140 genetic variants. The incidence of G6PD deficiency is 2–9% in Pakistan, but G6PD variants were never studied comprehensively. We therefore designed this study to describe the frequency of G6PD variants and their associated enzyme activities in Pakistan. Methods: Patients diagnosed with G6PD deficiency were enrolled. RFLP‐PCR was utilized to identify common mutations previously reported from Asian countries. Where mutational analysis failed, amplification of 9–12 exons with subsequent gene sequencing was performed. G6PD enzyme activity was assessed through the quantitative enzyme assay. Results: Two hundred and seventy‐six G6PD‐deficient subjects (237 male and 39 women) were investigated. G6PD Mediterranean (563C‐T) was the most common genetic variant (n = 216 or 78%). G6PD Chatham (1003A‐G) and G6PD Orissa (131C‐G) were observed in 14 (5%) and two (0.7%) subjects respectively. A novel mutation 973 G‐A with a predicated amino acid change of asp325asn was identified in exon 9. This was named G6PD Karachi after the place of origin of proband. Polymorphism in position 1311C/T was uniformly observed with all variants. Forty‐three or 17% of DNA samples remained uncharacterized. Very low levels of G6PD enzyme activity was observed with 563C‐T mutation. Conclusion: We concluded that 563C‐T was the commonest G6PD variant, while 1003A‐G and 131C‐G were less‐frequent genetic variants of G6PD in Pakistani population. A novel genetic variant 973G‐A was also identified. Very low levels of G6PD enzyme activity was seen with G6PD 563C‐T. Mutational analysis failed in a significant proportion of samples warranting further work.  相似文献   

3.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency considered to be the commonest inherited enzymopathies disorders worldwide including Iraq. Studies have addressed its prevalence and molecular characterization in several parts of the country, but no data were available from Nineveh province, northwestern-Iraq regarding molecular basis of this inherited enzymopathy. To determine the molecular basis of G6PD deficient variants in Nineveh province. A total of 61 G6PD deficient male individuals from Nineveh province were enrolled in this study. DNA from all enrolled individuals were extracted and analyzed for four deficient molecular variants using a polymerase chain reaction–restriction fragment polymorphism method. These deficient variants were G6PD-Mediterranean (563 C→T), G6PD-Chatham (1003 G→A), G6PD-A-(202 G→A) and G6PD-Cosenza (1376 G→C). Also enrolled individuals were screened for silent 1311 (C→T) mutation. It was found that 46 (75.41 %) were G6PD-Mediterranean, 1(1.64 %) were G6PD-Chatham, another 1(1.64 %) were G6PD-A-, and 13 (21.31 %) were remained uncharacterized. Also all G6PD-Mediterranean as well as one uncharacterized individuals were carriers of silent 1311 (C→T) mutation. This study documented that G6PD-Mediterranean constitute the bulk of G6PD deficient variants in this province and G6PD-Chatham and A- were encountered less frequently. Also that silent 1311 (C→T) mutation were common among G6PD-Mediterranean deficient variants individuals.  相似文献   

4.
In the present study we describe the clinical and laboratory features of a female child, a compound heterozygote for glucose-6-phosphate dehydrogenase (G6PD) Sumaré (1292T-->G) and African variants (202G-->A). G6PD Sumaré is a variant causing chronic nonspherocytic hemolytic anemia. The child had neonatal jaundice 2 days after birth and needed phototherapy for 8 days. Since then, she has not had episodes of dark urine or new episodes of jaundice. She has not had hemolytic crises in spite of five respiratory infections and antibiotics administration. Laboratory data showed a reticulocytosis (5.6%) without anemia and serum unconjugated bilirubin at the upper limit of the normalcy. No hemoglobin and hemosiderin in the urine were detected. G6PD activity at 37 degrees C was 1.15 UI/g Hb and G6PD cellulose acetate electrophoresis at pH 9.0 revealed two bands, in equal amounts, with normal and faster migration, respectively. She was homozygous for the normal (TA)6(TA)6 repeat in the UGT1A1 promoter. We conclude that the association of G6PD Sumaré and G6PD A- gave rise to a very mild chronic hemolysis, and the red cell population containing G6PD A- is probably enough to protect against severe chronic hemolysis.  相似文献   

