首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heart failure (HF), as the terminal stage of various heart diseases, seriously threatens an individual’s life, health, and quality of life. Emerging evidence has shown that the gut microbiota comprises an important component of human physiology and metabolic homeostasis, and can directly or indirectly affect the metabolic health of the host through metabolites. Upon in-depth study of intestinal microecology, the “gut-heart axis” appears to provide a novel direction for HF research. Thus, this review primarily focuses on the relationship between the gut microbiota and its major metabolites—i.e., short-chain fatty acids (SCFAs)—and HF. It explores the mechanisms underlying HF and its effective treatment by targeting SCFAs to optimize current HF treatment and thus improve the quality of patients’ lives.  相似文献   

2.
Evidence shows that breast milk microbiota and an infant’s gut microbiota are related. This study aimed to compare the effects of breast milk microbiota on the construction and colonization of gut microbiota in newborns. In this study, 23 healthy infants were selected and divided into a breastfeeding group (13) and a mixed feeding group (10) based on the feeding method within one month of age. Infant fecal and breast milk samples were collected on the day of birth (0 day) and 30 days after birth (30 days) for 16S rRNA second-generation sequencing and SCFA detection. The results showed that Firmicutes and Actinobacteriota on day 0 and Firmicutes and Proteobacteria on 30 d dominated breast milk gut microbiota. There were correlations between the breast milk microbiota and the infant gut microbiota in each group (p < 0.05). Additionally, breast milk microbiota correlated more significantly with infants’ SCFAs in the breastfeeding group than in the mixed feeding group. This study showed that breast milk microbiota partially influences the construction of infant gut microbiota, with some key strains having a crucial influence, such as Lactobacillus, Bifidobacterium, and Enterobacter. However, the effect of breast milk microbiota on infant gut microbiota is not through direct strain transmission but has been indirectly influenced, which may be related to the cross-feeding effect mediated by SCFAs.  相似文献   

3.
The adverse effects of anti-tuberculosis (TB) drugs in the intestines were related to alteration of the intestinal microbiota. However, there was less information about microbial metabolism on the adverse reactions. This study aimed to explore whether Lactobacillus casei could regulate gut microbiota or short-chain fatty acids (SCFAs) disorders to protect intestinal adverse reactions induced by isoniazid (H) and rifampicin (R). Male Wistar rats were given low and high doses of Lactobacillus casei two hours before daily administration of anti-TB drugs. After 42 days, colon tissue and blood were collected for analysis. The feces at two-week and six-week were collected to analyze the microbial composition and the content of SCFAs in colon contents was determined. Supplementation of Lactobacillus casei increased the proportion of intestinal goblet cells induced by H and R (p < 0.05). In addition, HR also reduced the level of mucin-2 (p < 0.05), and supplementation of Lactobacillus casei restored. After two weeks of HR intervention, a decrease in OTUs, diversity index, the abundance of Bacteroides, Akkermansia, and Blautia, and an increase of the abundance of Lacetospiraceae NK4A136 group and Rumencoccus UCG-005, were observed compared with the control group (p all < 0.05). These indices in Lactobacillus casei intervention groups were similar to the HR group. Six-week intervention resulted in a dramatic reduction of Lacetospiraceae NK4A136 group, butyric acid, valeric acid and hexanoic acid, while an increase of Bacteroides and Blautia (p all < 0.05). Pretreatment with Lactobacillus casei significantly increased the content of hexanoic acid compared with HR group (p < 0.05). Lactobacillus casei might prevent intestinal injury induced by anti-tuberculosis drugs by regulating gut microbiota and SCFAs metabolism.  相似文献   

4.
Short-chain fatty acids (SCFAs), as products of intestinal bacterial metabolism, are particularly relevant in the diagnosis of intestinal dysbiosis. The most common studies of microbiome metabolites include butyric acid, propionic acid and acetic acid, which occur in varying proportions depending on diet, age, coexisting disease and other factors. During pregnancy, metabolic changes related to the protection of energy homeostasis are of fundamental importance for the developing fetus, its future metabolic fate and the mother’s health. SCFAs act as signaling molecules that regulate the body’s energy balance through G-protein receptors. GPR41 receptors affect metabolism through the microflora, while GPR43 receptors are recognized as a molecular link between diet, microflora, gastrointestinal tract, immunity and the inflammatory response. The possible mechanism by which the gut microflora may contribute to fat storage, as well as the occurrence of gestational insulin resistance, is blocking the expression of the fasting-induced adipose factor. SCFAs, in particular propionic acid via GPR, determine the development and metabolic programming of the fetus in pregnant women. The mechanisms regulating lipid metabolism during pregnancy are similar to those found in obese people and those with impaired microbiome and its metabolites. The implications of SCFAs and metabolic disorders during pregnancy are therefore critical to maternal health and neonatal development. In this review paper, we summarize the current knowledge about SCFAs, their potential impact and possible mechanisms of action in relation to maternal metabolism during pregnancy. Therefore, they constitute a contemporary challenge to practical nutritional therapy. Material and methods: The PubMed database were searched for “pregnancy”, “lipids”, “SCFA” in conjunction with “diabetes”, “hypertension”, and “microbiota”, and searches were limited to work published for a period not exceeding 20 years in the past. Out of 2927 publication items, 2778 papers were excluded from the analysis, due to being unrelated to the main topic, conference summaries and/or articles written in a language other than English, while the remaining 126 publications were included in the analysis.  相似文献   

