首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies from our laboratory have indicated skin cancer chemopreventive effectsof sandalwood oil in CD-1 mice. The purpose of this investigation was to study the skin cancer chemopreventive effects of alpha-santalol, a principal component of sandalwood oil in CD-1 and SENCAR mice. alpha-Santalol was isolated from sandalwood oil by distillation under vacuum and characterized by nuclear magnetic resonance and gas chromatography-mass spectrometry. Chemopreventive effects of alpha-santalol were determined during initiation and promotion phase in female CD-1 and SENCAR mice. Carcinogenesis was initiated with 7,12-dimethylbenz(a)anthracene and promoted with 12-O-tetradecanoylphorbol-13-acetate (TPA). The effects of alpha-santalol treatment on TPA-induced epidermal ornithine decarboxylase (ODC) activity and (3)H-thymidine incorporation in epidermal DNA of CD-1 and SENCAR mice were also investigated. alpha-Santalol treatment during promotion phase delayed the papilloma development by 2 weeks in both CD-1 and SENCAR strains of mice. alpha-Santalol treatment during promotion phase significantly (P < 0.05) decreased the papilloma incidence and multiplicity when compared with control and treatment during initiation phase during 20 weeks of promotion in both CD-1 and SENCAR strains of mice. alpha-Santalol treatment resulted in a significant (P < 0.05) inhibition in TPA-induced ODC activity and incorporation of (3)H-thymidine in DNA in the epidermis of both strains of mice. alpha-Santalol significantly prevents papilloma development during promotion phase of 7,12-dimethylbenz(a)anthracene-TPA carcinogenesis protocol in both CD-1 and SENCAR mice, possibly by inhibiting TPA-induced ODC activity and DNA synthesis. alpha-Santalol could be an effective chemopreventive agent for skin cancer. Additional experimental and clinical studies are needed to investigate the chemopreventive effect of alpha-santalol in skin cancer.  相似文献   

2.
Chemoprevention has come of age as an effective cancer control modality; however, the search for novel agent(s) for the armamentarium of cancer chemoprevention continues. We argue that agents capable of intervening at more than one critical pathway in the carcinogenesis process will have greater advantage over other single-target agents. Pomegranate fruit extract (PFE) derived from the tree Punica granatum possesses strong antioxidant and antiinflammatory properties. Pomegranate fruit was extracted with acetone and analyzed based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and found to contain anthocyanins, ellagitannins and hydrolyzable tannins. We evaluated whether PFE possesses antitumor-promoting effects. We first determined the effect of topical application of PFE to CD-1 mice against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced conventional markers and other novel markers of skin tumor promotion. We found that topical application of PFE (2 mg/mouse) 30 min prior to TPA (3.2 nmole/mouse) application on mouse skin afforded significant inhibition, in a time-dependent manner, against TPA-mediated increase in skin edema and hyperplasia, epidermal ornithine decarboxylase (ODC) activity and protein expression of ODC and cyclooxygenase-2. We also found that topical application of PFE resulted in inhibition of TPA-induced phosphorylation of ERK1/2, p38 and JNK1/2, as well as activation of NF-kappaB and IKKalpha and phosphorylation and degradation of IkappaBalpha. We next assessed the effect of skin application of PFE on TPA-induced skin tumor promotion in 7,12-dimethylbenz(a)anthracene-initiated CD-1 mouse. The animals pretreated with PFE showed substantially reduced tumor incidence and lower tumor body burden when assessed as total number of tumors per group, percent of mice with tumors and number of tumors per animal as compared to animals that did not receive PFE. In TPA-treated group, 100% of the mice developed tumors at 16 weeks on test, whereas at this time in PFE-treated group, only 30% mice exhibited tumors. Skin application of PFE prior to TPA application also resulted in a significant delay in latency period from 9 to 14 weeks and afforded protection when tumor data were considered in terms of tumor incidence and tumor multiplicity. The results of our study provide clear evidence that PFE possesses antiskin-tumor-promoting effects in CD-1 mouse. Because PFE is capable of inhibiting conventional as well as novel biomarkers of TPA-induced tumor promotion, it may possess chemopreventive activity in a wide range of tumor models. Thus, an in-depth study to define active agent(s) in PFE capable of affording antitumor-promoting effect is warranted.  相似文献   