5.
We report the results of the first epidemiological study investigating glucose 6-phosphate dehydrogenase (G6PD) deficiency among the heterogenous Mauritian population. Mauritius has a population of approximately 1 million, and of these 66.8% are Indo-Mauritian (of Indian origin), 27.9% are Creoles (of African ancestry) and 2.1% are Sino-Mauritian, predominantly of Chinese origin. Of the 1435 Mauritian males tested, 73 (5.1%) were G6PD deficient. However, the prevalence varied considerably between the two major ethnic groups: 35/1157 (3.0%) for Indo-Mauritians and 37/267 (13.9%) for Creoles. Molecular analysis revealed three major deficient polymorphic variants; G6PD Orissa, G6PD Mediterranean and G6PD A-. G6PD Orissa (nt 131 G-->C; residue 44 Ala-->Gly) was found to be the most common variant among Indo-Mauritians: this deficient variant was recently identified to be highly characteristic of the tribal groups in central India. In Creoles the most common deficient variant was G6PD A- (27/37). These data are consistent with the different ancestral contributions to the present gene pool of the Mauritian population. This study has provided further information as to the precise nature of G6PD deficiency at the molecular level among Indians, about whom previously there was scant information. The data presented suggest that G6PD Orissa is widespread in central and southern states of India. Additionally, the identification and frequency of G6PD-deficient alleles in Mauritius is of public-health importance.  相似文献   

6.
We screened 423 patients referred to our laboratory after hemolysis triggered by fava beans ingestion, neonatal jaundice or drug hemolysis. Others were asymptomatic but belonged to a family with a history of G6PD deficiency. The determination of enzymatic activity using spectrophotometric method, revealed 293 deficient (143 males and 150 females). The molecular analysis was performed by a combination of PCR-RFLP and DNA sequencing to characterize the mutations causing G6PD deficiency. 14 different genotypes have been identified : G6PD A? (376A > G;202G > A) (46.07%) and G6PD Med (33.10%) were the most common variants followed by G6PD Santamaria (5.80%), G6PD Kaiping (3.75%), the association [c.1311T and IVS11 93c] (3.75%), G6PD Chatham (2.04%), G6PD Aures (1.70%), G6PD A? Betica (0.68%), the association [ 376G;c.1311T;IVS11 93c] (0.68%), G6PD Malaga, G6PD Canton and G6PD Abeno respectively (0.34%). Two novel missense mutations were identified (c.920A > C: p.307Gln > Pro and c.968T > C: p.323 Leu > Pro). We designated these two class III variants as G6PD Tunis and G6PD Nefza. A mechanism which could account for the defective activity is discussed.  相似文献   

7.
Background/Aims: In Jordan, glucose-6-phosphate dehydrogenase (G6PD) deficiency is a significant health problem, and the incidence was reported to be about 3.6%. The aims of this study are to investigate the most common molecular mutations of the G6PD gene among Jordanians in northern Jordan and to examine the correlation between the genotype and phenotype of this enzyme deficiency. Methods: Seventy-five blood samples were collected from patients attending King Abdullah University Hospital and Princess Rahma Teaching Hospital. The G6PD gene was scanned for mutations using a DNA sequencing technique. Results: Our results showed 11 variations (7 exonic and 4 intronic) as follows: c.202 G>A (rs1050828), c.376 A>G (rs1050829), c.404 A>C (CM962574 single-nucleotide polymorphism), c.542 A>T (rs5030872), c.563 C>T (rs5030868), c.1003 G>A (rs5030869), c.1311 C>T (rs2230037), c.486-90 C>T, c.486-60 C>G (rs2515904), c.770+175 C>T (rs2515905) and c.1311 C>T (rs2230037). Among these, G6PD Mediterranean (c.563 C>T) was the most common in our patients, with a frequency of 76.2%, followed by G6PD A- (c.202 G>A + c.376 A>G) with 19%, and an equal frequency of 1.6% was found for G6PD Chatham (c.1003 G>A), G6PD Santamaria (c.542 A>T + c.376 A>G) and G6PD Cairo (c.404 A>C). Conclusion: This is the first report of G6PD Santamaria and Cairo among our Jordanian population.  相似文献   

