首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binary compound, aluminum telluride (Al(2)Te(3)), was investigated as a target material for the production of (124)I by way of the (124)Te(p,n)(124)I reaction on a low-energy cyclotron. The high melting point and formation of a glassy matrix upon heating provided a stable target material at irradiations up to 20 microA of 11 MeV protons. The 87% tellurium mass fraction and 95% iodine separation yield led to significantly higher quantities of iodine compared to traditional TeO(2)/6%Al(2)O(3) admixtures. Radiochemical analysis of distilled samples using ion chromatography showed that the product remained in the iodide form while supported in weak buffer solutions. Stable Te impurities in the radioiodine product were less than 0.5 microg following purification by ion exchange chromatography. Average thick target yields of 229+/-18 microCi/microAh were achieved, and typical production runs at 18 microA for three hours yielded 12 mCi at the end-of-bombardment. Total losses of the target material after each irradiation and distillation cycle were approximately 2%.  相似文献   

2.
Optimisation experiments on the production of the positron emitting radionuclides 124I(T(1/2) = 4.18d) and (120g)I (T(1/2) = 1.35 h) were carried out. The TeO(2)-target technology and dry distillation method of radioiodine separation were used. The removal of radioiodine was studied as a function of time and the loss of TeO(2) from the target as a function of oven temperature and time of distillation. A distillation time of 15 min at 750 degrees C was found to be ideal. Using a very pure source and comparing the intensities of the annihilation and X-ray radiation, a value of 22.0 +/- 0.5% for the beta(+) branching in 124I was obtained. Production of 124I was done using 200 mg/cm(2) targets of 99.8% enriched 124TeO(2) on Pt-backing, 16 MeV proton beam intensities of 10 microA, and irradiation times of about 8 h. The average yield of 124I at EOB was 470 MBq(12.7 mCi). At the time of application (about 70 h after EOB) the radionuclidic impurity 123I (T(1/2) = 13.2 h) was <1%. The levels of other impurities were negligible (126I < 0.0001%;125I = 0.01%). Special care was taken to determine the 125I impurity. For the production of (120g)I only a thin 30 mg target (on 0.5 cm(2) area) of 99.9% enriched 120TeO(2) was available. Irradiations were done with 16 MeV protons for 80 min at beam currents of 7 microA. The 120gI yield achieved at EOB was 700 MBq(19 mCi), and the only impurity detected was the isomeric state 120 mI(T(1/2) = 53 min) at a level of 4.0%. The radiochemical purity of both 124I and 120gI was checked via HPLC and TLC. The radioiodine collected in 0.02 M NaOH solution existed >98% as iodide. The amount of inactive Te found in radioiodine was <1 microg. High purity 124I and 120gI can thus be advantageously produced on a medium scale using the low-energy (p,n) reaction at a small-sized cyclotron.  相似文献   

3.
Excitation functions of the nuclear reactions 124Te(d,xn)124-125I were measured from their respective thresholds up to 14.0 MeV via the stacked-foil technique. Thin samples were prepared by electrolytic deposition of 99.8% enriched 124Te on Ti-backing. The excitation function of the 124Te(d,n)125I reaction was measured for the first time. The present data for the 124Te(d,2n)124I reaction are by an order of magnitude higher than the literature experimental data but are in good agreement with the results of a hybrid model calculation. From the measured cross sections, integral yields of 124,125I were calculated. The energy range Ed = 14 --> 10 MeV appears to be the best compromise between 124I-yield and 1251-impurity. The calculated 124I-yield amounts to 17.5 MBq/microA h and the 125I-impurity to 1.7%. A critical evaluation of the three nuclear routes for the production of 124I, viz. 124Te(d,2n)-, 124Te(p,n)- and 125Te(p,2n)-processes, is given. The reaction studied in this work proved to be least suitable. The 124Te(p,n)-reaction gives 124I of the highest radionuclidic purity, and a small-sized cyclotron is adequate for production purposes. The 125Te(p,2n)-reaction is more suitable at a medium-sized cyclotron: the yield of 124I is four times higher than in the other two reactions but the level of 0.9% 125I-impurity is relatively high.  相似文献   

