首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maternal fructose consumption during pregnancy and lactation is associated with metabolic dysregulation in offspring. We tested the hypothesis that fish oil (FO) supplementation during pregnancy and lactation improves fructose-induced metabolic dysregulation in postpartum dams and offspring mice. We therefore aimed to determine the effects of FO supplementation on metabolic disruption in neonatal mice and dams induced by a maternal high-fructose diet (HFrD). The weight of the offspring of dams fed with HFrD on postnatal day 5 was significantly low, but this was reversed by adding FO to the maternal diet. Feeding dams with HFrD significantly increased plasma concentrations of triglycerides, uric acid, and total cholesterol, and decreased free fatty acid concentrations in offspring. Maternal supplementation with FO significantly suppressed HFrD-induced hypertriglyceridemia and hyperuricemia in the offspring. Maternal HFrD induced remarkable mRNA expression of the lipogenic genes Srebf1, Fasn, Acc1, Scd1, and Acly in the postpartum mouse liver without affecting hepatic and plasma lipid levels. Although expression levels of lipogenic genes were higher in the livers of postpartum dams than in those of nonmated mice, HFrD feeding increased the hepatic lipid accumulation in nonmated mice but not in postpartum dams. These findings suggest that although hepatic lipogenic activity is higher in postpartum dams than nonmated mice, the lipid consumption is enhanced in postpartum dams during pregnancy and lactation. Maternal FO supplementation obviously suppressed the expression of these lipogenic genes. These findings coincide with reduced plasma triglyceride concentrations in the offspring. Therefore, dietary FO apparently ameliorated maternal HFrD-induced dyslipidemia in offspring by suppressing maternal lipogenic gene expression and/or neonatal plasma levels of uric acid.  相似文献   

2.
The prevalence of nonalcoholic fatty liver disease (NAFLD) is growing worldwide in association with Western-style diet and increasing obesity. Lingonberry (Vaccinium vitis-idaea L.) is rich in polyphenols and has been shown to attenuate adverse metabolic changes in obese liver. This paper investigated the effects of lingonberry supplementation on hepatic gene expression in high-fat diet induced obesity in a mouse model. C57BL/6N male mice were fed for six weeks with either a high-fat (HF) or low-fat (LF) diet (46% and 10% energy from fat, respectively) or HF diet supplemented with air-dried lingonberry powder (HF + LGB). HF diet induced a major phenotypic change in the liver, predominantly affecting genes involved in inflammation and in glucose and lipid metabolism. Lingonberry supplementation prevented the effect of HF diet on an array of genes (in total on 263 genes) associated particularly with lipid or glucose metabolic process (such as Mogat1, Plin4, Igfbp2), inflammatory/immune response or cell migration (such as Lcn2, Saa1, Saa2, Cxcl14, Gcp1, S100a10) and cell cycle regulation (such as Cdkn1a, Tubb2a, Tubb6). The present results suggest that lingonberry supplementation prevents HF diet-induced adverse changes in the liver that are known to predispose the development of NAFLD and its comorbidities. The findings encourage carrying out human intervention trials to confirm the results, with the aim of recommending the use of lingonberries as a part of healthy diet against obesity and its hepatic and metabolic comorbidities.  相似文献   