8.
G6PD deficiency mutational profile and haplotype diversity using 6 RFLPs (FokI/PvuII/BspHI/PstI/BclI/NlaIII) and a (CTT)(n) microsatellite, were investigated in 70 G6PD-deficient Portuguese individuals. All but one G6PD A-(376G/202A) variants (44/45) have a single haplotype (+/+/-/+/-/+/195). G6PD Betica(376G/968C) alleles (n=10) have a single RFLP haplotype (+/-/-/+/-/+) and 4 different (CTT)(n) repeats. Age estimates based on microsatellite variation suggest that Betica mutation arose 900 generations ago. G6PD SantaMaria(376G/542T) allele was found on haplotype (+/-/-/+/-/+/201) and 10 G6PD variants on RFLP haplotypes (-/-/+/+/-/-), (-/-/+/+/-/+) and (-/-/+/+/+/+).  相似文献   

9.
Glucose-6-phosphate dehydrogenase (G6PD) is an essential enzyme in the pentose phosphate pathway that prevents oxidative damage to cells. This study determined the genotypic and allelic frequencies of G6PD G202A and A376G and also investigated correlation between G6PD polymorphisms and hemoglobin (Hb) phenotypes in children in Lagos, Nigeria. Seventy-eight children [55 with Hb AA (βΑA) and 23 with Hb AS (βΑS) trait] and 65 Hb SS (βSS) (HBB: c.20A>T) subjects in steady state with age range between 5–15 years were recruited for the study. Hemoglobin phenotypes of all study participants were carried out using alkaline electrophoresis and solubility tests. Genomic DNA was extracted from whole blood and restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR) was used to determine the G202A and the A376G mutations of the G6PD gene. The genotype and allele distributions of G6PD G202A and A376G according to the Hb phenotypes were not statistically significant (p?>?0.05). The minor allele frequency 202A was 0.15 (15.0%) and 0.14 (14.0%) in cases and controls, respectively. The overall frequency of 376G allele in the case group was 0.35 (35.0%) and 0.38 (38.0%) in the control group. No statistical significance was observed in the genotype and allele distributions of A376G in both the case and control groups (p?>?0.05). The G6PD A? frequency in Hb SS subjects and the control group were 6.2 and 2.6%, respectively. G6PD G202A and A376G polymorphisms were not associated with Hb phenotypes and the allele distributions of 202A and 376G in this study are typical of West African populations.  相似文献   

10.
We report on the molecular basis of glucose-6-phosphate dehydrogenase (G6PD) deficiency in Southern Italy (Campania region). Thirty-one unrelated G6PD- deficient males were analysed at DNA level for the presence of G6PD gene mutations. Nine different G6PD variants were identified, eight of which have already been described (Mediterranean, Seattle, two different A, Santamaria, Cassano, Union and Cosenza). G6PD Mediterranean, Santamaria, A and Union were associated with haemolytic episodes. G6PD Seattle, which is polymorphic in several populations, Cassano and Cosenza appeared to be asymptomatic. A new variant (G6PD Neapolis) is reported here. The 467Pro→Arg substitution reponsible for G6PD Neapolis is discussed in the light of the current 3D model of human G6PD and in comparison with other natural mutations which occur in the proximity of residue 467.  相似文献   

11.
In a study conducted at Songklanagarind Hospital in the south of Thailand, the subjects were 225 patients (210 boys and 15 girls) with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Favism was found in 3.6% of the G6PD-deficient children. Approximately one half of the G6PD-deficient patients with favism were younger than 2 years. Sudden onset of anemia was found within 1 to 3 days after ingestion of dried fava beans. The classic features of favism, which are pallor, hemoglobinuria, and jaundice, were detected in all cases. To characterize the known G6PD mutations in Thai children, molecular analysis was performed for 8 G6PD-deficient children with favism by a combination of polymerase chain reaction-restriction fragment length polymorphism analysis and amplification refractory mutation system analysis. The G6PD variants in these children were G6PD Kaiping 1388,G-->A; G6PD Mahidol 487,G-->A; G6PD Viangchan 871,G-->A; and uncharacterized mutation with silent mutation 1311,C-->T.  相似文献   