4.
Excitation functions of the reactions (nat)Sb(alpha,xn)(123,124,125,126)I and (121)Sb(alpha,xn)(123,124)I were measured from their respective thresholds up to 26 MeV, with particular emphasis on data for the production of the medically important radionuclide (124)I. The conventional stacked-foil technique was used, and the samples for irradiation were prepared by a sedimentation process. The measured excitation curves were compared with the data available in the literature. From the experimental data the theoretical yields of the investigated radionuclides were calculated as a function of the alpha-particle energy. The calculated yield of (124)I from the (nat)Sb(alpha,xn)(124)I process over the energy range E(alpha) = 22-->13 MeV amounts to 1.02 MBq/microA x h and from the (121)Sb(alpha,n)(124)I reaction over the same energy range to 2.11 MBq/microA x h. The radionuclidic impurity levels are discussed. Use of (nat)Sb as target material would not lead to high-purity (124)I. Using highly enriched (121)Sb as target, production of (124)I of high radionuclidic purity is possible; the batch yield, however, is low.  相似文献   

5.
Excitation functions were measured for (p, 2n) and (p, pn) reactions on 99.9% enriched 124Xe from threshold up to 44 MeV. The (p, 2n) reaction is much stronger than the (p, pn) channel; above 36 MeV, however, the two processes have almost equal cross sections. Differential yields of 123I were measured experimentally as a function of proton energy and were also calculated from the excitation functions. Our experimental and theoretical yield data are consistent within 15%, but are lower by a factor of 2 than the literature experimental values. Our studies show that the optimum energy range for the production of 123I is Ep = 29 → 23 MeV. The theoretically expected thick target yield of 123I at 6.6 h after EOB is 11.2 mCi/μAh, and is in agreement with the high-current experimental production yields.  相似文献   

6.
Excitation functions of the nuclear reactions 125Te(p, xn) (119,120m, 120g, 121,122,123,124,125)I were measured for the first time from their respective thresholds up to 100 MeV using the stacked-foil technique. Thin samples were prepared by electrolytic deposition of 98.3% enriched 125Te on Ti-backing. In addition to experimental studies, excitation functions were calculated by the modified hybrid model code ALICE-IPPE. The experimental and theoretical data generally showed good agreement. From the measured cross section data, integral yields of (123,124,125)I were calculated. The energy range Ep 21 --> 15 MeV appears to be very suitable for the production of the medically interesting radionuclide 124I (T(1/2) = 4.18 d; I(beta)+ = 25%). The thick target yield of 124I amounts to 81 MBq/microA h and the level of 125I-impurity to 0.9%. The 125Te(p,2n)124I reaction gives 124I yield about four times higher than the commonly used 124Te(p,n)124I and 124Te(d,2n)124I reactions. The proposed production energy range is too high for small cyclotrons but large quantities of 124I can be produced with medium-sized commercial machines.  相似文献   

7.
The production of high-purity (123)I that utilizes an isotopically enriched (124)Xe target and bombardment with 30MeV protons, through the reactions (124)Xe (p, 2n) (123)Cs-->(123)Xe-->(123)I and (124)Xe (p, pn) (123)Xe-->(123)I, is described. The aim of this work was to improve the production parameters, such as (124)Xe load pressure, beam current, decay time and target heating to recover (123)I to obtain high-production (123)I yield at low cost.  相似文献   

8.
The 4.15-d radionuclide 124I is produced via the nuclear reaction 124Te(d, 2n) 124I by irradiation of 96% enriched 124TeO2 with 14 MeV deuterons, followed by thermodistillation. In order to minimise the loss of 124I, the quartz distillation tube was fitted to a stainless steel helix capillary trap directly behind the end of the furnace. Using this device, distillation yields of more than 80% were routinely obtained, and the activity was concentrated in markedly less than 100 microL solution. The 124I produced by this method proved to be useful for labelling proteins and IUdR.  相似文献   