3.
The effects of topical applications of very low doses of curcumin (the major yellow pigment in turmeric and the Indian food curry) on 12-O- tetradecanoylphorbol-13-acetate (TPA)-induced oxidation of DNA bases in the epidermis and on tumor promotion in mouse skin were investigated. CD-1 mice were treated topically with 200 nmol of 7,12- dimethylbenz[a]anthracene followed one week later by 5 nmol of TPA alone or together with 1, 10, 100 or 3000 nmol of curcumin twice a week for 20 weeks. Curcumin-mediated effects on TPA-induced formation of the oxidized DNA base 5-hydroxymethyl-2'-deoxyuridine (HMdU) and tumor formation were determined. All dose levels of curcumin inhibited the mean values of TPA-induced HMdU formation in epidermal DNA (62-77% inhibition), but only the two highest doses of curcumin strongly inhibited TPA-induced tumor promotion (62-79% inhibition of tumors per mouse and tumor volume per mouse). In a second experiment, topical application of 20 or 100 nmol (but not 10 nmol) of curcumin together with 5 nmol TPA twice a week for 18 weeks markedly inhibited TPA- induced tumor promotion. Curcumin had a strong inhibitory effect on DNA and RNA synthesis (IC50 = 0.5-1 microM) in cultured HeLa cells, but there was little or no effect on protein synthesis.   相似文献   

4.
A green tea polyphenol fraction was evaluated for its ability to inhibit tumor initiation by polycyclic aromatic hydrocarbons and tumor promotion by a phorbol ester in the skin of CD-1 mice. Topical application of the green tea polyphenol fraction inhibited benzo[a]pyrene- and 7,12-dimethylbenz[a]-anthracene-induced tumor initiation as well as 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced tumor promotion. Topical application of the green tea polyphenol fraction also inhibited TPA-induced inflammation, ornithine decarboxylase activity, hyperplasia and hydrogen peroxide formation. Studies with individual polyphenolic compounds in green tea indicated that topical application of (-)-epigallocatechin gallate, (-)-epigallocatechin and (-)-epicatechin gallate inhibited TPA-induced inflammation in mouse epidermis.  相似文献   

5.
The anti-tumor promoting activity of a polyphenolic fraction from grape seeds (GSP) was examined in CD-1 mouse skin epidermis. Specifically, the ability of this fraction to inhibit 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced tumor promotion and two markers of promotion in mouse skin, ornithine decarboxylase (ODC) and myeloperoxidase (MPO) activities, was evaluated. Pretreatment of mouse skin with 5, 10, 20 and 30 mg of GSP resulted in a dose-dependent reduction in TPA-induced epidermal ODC activity of 27, 37, 48 and 70%, respectively, compared to controls. In addition, pretreatment of mouse skin with 1, 5, 10 and 20 mg of GSP resulted in a significant 43, 39, 54 and 73% inhibition of MPO activity, respectively, compared to controls. In 7,12-dimethylbenz[a]anthracene (DMBA)-initiated CD-1 mice, biweekly treatment of mouse skin with 5, 10, and 20 mg of GSP 20 min prior to TPA application resulted in a 30, 40, and 60% inhibition of final skin tumor incidence, respectively, compared to controls. In addition, the final number of tumors per mouse in the 5, 10 and 20 mg GSP-treated animals was decreased 63, 51, and 94%, respectively, compared to controls. These studies indicate that GSP possesses anti-tumor promoting activity when applied to CD-1 mouse skin prior to treatment with TPA. The mechanism of this tumor inhibition is due, in part, to a GSP-associated inhibition of TPA-induced epidermal ODC and MPO activities. Thus, GSP warrants further evaluation as a skin cancer chemopreventative agent.  相似文献   