12.
Luhao Han  Hai Su  Hao Wu 《Hemoglobin》2016,40(3):179-186
Glucose-6-phosphate dehydrogenase (G6PD) deficiency and thalassemia occur frequently in tropical and subtropical regions, while the prevalence of relationship between the two diseases in Xinjiang has not been reported. We aimed to determine the prevalence of these diseases and clarify the relationship between genotypes and phenotypes of the two diseases in the Uygur and Kazak ethnic groups in Xinjiang. We measured G6PD activity by G6PD:6PGD (glucose acid-6-phosphate dehydrogenase) ratio, identified the gene variants of G6PD and α- and β-globin genes by polymerase chain reaction (PCR)-DNA sequencing and gap-PCR and compared these variants in different ethnic groups in Xinjiang with those adjacent to it. Of the 149 subjects with molecular analysis of G6PD deficiency conducted, a higher prevalence of the combined mutations c.1311C?>?T/IVSXI?+?93T?>?C and IVSXI?+?93T?>?C, both with normal enzymatic activities, were observed in the Uygur and Kazak subjects. A case of rare mutation HBB: c.135delC [codon 44 (?C) in the heterozygous state], a heterozygous case of HBB: c.68A?>?G [Hb G-Taipei or β22(B4)Glu→Gly] and several common single nucleotide polymorphisms (SNPs) were found on the β-globin gene. In conclusion, G6PD deficiency with pathogenic mutations and three common α-thalassemia (α-thal) [–?–SEA, ?α3.7 (rightward), ?α4.2 (leftward)] deletions and point mutations of the α-globin gene were not detected in the present study. The average incidence of β-thalassemia (β-thal) in Uygurs was 1.45% (2/138) in Xinjiang. The polymorphisms of G6PD and β-globin genes might be useful genetic markers to trace the origin and migration of the Uygur and Kazak in Xinjiang.  相似文献   

13.
Several years ago, a project aiming to determine (i) the molecular basis of G-6-PD deficiency, (ii) the distribution of four different mutant alleles previously detected, and (iii) the whole of polymorphic alleles that account for the overall prevalence of G-6-PD deficiency in Mexico was implemented. Nearly 5000 individuals-from the general population and patients with hemolytic anemia-belonging to at least 14 States were screened for G-6-PD deficiency. Seventy-six G-6-PD-deficient subjects were detected and the prevalence of G-6-PD deficiency in 4777 individuals from the general population was 0.71%. Screening for both mutations associated with enzyme deficiency and silent polymorphisms at the G-6-PD gene was performed in the enzyme-deficient individuals by PCR-SSCP combined with restriction enzyme analysis; the silent polymorphisms as well as the nondeficient variant G-6-PD A(376G) were also investigated in 366 G-6-PD normal individuals from the general population. In 88% of the enzyme-deficient individuals it was possible to define the mutation responsible and the type G-6-PD A- variants were the more common in both individuals from the general population and patients with hemolytic anemia. G-6-PD deficiency is heterogeneous at the DNA level in Mexico and up to date 10 different variants-8 in the present project and 2 previously-have been observed: G-6-PD A(-202A/376G), G-6-PD A(-376G/968C), G-6-PD Santamaria(376G/542T), G-6-PD Vanua Lava(383C), G-6-PD Tsukui(del561-563), G-6-PD "Mexico City"(680A), G-6-PD Seattle(844C), G-6PD Guadalajara(1159T),G-6-PD Nashville(1178A), and G-6-PD Union(1360T). The G-6-PD A(-) variants have a relatively homogeneous distribution and along with G-6-PD Santamaria(376G/542T), they account for 82% of the overall prevalence of G-6-PD deficiency in Mexico; all other seven variants represent 9% of the mutant alleles examined, and in the rest of the chromosomes the mutation responsible for the enzyme deficiency remains to be defined. Several of the variants observed in Mexico are common in Africa, South Europe, and Southeast Asia. The prevalence for the variant G-6-PD A(376G) was 1.64%. From 256 possible haplotypes only 14 were observed and haplotype analysis suggests that some of the G-6-PD variants probably were imported to Mexico by population flow from South Europe, Africa, and Southeast Asia. This work (i) identified the G-6-PD variants prevalent in Mexico, (ii) defines their geographical distribution, (iii) contributes to the knowledge of the genetic structure of the Mexican population, and (iv) will facilitate the molecular analysis of the G-6-PD gene in enzyme-deficient Mexican individuals.  相似文献   