9.
Excitation functions of the reactions (nat)Sb((3)He,xn)(124,123,121)I were measured from their respective thresholds up to 35 MeV, with particular emphasis on data for the production of the medically important radionuclide (124)I. The conventional stacked-foil technique was used. From the experimental data the theoretical yields of the three investigated radionuclides were calculated. The yield of (124)I over the energy range E9(30He) = 35 --> 13 MeV amounts to 0.95 MBq/microA h. The radionuclidic impurities are discussed. A comparison of (3)He- and alpha-particle-induced reactions on antimony for production of (124)I is given. The alpha-particle-induced reaction on enriched (121)Sb and the (3)He-particle-induced reaction on enriched (123)Sb would lead to comparable (124)I yields, but the level of impurities in the latter case would be somewhat higher.  相似文献   

10.
In vivo imaging of the human thyroid with a positron camera using 124I   总被引:3,自引:0,他引:3  
A high-density avalanche chamber (HIDAC) positron camera was used for tomographic imaging of the human thyroid in vivo. Images were made 7 and 24 h after the oral administration of the positron-emitting radionuclide, sodium iodide 124I (with activities varying between 0.3 and 1 mCi), to patients scheduled for either partial thyroidectomy or radioiodine treatment. The results of thyroid imaging performed on 38 patients and their clinical relevance are discussed; as an illustration, three typical cases are presented. In Graves' disease, it was found that, whereas standard 131I and 124I scintigrams showed a diffuse goitre, positron images indicated a marked heterogeneity of the activity distribution, with "cold" areas in 8 out of the 11 cases studied. In conventional scintigrams, multinodular goitre showed a non-uniform radioiodine distribution, while positron images revealed considerable regional differences of activity uptake, with hot and cold areas in all of the 13 cases studied. As a consequence of the high spatial resolution of the camera [2.5 mm full width at half maximum (FWHM)], the functional volume of the thyroid may be estimated from 2 mm-thick transverse tomographic sections to within about 13%. This estimate may be compared with the measured volume after partial thyroidectomy, and in a follow-up scan, a further estimate can be made of the residual thyroid tissue remaining within the patient's body. In the case of radioiodine treatment in Graves' disease and multinodular goitre, the appropriate therapeutic dose of 131I can calculated according to the functional volume of the thyroid estimated from 124I tomographic images.  相似文献   