6.
Sung YM  He G  Hwang DH  Fischer SM 《Oncogene》2006,25(40):5507-5516
We previously showed that the EP2 knockout mice were resistant to chemically induced skin carcinogenesis. The purpose of this study was to investigate the role of the overexpression of the EP2 receptor in mouse skin carcinogenesis. To determine the effect of overexpression of EP2, we used EP2 transgenic (TG) mice and wild-type (WT) mice in a DMBA (7,12-dimethylbenz[alpha]anthracene)/TPA (12-O-tetradecanoylphorbol-13-acetate) two-stage carcinogenesis protocol. EP2 TG mice developed significantly more tumors compared with WT mice. Overexpression of the EP2 receptor increased TPA-induced keratinocyte proliferation both in vivo and in vitro. In addition, the epidermis of EP2 TG mice 48 h after topical TPA treatment was significantly thicker compared to that of WT mice. EP2 TG mice showed significantly increased cyclic adenosine monophosphate levels in the epidermis after prostaglandin E2 (PGE2) treatment. The inflammatory response to TPA was increased in EP2 TG mice, as demonstrated by an increased number of macrophages in the dermis. Tumors and 7 x TPA-treated and DMBA-TPA-treated (6 weeks) skins from EP2 TG mice produced more blood vessels than those of WT mice as determined by CD-31 immunostaining. Vascular endothelial growth factor (VEGF) protein expression was significantly increased in squamous cell carcinoma (SCC) samples from EP2 TG mice compared that of WT mice. There was, however, no difference in the number of apoptotic cells in tumors from WT and EP2 TG mice. Together, our results suggest that the overexpression of the EP2 receptor plays a significant role in the protumorigenic action of PGE2 in mouse skin.  相似文献   

7.
Chun KS  Keum YS  Han SS  Song YS  Kim SH  Surh YJ 《Carcinogenesis》2003,24(9):1515-1524
Recently, there have been considerable efforts to search for naturally occurring substances for the intervention of carcinogenesis. Many components derived from dietary or medicinal plants have been found to possess substantial chemopreventive properties. Curcumin, a yellow coloring ingredient of turmeric (Curcuma longa L., Zingiberaceae), has been shown to inhibit experimental carcinogenesis and mutagenesis, but molecular mechanisms underlying its chemopreventive activities remain unclear. In the present work, we assessed the effects of curcumin on 12-O- tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2 (COX-2) in female ICR mouse skin. Topical application of the dorsal skin of female ICR mice with 10 nmol TPA led to maximal induction of cox-2 mRNA and protein expression at approximately 1 and 4 h, respectively. When applied topically onto shaven backs of mice 30 min prior to TPA, curcumin inhibited the expression of COX-2 protein in a dose-related manner. Immunohistochemical analysis of TPA-treated mouse skin revealed enhanced expression of COX-2 localized primarily in epidermal layer, which was markedly suppressed by curcumin pre-treatment. Curcumin treatment attenuated TPA- stimulated NF-kappaB activation in mouse skin, which was associated with its blockade of degradation of the inhibitory protein IkappaBalpha and also of subsequent translocation of the p65 subunit to nucleus. TPA treatment resulted in rapid activation via phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein (MAP) kinases, which are upstream of NF-kappaB. The MEK1/2 inhibitor U0126 strongly inhibited NF-kappaB activation, while p38 inhibitor SB203580 failed to block TPA-induced NF-kappaB activation in mouse skin. Furthermore, U0126 blocked the IkappaBalpha phosphorylation by TPA, thereby blocking the nuclear translocation of NF-kappaB. Curcumin inhibited the catalytic activity of ERK1/2 in mouse skin. Taken together, suppression of COX-2 expression by inhibiting ERK activity and NF-kappaB activation may represent molecular mechanisms underlying previously reported antitumor promoting effects of this phytochemical in mouse skin tumorigenesis.  相似文献   