14.
A case of glucose-6-phosphate dehydrogenase (G6PD) deficiency associated with chronic hemolysis with episodes of hemolytic crisis immediately after birth is reported. The propositus was a 1-month-old Japanese male infant. Molecular analysis of the G6PD gene revealed a novel missense mutation (826C-->4T) in exon 8 predicting a single amino acid substitution, Pro276Ser. The mother was confirmed to be heterozygous for this mutation. We designated this novel class 1 variant as G6PD Sugao. Pro276 is a phylogenetically conserved residue that may play a significant role in dimer formation.  相似文献   

15.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy. This deficiency in erythrocytes has a prevalence of 0.51 +/- 0.109 in the Caucasoid male population of Portugal. The frequency for deficiency-conferring genes is 0.39% in the Portuguese population. In the herein study populations males from areas of Portugal presenting with the highest prevalence of G6PD deficiency (Castelo Branco, Setúbal, Faro, and Lisbon) as well as similar subjects located in the border Center/North area of the country (Viseu) have been analyzed for biochemical parameters and screened for mutations and haplotype-associated mutations commensurate with G6PD deficiency. Six intragenic restriction fragment length polymorphisms (RFLPs) were studied: exon 5, nt 376 A -->G, FokI; intron 5, nt 611 C--> G, PvuII; intron 8, nt 163 C--> T, BspHI; exon 10, nt 116 G --> A, PstI; exon 11, nt 1311 C--> T, BclI; and intron 11, nt 93 T -->C, NlaIII. New haplotypes were constructed with the inclusion of intron 11, nt 93 T--> C, NlaIII, and only 5 of 64 possible haplotypes were found to show a marked linkage disequilibrium for several RFLPs and also for mutations and specific haplotypes. The control population (n = 168 males) presented the G6PD B variant and corresponded to haplotypes I (- - + + - -), Ia (- - + + - +), and VIIa (- - + + + +), in 91.8, 2.3, and 5.9%, respectively. The PCR and sequencing analysis of extracted DNAs from the deficient G6PD group showed 48.6% (16/33) of individuals with the G6PD A- mutation, corresponding to haplotype VIa (+ + - + - +); 9% (3/33) with the Betica mutation and 18% (6/33) with the Santa Maria mutation, both of them associated with haplotype IVa (+ - - + \- +); 6.1% (2/33) with the Mediterranean mutation associated with haplotype VIIa; 12.3% (4/33) with the Seattle mutation, 3.0% (1/33) with Gaohe mutation; and a new mutation, 3.0% (1/33), which we designated by G6PD Flores, all of them associated with haplotype I.  相似文献   

16.
In two unrelated Spanish males with glucose-6-phosphate dehydrogenase (G6PD) deficiency and haemolytic anaemia, and two different novel point mutations in the G6PD gene, have been identified. A C to T transition at nucleotide 406 resulting in a (136) Arg to Cys substitution and a C to G transition at nucleotide 1155 resulting in a (385) Cys to Trp substitution. These two molecular defects have not been described before and are designated G6PD Valladolid406 C→T and G6PD Madrid1155 C→G .
In vitro biochemical characterization of both mutant enzymes showed important differences in their molecular properties according to their different clinical behaviour. In G6PD Valladolid, the mutation of which is located in exon 5, the normal in vitro heat stability may explain its mild clinical expression (low-grade haemolysis interrupted by an acute haemolytic crisis at age 70). In G6PD Madrid, the mutation, located in exon 10, results in a deficient variant associated with neonatal jaundice and life-long chronic nonspherocytic haemolytic anaemia (CNSHA). This finding further emphasizes the importance of this specific region of the G6PD gene in the stabilization of the G6PD molecule. Putative relationships between these single point mutations and the molecular properties of the mutant enzymes are also discussed.  相似文献   

17.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency in erythrocytes causes acute haemolytic anaemia upon exposure to fava beans, drugs, or infection; and it predisposes to neonatal jaundice. The polymorphism of the X-linked G6PD gene has been studied extensively: allele frequencies of up to 25% of different G6PD deficient variants are known in many populations; variants that cause chronic non-spherocytic haemolytic anaemia (CNSHA) are instead all rare. WHO recommends G6PD testing to guide 8-aminoquinolines administration to prevent relapse of Plasmodium vivax infection. From a literature review focused on polymorphic G6PD variants we have retrieved G6PD activity values of 2291 males, and for the mean residual red cell G6PD activity of 16 common variants we have obtained reliable estimates, that range from 1.9% to 33%. There is variation in different datasets: for most variants most G6PD deficient males have a G6PD activity below 30% of normal. There is a direct relationship between residual G6PD activity and substrate affinity (KmG6P), suggesting a mechanism whereby polymorphic G6PD deficient variants do not entail CNSHA. Extensive overlap in G6PD activity values of individuals with different variants, and no clustering of mean values above or below 10% support the merger of class II and class III variants.  相似文献   