11.
Quantitative kinetics of [124I]FIAU in cat and man.   总被引:3,自引:0,他引:3  
For the assessment of the efficacy of clinical gene therapy trials, different imaging modalities have been developed that enable a noninvasive assessment of location, magnitude, and duration of transduced gene expression in vivo. These imaging methods rely on a combination of an appropriate marker gene and a radiolabeled or paramagnetic marker substrate that can be detected by PET or MRI. Here, we assess whether the nucleoside analog 2'-fluoro-2'-deoxy-1beta-D-arabinofuranosyl-5-iodouracil (FIAU), a specific marker substrate for herpes simplex virus type 1 thymidine kinase (HSV-1-tk) gene expression, penetrates the blood-brain barrier (BBB) as an essential prerequisite for a noninvasive assessment of HSV-1-tk gene expression in gliomas. METHODS: No-carrier-added [(124)I]FIAU was synthesized by reacting the precursor 2'-fluoro-2'-deoxy-1beta-D-arabinofuranosyluracil (FAU) with carrier-free [(124)I]NaI. The course of biodistribution of [(124)I]FIAU was investigated in anesthetized cats (n = 3; organs) and in one patient with a recurrent glioblastoma (plasma and brain) by PET imaging over several hours (cats, 1-22 h) to several days (patient, 1-68 h). FIAU PET was performed in conjunction with multitracer PET imaging (cerebral blood flow and cerebral metabolic rate of O(2) in cats only; cerebral metabolic rate of glucose and [(11)C]methionine in all subjects). A region-of-interest analysis was performed on the basis of coregistered high-resolution MR images. The average radioactivity concentration was determined, decay corrected, and recalculated as percentage injected dose per gram of tissue (%ID/g) or as standardized uptake values (SUVs). RESULTS: The average chemical yield of [(124)I]FIAU synthesis was 54.6% +/- 6.8%. The chemical and radiochemical purities of [(124)I]FIAU were found to be >98% and >95%, respectively. In cats, the kinetic analysis of [(124)I]FIAU-derived radioactivity showed an early peak (1-2 min after injection) in heart and kidneys (0.20 %ID/g; SUV, 4.0) followed by a second peak (10-20 min after injection) in liver and spleen (0.16 %ID/g; SUV, 3.2) with subsequent clearance from tissues and a late peak in the bladder (10-15 h after injection). In the unlesioned cat brain, no substantial [(124)I]FIAU uptake occurred throughout the measurement (<0.02 %ID/g; SUV, <0.4). In the patient, [(124)I]FIAU uptake in normal brain was also very low (<0.0002 %ID/g; SUV, <0.16). In contrast, the recurrent glioblastoma revealed relatively high levels of [(124)I]FIAU-derived radioactivity (5-10 min after injection; 0.001 %ID/g; SUV, 0.8), which cleared slowly over the 68-h imaging period. CONCLUSION: The PET marker substrate FIAU does not penetrate the intact BBB significantly and, hence, is not the marker substrate of choice for the noninvasive localization of HSV-1-tk gene expression in the central nervous system under conditions in which the BBB is likely to be intact. However, substantial levels of [(124)I]FIAU-derived radioactivity may occur within areas of BBB disruption (e.g., glioblastoma), which is an essential prerequisite for imaging clinically relevant levels of HSV-1-tk gene expression in brain tumors after gene therapy by FIAU PET. For this purpose, washout of nonspecific radioactivity should be allowed for several days.  相似文献   

12.
Prolonged clearance kinetics have hampered the development of intact antibodies as imaging agents, despite their ability to effectively deliver radionuclides to tumor targets in vivo. Genetically engineered antibody fragments display rapid, high-level tumor uptake coupled with rapid clearance from the circulation in the athymic mouse/LS174T xenograft model. The anticarcinoembryonic antigen (CEA) T84.66 minibody (single-chain Fv fragment [scFv]-C(H)3 dimer, 80 kDa) and T84.66 diabody (noncovalent dimer of scFv, 55 kDa) exhibit pharmacokinetics favorable for radioimmunoimaging. The present work evaluated the minibody or diabody labeled with (124)I, for imaging tumor-bearing mice using a high-resolution small-animal PET system. METHODS: Labeling was conducted with 0.2-0.3 mg of protein and 65-98 MBq (1.7-2.6 mCi) of (124)I using an iodination reagent. Radiolabeling efficiencies ranged from 33% to 88%, and immunoreactivity was 42% (diabody) or >90% (minibody). In vivo distribution was evaluated in athymic mice bearing paired LS174T human colon carcinoma (CEA-positive) and C6 rat glioma (CEA-negative) xenografts. Mice were injected via the tail vein with 1.9-3.1 MBq (53-85 microCi) of (124)I-minibody or with 3.1 MBq (85 microCi) of (124)I-diabody and imaged at 4 and 18 h by PET. Some mice were also imaged using (18)F-FDG 2 d before imaging with (124)I-minibody. RESULTS: PET images using (124)I-labeled minibody or diabody showed specific localization to the CEA-positive xenografts and relatively low activity elsewhere in the mice, particularly by 18 h. Target-to-background ratios for the LS174T tumors versus soft tissues using (124)I-minibody were 3.05 at 4 h and 11.03 at 18 h. Similar values were obtained for the (124)I-diabody (3.95 at 4 h and 10.93 at 18 h). These results were confirmed by direct counting of tissues after the final imaging. Marked reduction of normal tissue activity, especially in the abdominal region, resulted in high-contrast images at 18 h for the (124)I-anti-CEA diabody. CEA-positive tumors as small as 11 mg (<3 mm in diameter) could be imaged, and (124)I-anti-CEA minibodies, compared with (18)F-FDG, demonstrated highly specific localization. CONCLUSION: (124)I labeling of engineered antibody fragments provides a promising new class of tumor-specific probes for PET imaging of tumors and metastases.  相似文献   