8.
Previous studies from this laboratory have indicated that alpha-santalol (5%) provides chemopreventive effects in 7,12-dimethylbenz[a]anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted skin cancer in CD-1 and SENCAR mice. Skin cancer development is associated with increased ornithine decarboxylase (ODC) activity, DNA synthesis and rapid proliferation of epidermal cells. The purpose of this investigation was to determine the effects of various concentrations (1.25% and 2.5%) of alpha-santalol on DMBA-initiated and TPA-promoted skin cancer development, TPA-induced ODC activity, and DNA synthesis in CD-1 mice. alpha-Santalol treatment at both concentrations (1.25% and 2.5%) prevented the skin cancer development. alpha-Santalol treatment (1.25% and 2.5%) resulted in a significant decrease in the TPA-induced ODC activity and incorporation of [3H]thymidine in DNA in the epidermis of CD-1 mice. There was no significant difference in the effects of 1.25% and 2.5% alpha-santalol on tumour incidence, multiplicity, epidermal TPA-induced ODC activity, or DNA synthesis in CD-1 mice.  相似文献   

9.
10.
Saleem M  Afaq F  Adhami VM  Mukhtar H 《Oncogene》2004,23(30):5203-5214
Chemoprevention has become an effective cancer control modality; however, the search for novel agent(s) for the armamentarium of cancer chemoprevention continues. We argue that agents capable for inhibition of promotion stage of tumorigenesis with the ability to intervene at several critical pathways in the tumorigenesis process will have greater advantage over other single-target agents. Lupeol, a triterpene, is the principal constituent of common fruit plants such as olive, mango, fig and medicinal herbs that have been used to treat skin aliments. Lupeol has been reported to possess a wide range of medicinal properties that include strong antioxidant, antimutagenic, anti-inflammatory and antiarthritic effects. In the present study, we show that Lupeol possesses antitumor-promoting effects in a mouse skin tumorigenesis model. We first determined the effect of topical application of Lupeol to CD-1 mouse against 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced conventional markers and other novel markers of skin tumor promotion. We found that topical application of Lupeol (1-2 mg/mouse) 30 min prior to TPA (3.2 nmol/mouse) application onto the skin of CD-1 mice afforded significant inhibition, in a time- and dose-dependent manner, against TPA-mediated increase in (i) skin edema and hyperplasia, (ii) epidermal ornithine decarboxylase (ODC) activity, and (iii) protein expression of ODC, cyclo-oxygenase-2 and nitric oxide synthase. As of the role of nuclear factor kappa B (NF-kappaB) and phosphatidyl inositol 3-kinase (PI3K)/Akt signaling in tumor promotion, we next determined the effect of topical application of Lupeol to mouse skin against these signaling pathways. We found that Lupeol treatment to mouse skin resulted in the inhibition of TPA-induced (i) activation of PI3K, (ii) phosphorylation of Akt at Thr(308), (iii) activation of NF-kappaB and IKKalpha, and (iv) degradation and phosphorylation of IkappaBalpha. The animals pretreated with Lupeol showed significantly reduced tumor incidence, lower tumor body burden and a significant delay in the latency period for tumor appearance. At the termination of the experiment at 28 weeks, 100% of the animals in TPA-treated group exhibited seven to eight tumors/mouse, whereas only 53% of the mice receiving Lupeol prior to TPA treatment exhibited one to three tumors/mouse. These results for the first time provide evidence that Lupeol possesses antiskin tumor-promoting effects in CD-1 mouse and inhibits conventional as well as novel biomarkers of tumor promotion. We suggest that Lupeol is an attractive antitumor-promoting agent that must be evaluated in tumor models other than skin carcinogenesis.  相似文献   