3.
Maternal choline intakes are below recommendations, potentially impairing the child’s later-life metabolic health. This study aims to elucidate the interaction between the choline content of the gestational diet (GD) and fat content of the post-weaning diet (PWD) on metabolic phenotype of male Wistar rats. Pregnant Wistar rats were fed a standard rodent diet (AIN-93G) with either recommended choline (RC, 1 g/kg diet choline bitartrate) or high choline (HC, 2.5-fold). Male pups were weaned to either a normal (16%) fat (NF) or a high (45%) fat (HF) diet for 17 weeks. Body weight, visceral adiposity, food intake, energy expenditure, plasma hormones, triglycerides, and hepatic fatty acids were measured. HC-HF offspring had 7% lower body weight but not food intake, and lower adiposity, plasma triglycerides, and insulin resistance compared to RC-HF. They also had increased hepatic n-3 fatty acids and a reduced n-6/n-3 and C 18:1 n-9/C18:0 ratios. In contrast, HC-NF offspring had 6–8% higher cumulative food intake and body weight, as well as increased leptin and elevated hepatic C16:1 n-7/C16:0 ratio compared to RC-NF. Therefore, gestational choline supplementation associated with improved long-term regulation of several biomarkers of the metabolic syndrome in male Wistar rat offspring fed a HF, but not a NF, PWD.  相似文献   

4.

Purpose

To investigate the effect of cocoa powder supplementation on obesity-related inflammation in high fat (HF)-fed obese mice.

Methods

Male C57BL/6J (n = 126) were fed with either low-fat (LF, 10 % kcal from fat) or HF (60 % kcal from fat) diet for 18 weeks. After 8 weeks, mice from HF group were randomized to HF diet or HF diet supplemented with 8 % cocoa powder (HF–HFC group) for 10 weeks. Blood and tissue samples were collected for biochemical analyses.

Results

Cocoa powder supplementation significantly reduced the rate of body weight gain (15.8 %) and increased fecal lipid content (55.2 %) compared to HF-fed control mice. Further, cocoa supplementation attenuated insulin resistance, as indicated by improved HOMA-IR, and reduced the severity of obesity-related fatty liver disease (decreased plasma alanine aminotransferase and liver triglyceride) compared to HF group. Cocoa supplementation also significantly decreased plasma levels of the pro-inflammatory mediators interleukin-6 (IL-6, 30.4 %), monocyte chemoattractant protein-1 (MCP-1, 25.2 %), and increased adiponectin (33.7 %) compared to HF-fed mice. Expression of pro-inflammatory genes (Il6, Il12b, Nos2, and Emr1) in the stromal vascular fraction (SVF) of the epididymal white adipose tissue (WAT) was significantly reduced (37–56 %) in the cocoa-supplemented mice.

Conclusions

Dietary supplementation with cocoa ameliorates obesity-related inflammation, insulin resistance, and fatty liver disease in HF-fed obese mice, principally through the down-regulation of pro-inflammatory gene expression in WAT. These effects appear to be mediated in part by a modulation of dietary fat absorption and inhibition of macrophage infiltration in WAT.  相似文献   

5.
Children are prescribed second-generation antipsychotic (SGA) medications, such as olanzapine (OLZ) for FDA-approved and “off-label” indications. The long-term impact of early-life SGA medication exposure is unclear. Olanzapine and other SGA medications are known to cause excessive weight gain in young and adult patients, suggesting the possibility of long-term complications associated with the use of these drugs, such as obesity, diabetes, and heart disease. Further, the weight gain effects of OLZ have previously been shown to depend on the presence of gut bacteria and treatment with OLZ, which shifts gut bacteria toward an “obesogenic” profile. The purpose of the current study was to evaluate changes in gut bacteria in adult mice following early life treatment with OLZ and being fed either a high-fat diet or a high-fat diet supplemented with fish oil, which has previously been shown to counteract gut dysbiosis, weight gain, and inflammation produced by a high-fat diet. Female and male C57Bl/6J mice were fed a high fat diet without (HF) or with the supplementation of fish oil (HF-FO) and treated with OLZ from postnatal day (PND) 37–65 resulting in four groups of mice: mice fed a HF diet and treated with OLZ (HF-OLZ), mice fed a HF diet and treated with vehicle (HF), mice fed a HF-FO diet and treated with OLZ (HF-FO-OLZ), and mice fed a HF-FO diet and treated with vehicle (HF-FO). Following euthanasia at approximately 164 days of age, we determined changes in gut bacteria populations and serum LPS binding protein, an established marker of gut inflammation and dysbiosis. Our results showed that male HF-FO and HF-FO-OLZ mice had lower body weights, at sacrifice, compared to the HF group, with a comparable body weight across groups in female mice. HF-FO and HF-FO-OLZ male groups also exhibited lower serum LPS binding protein levels compared to the HF group, with no differences across groups in female mice. Gut microbiota profiles were also different among the four groups; the Bacteroidetes-to-Firmicutes (B/F) ratio had the lowest value of 0.51 in the HF group compared to 0.6 in HF-OLZ, 0.9 in HF-FO, and 1.1 in HF-FO-OLZ, with no differences in female mice. In conclusion, FO reduced dietary obesity and its associated inflammation and increased the B/F ratio in male mice but did not benefit the female mice. Although the weight lowering effects of OLZ were unexpected, FO effects persisted in the presence of olanzapine, demonstrating its potential protective effects in male subjects using antipsychotic drugs.  相似文献   