13.
The biodistribution of N-isopropyl-p-[123I]iodoamphetamine (I-123 IMP) in the Macaca fascicularis monkey was determined at 15 min and at 1, 4, 24, and 48 hr after intravenous injection. Brain uptake was 7.8% of the injected dose at 1 hr, with little change in concentration between 15 min and 1 hr, falling thereafter. Eye uptake reached a maximum of 0.23% of injected dose at 24 hr, with activity primarily in the pigmented layers. The human absorbed radiation dose was calculated on the basis of biodistribution data. The critical organ is the eye (0.407 rad/mCi of I-123 IMP). The eye dose increased to 1.11 rad/mCi with 4% contamination from I-124 IMP and to 0.535 rad/mCi with 0.4% contamination from I-125 IMP. The absorbed dose to the liver was 0.127 rad/mCi for pure I-123 IMP and the thyroid dose was 0.120 rad/mCi, both increasing with either I-124 or I-125 contamination. While delayed eye uptake has not yet been reported in the human, care should be exercised in limiting the amount of contaminating I-124 or I-125 to the lowest practical level.  相似文献   

14.
This work describes the synthesis and the tumor affinity testing of no-carrier-added (n.c.a.) p-[(124)I]iodo-L-phenyalanine ([(124)I]IPA) and n.c.a. p-[(131)I]iodo-l-phenyalanine ([(131)I]IPA) as radiopharmaceuticals for imaging brain tumors with PET and for radionuclid-based therapy, respectively. Parameters for labeling were optimized with regard to the amount of precursor, temperature and time. Thereafter, n.c.a. [(124)I]IPA and n.c.a. [(131)I]IPA were investigated in rat F98 glioma and in primary human A1207 and HOM-T3868 glioblastoma cells in vitro, followed by an in vivo evaluation in CD1 nu/nu mice engrafted with human glioblastoma. No-carrier-added [(124)I]IPA and n.c.a. [(131)I]IPA were obtained in 90+/-6% radiochemical yield and >99% radiochemical purity by iododestannylation of N-Boc-4-(tri-n-butylstannyl)-L-phenylalanine methylester in the presence of chloramine-T, followed by hydrolysis of the protecting groups. The total synthesis time, including the HPLC separation and pharmacological formulation, was less than 60 min and compatible with a clinical routine production. Both amino acid tracers accumulated intensively in rat and in human glioma cells. The radioactivity incorporation in tumor cells following a 15-min incubation at 37 degrees C/pH 7.4 varied from 25% to 42% of the total loaded activity per 10(6) tumor cells (296-540 cpm/1000 cells). Inhibition experiments confirmed that n.c.a. [(124)I]IPA and n.c.a. [(131)I]IPA were taken up into tumor by the sodium-independent L- and ASC-type transporters. Biodistribution and whole-body imaging by a gamma-camera and a PET scanner demonstrated a high targeting level and a prolonged retention of n.c.a. [(124)I]IPA and n.c.a. [(131)I]IPA within the xenotransplanted human glioblastoma and a primarily renal excretion. However, an accurate delineation of the tumors in mice was not possible by our imaging systems. Radioactivity accumulation in the thyroid and in the stomach as a secondary indication of deiodination was less than 1% of the injected dose at 24h p.i., confirming the high in vivo stability of the radiopharmaceuticals. In conclusion, n.c.a. [(124)I]IPA and n.c.a. [(131)I]IPA are new promising radiopharmaceuticals, which can now be prepared in high radiochemical yields and high purity for widespread clinical applications. The specific and high-level targeting of n.c.a. [(124)I]IPA and n.c.a. [(131)I]IPA to glioma cells in vitro and to glioblastoma engrafts in vivo encourages further in vivo validations to ascertain their clinical potential as agent for imaging and quantitation of gliomas with PET, and for radionuclid-based therapy, respectively.  相似文献   