11.
The effects of topical administration of curcumin on the formation of benzo[a]pyrene (B[a]P)-DNA adducts and the tumorigenic activities of B[a]P and 7,12-dimethylbenz[a]anthracene (DMBA) in epidermis were evaluated in female CD-1 mice. Topical application of 3 or 10 mumol curcumin 5 min prior to the application of 20 nmol [3H]B[a]P inhibited the formation of [3H]B[a]P-DNA adducts in epidermis by 39 or 61% respectively. In a two-stage skin tumorigenesis model, topical application of 20 nmol B[a]P to the backs of mice once weekly for 10 weeks followed a week later by promotion with 15 nmol 12-O-tetradecanoylphorbol-13-acetate (TPA) twice weekly for 21 weeks resulted in the formation of 7.1 skin tumors per mouse, and 100% of the mice had tumors. In a parallel group of mice, in which the animals were treated with 3 or 10 mumol curcumin 5 min prior to each application of B[a]P, the number of tumors per mouse was decreased by 58 or 62% respectively. The percentage of tumor-bearing mice was decreased by 18-25%. In an additional study, topical application of 3 or 10 mumol curcumin 5 min prior to each application of 2 nmol DMBA once weekly for 10 weeks followed a week later by promotion with 15 nmol TPA twice weekly for 15 weeks decreased the number of tumors per mouse by 37 or 41% respectively.  相似文献   

12.
The effects of topically applied curcumin, chlorogenic acid, caffeic acid, and ferulic acid on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced epidermal ornithine decarboxylase activity, epidermal DNA synthesis, and the promotion of skin tumors were evaluated in female CD-1 mice. Topical application of 0.5, 1, 3, or 10 mumol of curcumin inhibited by 31, 46, 84, or 98%, respectively, the induction of epidermal ornithine decarboxylase activity by 5 nmol of TPA. In an additional study, the topical application of 10 mumol of curcumin, chlorogenic acid, caffeic acid, or ferulic acid inhibited by 91, 25, 42, or 46%, respectively, the induction of ornithine decarboxylase activity by 5 nmol of TPA. The topical application of 10 mumol of curcumin together with 2 or 5 nmol of TPA inhibited the TPA-dependent stimulation of the incorporation of [3H]-thymidine into epidermal DNA by 49 or 29%, respectively, whereas lower doses of curcumin had little or no effect. Chlorogenic acid, caffeic acid, and ferulic acid were less effective than curcumin as inhibitors of the TPA-dependent stimulation of DNA synthesis. Topical application of 1, 3, or 10 mumol of curcumin together with 5 nmol of TPA twice weekly for 20 weeks to mice previously initiated with 7,12-dimethylbenz[a]anthracene inhibited the number of TPA-induced tumors per mouse by 39, 77, or 98%, respectively. Similar treatment of mice with 10 mumol of chlorogenic acid, caffeic acid, or ferulic acid together with 5 nmol of TPA inhibited the number of TPA-induced tumors per mouse by 60, 28, or 35%, respectively, and higher doses of the phenolic acids caused a more pronounced inhibition of tumor promotion. The possibility that curcumin could inhibit the action of arachidonic acid was evaluated by studying the effect of curcumin on arachidonic acid-induced edema of mouse ears. The topical application of 3 or 10 mumol of curcumin 30 min before the application of 1 mumol of arachidonic acid inhibited arachidonic acid-induced edema by 33 or 80%, respectively.  相似文献   