6.
OBJECTIVE: To determine whether altered dietary essential fatty acid (linoleic and arachidonic acid) concentrations alter sensitivity to conjugated linoleic acid (CLA)-induced body fat loss or DNA fragmentation. RESEARCH METHODS AND PROCEDURES: Mice were fed diets containing soy oil (control), coconut oil [essential fatty acid deficient (EFAD)], or fish oil (FO) for 42 days, and then diets were supplemented with a mixture of CLA isomers (0.5% of the diet) for 14 days. Body fat index, fat pad and liver weights, DNA fragmentation in adipose tissue, and fatty acid profiles of adipose tissue were determined. RESULTS: The EFAD diet decreased (p < 0.05) linoleic and arachidonic acid in mouse adipose tissue but did not affect body fat. Dietary CLA caused a reduction (p < 0.05) in body fat. Mice fed the EFAD diet and then supplemented with CLA exhibited a greater reduction (p < 0.001) in body fat (20.21% vs. 6.94% in EFAD and EFAD + CLA-fed mice, respectively) compared with mice fed soy oil. Dietary FO decreased linoleic acid and increased arachidonic acid in mouse adipose tissue. Mice fed FO or CLA were leaner (p < 0.05) than control mice. FO + CLA-fed mice did not differ in body fat compared with FO-fed mice. Adipose tissue apoptosis was increased (p < 0.001) in CLA-supplemented mice and was not affected by fat source. DISCUSSION: Reductions in linoleic acid concentration made mice more sensitive to CLA-induced body fat loss only when arachidonic acid concentrations were also reduced. Dietary essential fatty acids did not affect CLA-induced DNA fragmentation.  相似文献   

7.
The effect of lycopene supplementation on the antioxidant system was investigated by analyzing lipid peroxide levels, glutathione contents, and antioxidant enzyme activities in Mongolian gerbils fed a high fat diet. Gerbils were fed on each experimental diet for 6 weeks; normal diet (NC), normal diet with 0.05% lycopene (NL), high fat diet (HF), and a high fat diet with 0.05% lycopene (HFL). Dietary supplementation of lycopene increased hepatic lycopene level in gerbils fed a normal or high fat diet (P < 0.05). Liver and erythrocyte concentrations of lipid peroxide increased in gerbils fed a high fat diet, whereas lycopene supplementation decreased liver and erythrocyte concentrations of lipid peroxide (P < 0.05). Hepatic total glutathione content was higher in the NL group than that in the NC group (P < 0.05). Total antioxidant status in plasma increased following lycopene supplementation compared with that of the non-lycopene supplemented groups (P < 0.05). Hepatic catalase activity increased following dietary lycopene supplementation (P < 0.05). Superoxide dismutase activity in liver remained unchanged with lycopene supplementation, but erythrocyte superoxide dismutase activity increased in NL group compared with NC group (P < 0.05). Glutathione-S-transferase activity increased in the NL group compared to NC group (P < 0.05). Liver and erythrocyte glutathione peroxidase activity increased significantly in the NL group compared to that in the HF group (P < 0.05). Liver glutathione reductase activity was higher in the NL group than that in the NC group (P < 0.05). These results suggest that lycopene supplementation may be efficient for preventing chronic diseases induced by oxidative stress related to high fat diet.  相似文献   