15.
The technological advances in imaging and production of radiopharmaceuticals are driving an innovative way of evaluating the targets for antineoplastic therapies. Besides the use of imaging to better delineate the volume of external beam radiation therapy in oncology, modern imaging techniques are able to identify targets for highly specific medical therapies, using chemotherapeutic drugs and antiangiogenesis molecules. Moreover, radionuclide imaging is able to select targets for radionuclide therapy and to give the way to in vivo dose calculation to target tissues and to critical organs. This contribution reports the main studies published on matched pairs dosimetry with (124)I/(131)I- and (86)Y/(90)Y-labelled radiopharmaceuticals, with an emphasis on metaiodobenzylguanidine (MIBG) and monoclonal antibodies.  相似文献   

16.

Purpose

To compare pretherapy 124I PET/CT and posttherapy 131I SPECT/CT in the identification of pathological lesions and the staging of patients with differentiated thyroid carcinoma.

Methods

124I SPECT with low-dose CT in addition to a standard whole-body scan was performed 5 days following 131I therapy with the administration of 1,110–7,728 MBq. Pretherapy 124I PET/CT was done 24 h and 96 h after oral ingestion of 20–28 MBq, including a noncontrast high-dose CT scan. Scans were evaluated by two independent experienced nuclear physicians. In addition to the total number of lesions found, patient-based analyses and lesion-based analyses were performed to ascertain the discrepancies between the findings of the two scanning techniques, as well as to evaluate the clinical impact of the findings.

Results

A group of 20 consecutive patients were analysed. In the lesion-based analysis, a total of 62 foci were found with all modalities together. Of these, 124I PET/CT found 57 (92 %), 131I SPECT/CT 50 (81 %) and planar imaging 39 (63 %). In the patient-based analysis, in 50 % of patients complete concordance between the findings of 124I PET and 131I SPECT was seen, in 5 % complete discordance and in the remaining 45 % partial discordance, i.e. a focus or some foci seen with both modalities but another or others seen more or less with one or other modality. In 5 of the 20 patients (25 %), tumour stage was changed according to the findings of one of the modalities. In 60 % of these patients this was only with the findings of 124I PET/CT.

Conclusion

This study showed that 124I PET/CT is preferred over 131I imaging for staging differentiated thyroid carcinoma.  相似文献   

17.
The increasing demand for radiolabeled metaiodobenzylguanidine (mIBG) prompted the need to obtain the radiopharmaceutical by a reliable, routine and simple synthetic method for batch production. The production of mIBG labeled with either 123I or 124I has been optimized by modifying literature methods that involve solid-state exchange reaction on "cold" mIBG facilitated by ammonium sulfate. The radiochemical yield and purity of radioiodinated mIBG generally exceeded 80 and 98%, respectively, with specific activity of > 50 mCi/mg.  相似文献   