13.
Application of the tumor-promoting agent 12-O-tetradecanoylphorbol-13-acetate (TPA) to mouse skin leads to a manifold induction of ornithine decarboxylase (ODC) activity within 5 hr and an increased accumulation of putrescine. The relevance of these TPA-induced changes to the mechanism of tumor promotion was investigated using alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC. DFMO applied to mouse skin (0.3 mg in 0.2 ml of solvent) or administered in the drinking water (1%) in conjunction with skin tumor promotion by TPA inhibited the formation of mouse skin papillomas by 50 and 90%, respectively. TPA-induced ODC activity and the accumulation of putrescine were almost completely inhibited. DFMO given in the drinking water decreased spermidine levels, but DFMO treatment by any route did not alter the spermine levels of mouse epidermis. DFMO decreased TPA-induced hyperplasia by 25 to 40%, and the TPA-caused increases in DNA synthesis and mitotic index were inhibited by 60 and 50%, respectively. Therefore, in mouse epidermis, enhanced cell proliferation can be dissociated from ODC induction and the accumulation of putrescine. At the tested dose levels and routes of administration, DFMO did not inhibit the inflammatory response to TPA in several tissues. These results provide evidence for an essential role of ODC induction and the accumulation of putrescine in tumor promotion by TPA and add strength to the proposal that DFMO may be a promising drug for the prevention and treatment of cancer in human beings.  相似文献   

14.
Using isoenzyme-specific antibodies, we have performed an immunoblot analysis of the PKC isoenzyme pattern during the course of TPA-induced tumor promotion in the epidermis of NMRI mice. The TPA-sensitive PKC isoforms alpha, delta, straightepsilon, eta, nu (and TPA-insensitive PKCzeta), but not PKCbeta and gamma, were found to be expressed in both normal and neoplastic epidermis. The immune signals of all TPA-sensitive PKC isoforms were moderately and reversibly attenuated upon a single TPA treatment. Using different antibodies against PKCeta and PKCmu, this apparent downregulation could mainly be attributed to epitope changes of these enzymes, whereas for the other PKC species no such conclusion could be drawn. Except for PKCstraightepsilon, no substantial long-term attenuation of the immune signals of the other PKC isoforms occurred upon chronic phorbol ester treatment (i.e., 14 applications of 5 nmol TPA each over 7 weeks), which led to tumor development in initiated mouse skin. Specific PKC activity (related to tissue weight) was 40-50% lower in TPA-treated as compared with control epidermis whereby no clearcut difference was found between single and chronic TPA treatment. Benign and malignant skin tumors generated according to the initiation-promotion protocol did not exhibit consistent alterations in the immune pattern of the PKC isoenzymes with the exception of a decrease of PKCstraightepsilon and an increase of PKCmicro signal in carcinomas. Our data indicate that, in contrast with earlier assumptions, no general long-lasting PKC downregulation plays a critical role in skin tumor promotion.  相似文献   

15.
Diethyldithiocarbamate (DDTC) injected i.p. inhibits remarkably and in a dose-dependent manner 12-O-tetradecanoylphorbol-13-acetate (TPA)-decreased glutathione (GSH) peroxidase and TPA-induced ornithine decarboxylase (ODC) activities in mouse epidermis in vivo. DDTC is more potent in inhibiting these effects of TPA than 16 other antioxidants, free radical scavengers, thiol-containing compounds, and reduced glutathione (GSH) level-raising agents, even though some of these treatments are applied directly to the TPA-treated skin. DDTC also inhibits the effects of several structurally different tumor promoters and the greater GSH peroxidase and ODC responses produced by repeated TPA treatments. The inhibitory effects of DDTC on TPA-decreased GSH peroxidase and TPA-induced ODC activities are additive with those of Na2SeO3 and D-alpha-tocopherol (vitamin E). Interestingly, DDTC is a more effective inhibitor when it is administered after TPA, suggesting that DDTC may supplement, facilitate, and/or enhance the activity of the natural GSH-dependent detoxifying system protecting the epidermis against the oxidative challenge presumably linked to the tumor-promoting activity of TPA. When tested in the initiation-promotion protocols, DDTC inhibits to the same degree complete tumor promotion by TPA and stage 2 tumor promotion by mezerein, in relation with its identical inhibition of the GSH peroxidase and ODC responses to both TPA and mezerein. Moreover, the inhibition of the first stage tumor-promoting activity of TPA by DDTC may be attributed to its ability to inhibit TPA-induced DNA synthesis, a postulated component of the conversion phase of skin carcinogenesis when TPA is used as a stage 1 tumor promoter.  相似文献   