8.
Obesity is associated with a markedly increased risk of nonalcoholic fatty liver disease. The anti-inflammatory polyphenol resveratrol possess promising properties in preventing this metabolic condition by dampening the pathological inflammatory reaction in the hepatic tissue. However, in the current study, we hypothesize that the beneficial effect of resveratrol is not solely attributable to its anti-inflammatory potential. Eight-week-old male Wistar rats were randomly distributed into 3 groups of 12 animals each: control diet (C), high-fat diet (HF), and HF supplemented with 100 mg resveratrol daily (HFR). After 8 weeks of dietary treatment, the rats were euthanized and relevant tissues were prepared for subsequent analysis. Resveratrol prevented the high fat–induced steatosis assessed by semiquantitative grading, which furthermore corresponded with a complete normalization of the hepatic triglyceride content (P < .001), despite no change in total body fat. In HFR, the hepatic uncoupling protein 2 expression was significantly increased by 76% and 298% as compared with HF and C, respectively. Moreover, the hepatic mitochondria content in HFR was significantly higher as compared with both C and HF (P < .001 and P = .004, respectively). We found no signs of hepatic inflammation, hereby demonstrating that resveratrol protects against fatty liver disease independently of its proposed anti-inflammatory potential. Our data might indicate that an increased number of mitochondria and, particularly, an increase in hepatic uncoupling protein 2 expression are involved in normalizing the hepatic fat content due to resveratrol supplementation in rodents fed a high-fat diet.  相似文献   

9.
Fucoxanthin (FCX) is a xanthophyll carotenoid present in brown seaweed. The goal of this study was to examine whether FCX supplementation could attenuate obesity-associated metabolic abnormalities, fibrosis, and inflammation in two diet-induced obesity (DIO) mouse models. C57BL/6J mice were fed either a high-fat/high-sucrose/high-cholesterol (HFC) diet or a high-fat/high-sucrose (HFS) diet. The former induces more severe liver injury than the latter model. In the first study, male C57BL/6J mice were fed an HFC diet, or an HFC diet containing 0.015% or 0.03% (w/w) FCX powder for 12 weeks to develop obesity-induced nonalcoholic steatohepatitis (NASH). In the second study, mice were fed an HFS diet or an HFS diet containing 0.01% FCX powder for 8 weeks. FCX did not change body weight gain and serum lipid profiles compared to the HFC or HFS controls. No significant differences were present in liver triglyceride and total cholesterol, hepatic fat accumulation, and serum alanine aminotransferase levels between control and FCX-fed mice regardless of whether they were on an HFC or HFS diet. FCX did not mitigate mRNA abundance of genes involved in lipid synthesis, cholesterol metabolism, inflammation, and fibrosis in the liver and white adipose tissue, while hepatic fatty acid β-oxidation genes were significantly elevated by FCX in both HFC and HFS feeding studies. Additionally, in the soleus muscle, FCX supplementation significantly elevated genes that regulate mitochondrial biogenesis and fatty acid β-oxidation, concomitantly increasing mitochondrial DNA copy number, compared with HFC. In summary, FCX supplementation had minor effects on hepatic and white adipose inflammation and fibrosis in two different DIO mouse models.  相似文献   