18.
Summary .In order to explore the nature of glucose-6-phosphate dehydrogenase (G6PD) deficiency in Spain, we have analysed the G6PD gene in 11 unrelated Spanish G6PD-deficient males and their relatives by using the polymerase chain reaction and single-strand conformation polymorphism (PCR-SSCP) analysis combined with a direct PCR-sequencing procedure and PCR-restriction enzyme (RE) analysis. We have identified eight different missense mutations, six of which have been reported in previously described G6PD variants. In nine patients who had presented with acute favism we found the following mutations: G6PD A_376G–202A (four cases)| G6PD Union1360T (two cases), G6PD Mediterranean563T, (one case) and G6PD Aures143c (one case). In the remaining patient a novel A to G transition was found at nucleotide position 209 which has not been reported in any other ethnic group. This mutation results in a (70) Tyr to Cys substitution and the resulting G6PD variant was biochemically characterized and designated as G6PD Murcia. This new mutation creates a Bsp 12861 recognition site which enabled us to rapidly detect it by PCRRE analysis. In two patients with chronic non-spherocytic haemolytic anaemia (CNSHA) we found the underlying genetic defects, as had been noted previously, to be located within a cluster of mutations in exon 10. One of them had the T to C transition at nucleotide 1153, causing a (3 8 5) Cys to Arg substitution, previously described in G6PD Tomah. The other, previously reported as having a variant called G6PD Clinic, has a G to A transition at nucleotide 1215 that produces a (405) Met to He substitution, thus confirming that G6PD Clinic is a new class I variant.  相似文献   

19.
Molecular mutations of the glucose-6-phosphate dehydrogenase (G6PD) gene and clinical manifestations of neonatal jaundice in 112 male and 50 female Chinese neonates with G6PD deficiency were studied. In the 112 males, the nucleotide (nt) 1376 (G→T) mutation was the dominant type (50.0%), followed by nt 1388 (G→A) (16.1%), nt 493 (A→G) (8.0%), nt 1024 (C→T) (6.2%), nt 95 (A→G) (5.4%), nt 392 (G→T) (1.8%), nt 487 (G→A) (1.8%), nt 871 (G→A) (0.9%), and nt 1360 (C→T) (0.9%). The nt 871 variant has not been reported in Taiwan before. The occurrence rates for nt 1376, nt 1388, nt 493, nt 95, and nt 1024 mutations in the 50 females were 44.0%, 18.0%, 12.0%, 6.0%, and 6.0%, respectively. The type of G6PD mutation in 10 male and 7 female neonates has not been identified yet. Although G6PD deficient neonates had higher frequency of phototherapy than G6PD normal neonates in both sexes, a significant difference in the prevalence of hyperbilirubinemia (peak bilirubin ≥ 15.0 mg/dl) between G6PD deficient and normal neonates was found only in males. Further analysis showed that duration of phototherapy was longer in G6PD deficient male neonates than in the control group, while the outcome of phototherapy was better in subjects with non-nt 1376 mutations than subjects with the nt 1376 mutation. Most (78.3%) of the 23 G6PD deficient neonates who subsequently suffered from neonatal hyperbilirubinemia carried the nt 1376 mutation. The results of this study indicate that the nucleotide substitution at 1376 is the most common and important mutation for G6PD deficiency in Chinese neonates in Taiwan. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Two new deficient variants of glucose-6-phosphate dehydrogenase (G6PD) causing hereditary nonspherocytic hemolytic anemia (HNSHA) are described. Both of these are unique and they have been named G6PD Wayne and G6PD Huron. Patients with G6PD Wayne underwent splenectomy and no objective improvement was noted. The patients with G6PD Huron were under medical observation for a considerable period of time without the diagnosis of G6PD deficiency being entertained because the family was of Northern European origin. Since sporadic variants of G6PD causing HNSHA show no special racial predilection, the diagnosis of G6PD deficiency should always be considered in patients with this syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号