16.
Wei  H; Bowen  R; Zhang  X; Lebwohl  M 《Carcinogenesis》1998,19(8):1509-1514
Isoflavone genistein is a specific inhibitor of protein tyrosine kinase (PTK) and has been shown to have a variety of anticancer activities in cultured cells and animal models. We report here that genistein significantly inhibits 7,12-dimethylbenz[a]anthracene (DMBA)-initiated and 12-O-tetradecanoyl phorbol-13-acetate (TPA)-promoted skin tumorigenesis in a two-stage carcinogenesis model. In an initiation study, 10 micromol genistein was applied daily to female SENCAR mouse skin for 1 week, followed by initiation with 10 nmol DMBA. Mice were then treated with twice weekly 4 microg TPA. Genistein was shown to reduce tumor incidence and multiplicity in DMBA-initiated skin tumors by approximately 20 (P < 0.05) and 50% (P < 0.01), respectively. Two promotion studies were conducted using CD-1 and SENCAR mice. In experiment 1, CD-1 mice were initiated with 100 nmol DMBA and followed by a twice weekly regimen of 1 and 5 micromol genistein/4 microg TPA. In experiment 2, SENCAR mice were initiated with 10 nmol DMBA and followed by a regimen of 5, 10 and 20 micromol genistein/2 microg TPA. Both studies consistently showed that genistein substantially inhibited TPA-promoted skin tumorigenesis by reducing the tumor multiplicity by approximately 60 and 75%, respectively (P < 0.01). However, the tumor incidence appeared to be less affected. Mechanistic studies showed that genistein inhibited DMBA-induced bulky DNA adduct formation and substantially suppressed TPA-stimulated H2O2 and inflammatory responses in mouse skin by >60% (P < 0.01). In contrast, genistein only exhibited a moderate inhibition of TPA-induced ornithine decarboxylase activity (P > 0.05). Our results suggest that genistein exerts its anti- initiational and anti-promotional effects on skin carcinogenesis probably through blockage of DNA adduct formation and inhibition of oxidative and inflammatory events in vivo.   相似文献   

17.
To examine the hypothesis that tumor necrosis factor (TNF) alpha is an essential cytokine in carcinogenesis, we conducted two-stage carcinogenesis experiments with an initiator, 7,12-dimethylbenz(a)anthracene (DMBA), plus either of two tumor promoters, okadaic acid and 12-O-tetradecanoylphorbol-13-acetate (TPA), on the skin of TNF-alpha-deficient (TNF-/-) mice. TNF-/- mice treated with DMBA plus okadaic acid developed no tumors for up to 19 weeks, and at 20 weeks, the percentage of tumor-bearing TNF-/- mice was 10%, whereas the percentage of tumor-bearing TNF+/+ mice was 100%. In TNF-/- mice treated with DMBA plus TPA, tumor onset was delayed 4 weeks, and the time to development of small tumors in 100% of mice was 9 weeks later than that seen in TNF+/+ CD-1 mice. The average number of tumors in TPA-treated TNF-/- mice was 2.8, compared with 11.8 for TNF+/+ CD-1 mice. To understand the residual tumor-promoting activity in TNF-/- mice, we also investigated the possible significance of interleukin (IL) 1 as an additional cytokine in tumor promotion. A single application of TPA and okadaic acid increased IL-1alpha and IL-1beta gene expression in TNF-/- mice. All of our results demonstrate that TNF-alpha is the key cytokine for tumor promotion in mouse skin and, very possibly, for carcinogenesis in humans as well.  相似文献   