10.
During pregnancy, selenium (Se) and folate requirements increase, with deficiencies linked to neural tube defects (folate) and DNA oxidation (Se). This study investigated the effect of a high-fat diet either supplemented with (diet H), or marginally deficient in (diet L), Se and folate. Pregnant female mice and their male offspring were assigned to one of four treatments: diet H during gestation, lactation and post-weaning; diet L during gestation, lactation and post-weaning; diet H during gestation and lactation but diet L fed to offspring post-weaning; or diet L during gestation and lactation followed by diet H fed to offspring post-weaning. Microarray and pathway analyses were performed using RNA from colon and liver of 12-week-old male offspring. Gene set enrichment analysis of liver gene expression showed that diet L affected several pathways including regulation of translation (protein biosynthesis), methyl group metabolism, and fatty acid metabolism; this effect was stronger when the diet was fed to mothers, rather than to offspring. No significant differences in individual gene expression were observed in colon but there were significant differences in cell cycle control pathways. In conclusion, a maternal low Se/folate diet during gestation and lactation has more effects on gene expression in offspring than the same diet fed to offspring post-weaning; low Se and folate in utero and during lactation thus has persistent metabolic effects in the offspring.  相似文献   

11.
OBJECTIVE: This study examined whether yogurt supplementation attenuated the weight gain and insulin resistance in mice fed a moderate-fat diet. METHODS: Nine-week-old male mice (F1 BTBR x C57Bl6/J) were housed individually for the duration of the study. After initial measurements of body weight and composition, mice were randomly assigned to receive one of two isocaloric diets (19.4% kcal protein, 45.5% kcal carbohydrate, and 35.1% kcal fat). One diet was supplemented with dried yogurt powder (10.75 g/100 g of diet). In the first experiment, mice received the diets for 4 wk, after which body weight and body composition were reassessed. In the second experiment, an insulin tolerance test was performed at week 4 and glucose uptake in gonadal fat was assessed at week 5. RESULTS: Baseline body weight was not significantly different between control and yogurt mice (P = 0.85). Body weight and fat mass increased significantly over time (P < 0.001) and there was a significant effect of diet on the increase in body weight (P < 0.05) and fat mass (P < 0.001), with the yogurt mice gaining less weight and fat than the control mice. Food intake was not significantly affected by the yogurt supplementation (P = 0.906). Digestive efficiency was significantly lower in the yogurt mice (P < 0.05) due to greater fecal production (P < 0.01). There was no significant effect of diet on the glucose area under the curve during the insulin tolerance test (P = 0.24). Glucose uptake in the gonadal fat was significantly higher in the yogurt mice than in controls under basal (P < 0.05) and insulin-stimulated (P < 0.05) conditions. CONCLUSION: Yogurt supplementation resulted in less weight and fat gain in mice fed isocaloric diets due to a decrease in digestive efficiency. Yogurt also enhanced the uptake of glucose in fat but did not significantly improve insulin sensitivity.  相似文献   

12.
The aim of the present study was to investigate the effects of Bifidobacterium adolescentis (Bif) supplementation on visceral fat accumulation and insulin sensitivity of the metabolic syndrome in HF-diet-fed rats. Adult male Wistar rats (n 10 per group) were fed four different experimental diets for 12 weeks as follows: standard diet; high-fat (HF) diet; a mix of HF diet and Bif; a mix of standard diet and Bif. Liver, mesenteric fat, epididymal fat, retroperitoneal fat, and inguinal fat, pancreas and triceps surae in all four groups of the rats were weighed, while liver steatosis and insulin sensitivity were evaluated at the end point of the study. As the number of intestinal Bifidobacterium species decreased obviously, fat pad weight and body weight increased significantly in the HF group compared with in the other three groups (P <0·05). Addition of Bif led to a reduction in body weight and fat pad weight (P <0·05). With an increase in liver weight, more severe steatosis of hepatocytes was observed in the HF group compared with in the other three groups. A significant decrease of the glucose infusion rate and pancreas weight was found in the HF group (P <0·05). This deleterious effect was alleviated when Bif was added to the diets. Bifidobacterium supplementation ameliorated visceral fat accumulation and insulin sensitivity of the metabolic syndrome in HF-diet-fed rats.  相似文献   