18.
Annexin-V is a calcium-dependent protein that binds with high affinity to phosphaditylserine exposed during apoptosis. The aim of this study was to radiolabel annexin-V with iodine-124 for use as a potential probe of apoptosis by positron emission tomography. Annexin-V was radioiodinated directly using the cyclotron-produced positron emitter iodine-124 by the chloramine-T (CAT) method and indirectly by the pre-labelled reagent N-succinimidyl 3-[124I]iodobenzoate ([124I]m-SIB). Some reaction parameters of the CAT method such as reaction time and pH were optimised to give radiochemical yields of 22.3 +/- 2.6%(n = 3, gel-filtration). After incubation with [124I]m-SIB, radiolabelled annexin-V was obtained in 14% and 25% yield by FPLC and gel-filtration, respectively. The radiochemical purities from direct and indirect labelling were 97.7 +/- 1.0%(n = 3) and 96.7 +/- 2.1%(n = 3), respectively. The new radiotracers could be stored for up to four days without significant de-iodination. The biological activity of radiolabelled annexin-V was tested in control and camptothecin-treated (i.e. apoptotic) human leukaemic HL60 cells. A significantly higher (21%) binding in treated cells was observed with [125I]m-SIB-annexin-V. The binding of [125I]m-SIB labelled annexin-V to camptothecin treated cells was blocked (68%) by a 100-fold excess of unlabelled annexin-V.  相似文献   

19.
The pyridopyrimidinones are a potent class of inhibitors of c-Abl kinase and Bcr-Abl kinase, the causative fusion protein in chronic myelogenous leukemia and Src family kinases. A novel method for routine, high-yield no-carrier-added synthesis of [(124)I]-, [(125)I]- and [(131)I]-6-(2,6-dichlorophenyl)-2-(4-iodophenylamino)-8-methyl-8H-pyrido[2,3-d]pyrimidin-7-one has been developed. The 4'-trimethylstannyl- or 4'-tri-n-butylstannyl-pyridopyrimidinone precursors were prepared from the aryl bromide via a palladium-mediated coupling with hexaalkylditin (dioxane/microwave irradiation/10 min at 160 degrees C). The radioiodination of 4'-stannylpyridopyrimidinones was found to optimally occur via an iododestannylation with Na(124)I, Na(125)I or Na(131)I in the presence of an oxidant [30% H(2)O(2)/HOAc (1:3)/10 min] in 79-87% radiochemical yield with >99% radiochemical purity. The total radiosynthesis time was 30 min. The 4-iodophenylpyridopyrimidinone 2 inhibited recombinant Abl kinase activity with an IC(50) of 2.0 nM. Cell proliferation of K562 and A431 cells was inhibited with an IC(50) of 2.0 and 20 nM, respectively. Rapid cellular uptake and equilibrium were observed within 10-15 min using [(131)I]-4-iodophenylpyridopyrimidinone 6c in K562 and A431 cells and demonstrated a 2.8-fold uptake selectivity for the Bcr-Abl-expressing K562 cells at 60 min. These results suggest that pyridopyrimidinone radiotracers may be useful in imaging Abl-, Bcr-Abl- or Src-expressing malignancies.  相似文献   

20.
Due to the interesting anti-proliferative properties of copper-thiosemicarbazone complexes, the production of a (61)Cu-labeled thiosemicarbazone, i.e. 2-acetylpyridine thiosemicarbazone (APTS) was investigated. Copper-61 (T(1/2)=3.33 h) was produced via the (64)Zn(p,alpha)(61)Cu nuclear reaction using a natural zinc target irradiated with 22 MeV protons for 500 microAh. The (61)Cu was separated from the irradiated target material by a two-step method and converted to acetate; this yielded a final activity of 222 GBq (6.0 Ci), with a radiochemical yield of >95%. The (61)Cu-acetate was mixed with 2-acetylpyridine thiosemicarbazone for 30 min at room temperature to yield [(61)Cu]APTS with a radiochemical yield of more than 80%. Colorimetric methods showed that residual chemical impurities in the product were below the accepted limits. Radio thin layer chromatography (RTLC) showed a radiochemical purity of more than 99% after C(18) column chromatography. A specific activity of about 370-740 MBq/mmol (10-20 Ci/mmol) was obtained. The stability of the final product was checked in the absence and presence of human serum at 37 degrees C for up to 3 h. The partition coefficient of the final complex was also determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号