18.
19.
The antitumor antibiotics Adriamycin (ADR) and daunomycin (DAU) were tested for their ability to alter some of the molecular events linked to skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate (TPA). When applied topically to mouse skin, DAU is a more effective inhibitor of the basal level of epidermal DNA synthesis than ADR. However, these drugs alone are unable to inhibit the sequential induction of RNA, protein, and DNA synthesis caused by TPA in mouse epidermis in vivo. Moreover, ADR enhances substantially the induction of epidermal ornithine decarboxylase (ODC) activity by TPA. In vitro, the incorporation of [3H]DAU into isolated epidermal cells resembles more that of the HL-60 cells resistant to vincristine than that of the parental cell line. TPA does not alter the incorporation of [3H]DAU into epidermal cells. The Ca2+ antagonists verapamil (VRP) and trifluoperazine (TFP) enhance significantly the amount of [3H]DAU associated with the epidermal cells after 1 h. When applied shortly before TPA in vivo, VRP and TFP inhibit TPA-induced ODC activity at 5 h and TPA-induced DNA synthesis at 17 h. Moreover, the combinations of Ca2+ antagonists and anthracycline antibiotics administered before TPA inhibit synergistically these ODC and DNA responses to the tumor promoter. When they are applied at various times after TPA treatment, the same combinations of ADR or DAU and VRP or TFP fail to alter TPA-induced RNA and protein synthesis but still exert synergistic inhibitory effects on the peak of DNA synthesis observed 17 h after TPA. However, the chronic administration of ADR and DAU alone or in combination with VRP prior to the peak of TPA-induced DNA synthesis 16 h after each promotion treatment with TPA fails to alter the promotion of skin papillomas in the two-stage protocol of mouse skin carcinogenesis. In contrast, when administered alone or in combination with DAU prior to each TPA treatment, VRP inhibits skin tumor promotion and reveals the antitumor-promoting activity of DAU. These results point to the modulatory role of Ca2+ in the action of ADR and TPA and demonstrate the refractory nature of mouse epidermis to cancer chemotherapy by anthracycline antibiotics. However, ADR and DAU may be effective against skin tumor promotion if they are applied in combination with Ca2+ antagonists and at a time when they can inhibit the inductions of both ODC activity and DNA synthesis by TPA.  相似文献   

20.
The modifying effects of topical application of the phenolic antioxidant protocatechuic acid (PA) on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin tumor promotion were investigated. Dimethylbenz[a]anthracene-initiated female ICR mice were treated with TPA (1.6 nmol) twice weekly for 20 weeks to promote papilloma formation. Pre-treatment with 16nmol PA 30 min prior to each TPA treatment significantly inhibited the number of papillomas per mouse by 52% (P < 0.05). On the other hand, PA pre-treatment at a high dose (1600 nmol) significantly enhanced tumor numbers by 38% (P < 0.05). Interestingly, in the group treated with a quite high dose (20000 nmol) of PA 5 min prior to each TPA application, the average number of tumors per mouse was reduced by 38%, whereas the same PA dose 3 h before TPA treatment significantly enhanced tumor numbers by 84% (P < 0.01). These results suggested that topically applied PA was converted to compound(s) lacking antioxidative properties and/or rather possessing the potential to enhance tumor development. A similar tendency was also observed in the short-term experiment of TPA-induced inflammation and oxidative stress; i.e. two groups pre-treated with PA at 20000 nmol, 30min and 3h before TPA treatment, did not show suppression or even significantly enhanced TPA-induced leukocyte infiltration, H(2)O(2) generation, thiobarbituric acid-reacting substances level and proliferating cell nuclear antigen index, while PA treatment together with TPA significantly suppressed these parameters. Treatment with a high dose (20000 nmol) of PA alone for 3h enhanced oxidative stress by reducing glutathione levels in mouse skin, which was counteracted by the tyrosinase inhibitor arbutin. Oxidative stress responses such as leukocyte infiltration and H(2)O(2) generation were also counteracted by arbutin. These results suggested that tyrosinase-dependent oxidative metabolism of PA was at least partially involved in the enhanced effects of PA on TPA-induced inflammatory responses and thus tumor promotion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号