13.
Weight regain after fasting, often exceeding the pre-fasting weight, is a common phenomenon and big problem for the treatment of obesity. Thus, novel interventions maintaining reduced body weight are critically important to prevent metabolic disease. Here we investigate the metabolic effects of dietary L-serine supplementation, known to modulate various organ functions. C57BL/6N-Rj male mice were supplemented with or without 1% L-serine in their drinking water and fed with a chow or high-fat diet. Mice were fed either ad libitum or subjected to repeated overnight fasting. Body weight, body composition, glucose tolerance and energy metabolism were assessed. This was combined with a detailed analysis of the liver and adipose tissues, including the use of primary brown adipocytes to study mitochondrial respiration and protein expression. We find that L-serine supplementation has little impact on systemic metabolism in ad libitum-fed mice. Conversely, L-serine supplementation blunted fasting-induced body weight regain, especially in diet-induced obese mice. This reduction in body weight regain is likely due to the increased energy expenditure, based on elevated brown adipose tissue activity. Thus, L-serine supplementation during and after weight-loss could reduce weight regain and thereby help tackle one of the major problems of current obesity therapies.  相似文献   

14.
The aim of the present study was to examine the effects of creatine supplementation on liver fat accumulation induced by a high-fat diet in rats. Rats were fed 1 of 3 different diets for 3 wk: a control liquid diet (C), a high-fat liquid diet (HF), or a high-fat liquid diet supplemented with creatine (HFC). The C and HF diets contained, respectively, 35 and 71% of energy derived from fat. Creatine supplementation involved the addition of 1% (wt:v) of creatine monohydrate to the liquid diet. The HF diet increased total liver fat concentration, liver TG, and liver TBARS and decreased the hepatic S-adenosylmethionine (SAM) concentration. Creatine supplementation normalized all of these perturbations. Creatine supplementation significantly decreased the renal activity of l-arginine:glycine amidinotransferase and plasma guanidinoacetate and prevented the decrease in hepatic SAM concentration in rats fed the HF diet. However, there was no change in either the phosphatidylcholine:phosphatidylethanolamine (PE) ratio or PE N-methyltransferase activity. The HF diet decreased mRNA for PPARα as well as 2 of its targets, carnitine palmitoyltransferase and long-chain acylCoA dehydrogenase. Creatine supplementation normalized these mRNA levels. In conclusion, creatine supplementation prevented the fatty liver induced by feeding rats a HF diet, probably by normalization of the expression of key genes of β-oxidation.  相似文献   

15.

Purpose

Prenatal undernutrition followed by postweaning feeding of a high-fat diet results in obesity in the adult offspring. In this study, we investigated whether diet-induced thermogenesis is altered as a result of such nutritional mismatch.

Methods

Female MF-1 mice were fed a normal protein (NP, 18 % casein) or a protein-restricted (PR, 9 % casein) diet throughout pregnancy and lactation. After weaning, male offspring of both groups were fed either a high-fat diet (HF; 45 % kcal fat) or standard chow (C, 7 % kcal fat) to generate the NP/C, NP/HF, PR/C and PR/HF adult offspring groups (n = 7–11 per group).

Results

PR/C and NP/C offspring have similar body weights at 30 weeks of age. Postweaning HF feeding resulted in significantly heavier NP/HF offspring (P < 0.01), but not in PR/HF offspring, compared with their chow-fed counterparts. However, the PR/HF offspring exhibited greater adiposity (P < 0.01) v the NP/HF group. The NP/HF offspring had increased energy expenditure and increased mRNA expression of uncoupling protein-1 and β-3 adrenergic receptor in the interscapular brown adipose tissue (iBAT) compared with the NP/C mice (both at P < 0.01). No such differences in energy expenditure and iBAT gene expression were observed between the PR/HF and PR/C offspring.

Conclusions

These data suggest that a mismatch between maternal diet during pregnancy and lactation, and the postweaning diet of the offspring, can attenuate diet-induced thermogenesis in the iBAT, resulting in the development of obesity in adulthood.  相似文献   

16.
In this study, we investigated the effects of the major green tea polyphenol, (-)-epigallocatechin-3-gallate (EGCG), on high-fat-induced obesity, symptoms of the metabolic syndrome, and fatty liver in mice. In mice fed a high-fat diet (60% energy as fat), supplementation with dietary EGCG treatment (3.2 g/kg diet) for 16 wk reduced body weight (BW) gain, percent body fat, and visceral fat weight (P < 0.05) compared with mice without EGCG treatment. The BW decrease was associated with increased fecal lipids in the high-fat-fed groups (r(2) = 0.521; P < 0.05). EGCG treatment attenuated insulin resistance, plasma cholesterol, and monocyte chemoattractant protein concentrations in high-fat-fed mice (P < 0.05). EGCG treatment also decreased liver weight, liver triglycerides, and plasma alanine aminotransferase concentrations in high-fat-fed mice (P < 0.05). Histological analyses of liver samples revealed decreased lipid accumulation in hepatocytes in mice treated with EGCG compared with high-fat diet-fed mice without EGCG treatment. In another experiment, 3-mo-old high-fat-induced obese mice receiving short-term EGCG treatment (3.2 g/kg diet, 4 wk) had decreased mesenteric fat weight and blood glucose compared with high-fat-fed control mice (P < 0.05). Our results indicate that long-term EGCG treatment attenuated the development of obesity, symptoms associated with the metabolic syndrome, and fatty liver. Short-term EGCG treatment appeared to reverse preexisting high-fat-induced metabolic pathologies in obese mice. These effects may be mediated by decreased lipid absorption, decreased inflammation, and other mechanisms.  相似文献   

17.
Chitooligosaccharide (CO) has been reported to have potential antiobestic effects in a few studies, but the antiobesity properties of CO and its related mechanisms in models of dietary obesity remain unclear. We investigated the effect of CO on body weight gain, size of adipocytes, adipokines, and lipid profiles in high-fat (HF) diet-induced obese mice and on the gene expression in adipose tissue using a complementary DNA microarray approach to test the hypothesis that CO supplementation would alleviate HF diet-induced obesity by the alteration of adipose tissue-specific gene expression. Male C57BL/6N mice were fed a normal diet (control), HF diet, or CO-supplemented HF diet (1% or 3%) for 5 months. Compared with the HF diet mice, mice fed the 3% CO-supplemented diet gained 15% less weight but did not display any change in food and energy intake. Chitooligosaccharide supplementation markedly improved serum and hepatic lipid profiles. Histologic examination showed that epididymal adipocyte size was smaller in mice fed the HF + 3% CO. Microarray analysis showed that dietary CO supplementation modulated adipogenesis-related genes such as matrix metallopeptidases 3, 12, 13, and 14; tissue inhibitor of metalloproteinase 1; and cathepsin k in the adipose tissues. Twenty-five percent of the CO-responsive genes identified are involved in immune responses including the inflammatory response and cytokine production. These results suggest that CO supplementation may help ameliorate HF diet-induced weight gain and improve serum and liver lipid profile abnormalities, which are associated, at least in part, with altered adipose tissue gene expression involved in adipogenesis and inflammation.  相似文献   

18.
Maternal high-fat (HF) diet feeding is associated with increased risk of developing metabolism-related diseases in adult offspring, including chronic liver disease. The present study tested the hypothesis that maternal HF diet leads to a decreased antioxidant defense capacity and causes cellular senescence in liver of adult offspring rats, which might increase risk of developing chronic liver disease. Timed-pregnant Sprague Dawley rats were fed a HF diet (45% of energy from fat) or a control (C) diet (16% of energy from fat) during gestation and lactation. The resulting offspring were fed a C diet after weaning to generate 2 offspring groups: C diet-fed offspring of dams fed C diet (C/C) and C diet-fed offspring of dams fed a HF diet (HF/C). At 12 wk of age, male rats were killed and samples were collected for analysis. Maternal HF diet significantly increased plasma TG and hepatic TBARS concentrations and the size of hepatic lipid droplets in offspring rats. The expression of antioxidant defense genes, such as glutathione peroxidase-1, Cu/Zn superoxide dismutase (Sod1), paraoxonase enzymes (Pon1, Pon2, and Pon3), were significantly lower in the liver of HF/C pups than in C/C pups. The expression of Inhibitor of cyclin dependent Kinase 4a (p16INK4a), a marker of cellular senescence, and cyclooxygenase-2 (Cox2), a proinflammatory marker, was significantly higher in the HF/C offspring group than in the C/C offspring group. Western-blot analysis shows that cyclin D1 and phosphorylated retinoblastoma protein were significantly lower in HF/C offspring than in C/C offspring. The results provide the first evidence to our knowledge that maternal HF diet might alter antioxidant defense capacity and program the p16INK4a-dependent cellular senescence in the liver of adult offspring.  相似文献   

19.
Low-carbohydrate and high-fat diets have been used for body weight (BW) control, but their adverse effects on lipid profiles have raised concern. Fish oil (FO), rich in omega-3 polyunsaturated fatty acids, has profound effects on lipid metabolism. We hypothesized that FO supplementation might improve the lipid metabolic disturbance elicited by low-carbohydrate and high-fat diets. Male SD rats were randomized into normal control diet (NC), high-fat diet (HF), and low-carbohydrate/high-fat diet (LC) groups in experiment 1, and NC, LC, LC + 5% FO (5CF), and LC + 10% FO diet (10CF) groups in experiment 2. The experimental duration was 11 weeks. In the LC group, a ketotic state was induced, and food intake was decreased; however, it did not result in BW loss compared to either the HF or NC groups. In the 5CF group, rats lost significant BW. Dyslipidemia, perirenal and epididymal fat accumulation, hepatic steatosis, and increases in triglyceride and plasma leptin levels were observed in the LC group but were attenuated by FO supplementation. These findings suggest that a ketogenic low-carbohydrate/high-fat diet with no favorable effect on body weight causes visceral and liver lipid accumulation. FO supplementation not only aids in body weight control but also improves lipid metabolism in low-carbohydrate/high-fat diet-fed rats.  相似文献   

20.
Maternal supplementation during pregnancy with docosahexaenoic acid (DHA) is internationally recommended to avoid postpartum maternal depression in the mother and improve cognitive and neurological outcomes in the offspring. This study was aimed at determining whether this nutritional intervention, in the rat, protects the offspring against the development of obesity and its associated metabolic disorders. Pregnant Wistar rats received an extract of fish oil enriched in DHA or saline (SAL) as placebo by mouth from the beginning of gestation to the end of lactation. At weaning, pups were fed standard chow or a free-choice, high-fat, high-sugar (fc-HFHS) diet. Compared to animals fed standard chow, rats exposed to the fc-HFHS diet exhibited increased body weight, liver weight, body fat and leptin in serum independently of saline or DHA maternal supplementation. Nevertheless, maternal DHA supplementation prevented both the glucose intolerance and the rise in serum insulin resulting from consumption of the fc-HFHS diet. In addition, animals from the DHA-fc-HFHS diet group showed decreased hepatic triglyceride accumulation compared to SAL-fc-HFHS rats. The beneficial effects on glucose homeostasis declined with age in male rats. Yet, the preventive action against hepatic steatosis was still present in 6-month-old animals of both sexes and was associated with decreased hepatic expression of lipogenic genes. The results of the present work show that maternal DHA supplementation during pregnancy programs a healthy phenotype into the offspring that was protective against the deleterious effects of an obesogenic diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号