5.
The gut microbiota is closely related to good health; thus, there have been extensive efforts dedicated to improving health by controlling the gut microbial environment. Probiotics and prebiotics are being developed to support a healthier intestinal environment. However, much work remains to be performed to provide effective solutions to overcome individual differences in the gut microbial community. This study examined the importance of nutrients, other than dietary fiber, on the survival of gut bacteria in high-health-conscious populations. We found that vitamin B1, which is an essential nutrient for humans, had a significant effect on the survival and competition of bacteria in the symbiotic gut microbiota. In particular, sufficient dietary vitamin B1 intake affects the relative abundance of Ruminococcaceae, and these bacteria have proven to require dietary vitamin B1 because they lack the de novo vitamin B1 synthetic pathway. Moreover, we demonstrated that vitamin B1 is involved in the production of butyrate, along with the amount of acetate in the intestinal environment. We established the causality of possible associations and obtained mechanical insight, through in vivo murine experiments and in silico pathway analyses. These findings serve as a reference to support the development of methods to establish optimal intestinal environment conditions for healthy lifestyles.  相似文献   

6.
The ketogenic diet is a dietary regime focused on strongly reducing carbohydrate intake and increasing fat intake; leading to a state of ketosis. The ketogenic diet has gained much popularity over the years due to its effects on promoting weight loss, increasing insulin sensitivity and reducing dyslipidaemia. All these factors play a crucial role in the development of cardio-metabolic diseases; one of the greatest health challenges of the time. Moreover, the ketogenic diet has been known to reduce (epileptic) seizure activity. It is still poorly understood how following a ketogenic diet can lead to these beneficial metabolic effects. However, in recent years it has become clear that diet and the gut microbiota interact with one another and thus influence host health. The goal of this review is to summarize the current state of knowledge regarding the beneficial metabolic effects of the ketogenic diet and the role of gut microbiota in these effects.  相似文献   

7.
Glycerol monocaprylate (GMC) is a glycerol derivative of medium-chain fatty acids (MCFAs) and is widely used as a preservative in food processing. However, GMC and its hydrolytic acid (octylic acid) have antibacterial properties that may affect the physiology and intestinal microecology of the human body. Therefore, in this study, the effects of two different dosages of GMC (150 and 1600 mg kg−1) on glucose, lipid metabolism, inflammation, and intestinal microecology of normal diet-fed C57BL/6 mice were comprehensively investigated. The obtained results showed that the level of triglycerides (TGs) in the low-dose group down-regulated significantly, and the anti-inflammatory cytokine interleukin 10 (IL-10) significantly increased, while the pro-inflammatory cytokines monocyte chemotactic protein 1 (MCP-1) and interleukin 1beta (IL-1β) in the high-dose group were significantly decreased. Importantly, GMC promoted the α-diversity of gut microbiota in normal-diet-fed mice, regardless of dosages. Additionally, it was found that the low-dose treatment of GMC significantly increased the abundance of Lactobacillus, while the high-dose treatment of GMC significantly increased the abundance of SCFA-producers such as Clostridiales, Lachnospiraceae, and Ruminococcus. Moreover, the content of short-chain fatty acids (SCFAs) was significantly increased by GMC supplementation. Thus, our research provides a novel insight into the effects of GMC on gut microbiota and physiological characteristics.  相似文献   

8.
9.
Physical activity, exercise, or physical fitness are being studied as helpful nonpharmacological therapies to reduce signaling pathways related to inflammation. Studies describing changes in intestinal microbiota have stated that physical activity could increase the microbial variance and enhance the ratio of Firmicutes/Bacteroidetes, and both actions could neutralize the obesity progression and diminish body weight. The aim of this review is to provide an overview of the literature describing the relationship between physical activity profiles and gut microbiota and in obesity and some associated comorbidities. Promoting physical activity could support as a treatment to maintain the gut microbiota composition or to restore the balance toward an improvement of dysbiosis in obesity; however, these mechanisms need to be studied in more detail. The opportunity to control the microbiota by physical activity to improve health results and decrease obesity and related comorbidities is very attractive. Nevertheless, several incompletely answered questions need to be addressed before this strategy can be implemented.  相似文献   

10.
This study was aimed at determining potential effects of apple-derived pectin on weight gain, gut microbiota, gut barrier and metabolic endotoxemia in rat models of diet-induced obesity. The rats received a standard diet (control; Chow group; n = 8) or a high-fat diet (HFD; n = 32) for eight weeks to induce obesity. The top 50th percentile of weight-gainers were selected as diet induced obese rats. Thereafter, the Chow group continued on chow, and the diet induced obese rats were randomly divided into two groups and received HFD (HF group; n = 8) or pectin-supplemented HFD (HF-P group; n = 8) for six weeks. Compared to the HF group, the HF-P group showed attenuated weight gain (207.38 ± 7.96 g vs. 283.63 ± 10.17 g, p < 0.01) and serum total cholesterol level (1.46 ± 0.13 mmol/L vs. 2.06 ± 0.26 mmol/L, p < 0.01). Compared to the Chow group, the HF group showed a decrease in Bacteroidetes phylum and an increase in Firmicutes phylum, as well as subordinate categories (p < 0.01). These changes were restored to the normal levels in the HF-P group. Furthermore, compared to the HF group, the HF-P group displayed improved intestinal alkaline phosphatase (0.57 ± 0.20 vs. 0.30 ± 0.19, p < 0.05) and claudin 1 (0.76 ± 0.14 vs. 0.55 ± 0.18, p < 0.05) expression, and decreased Toll-like receptor 4 expression in ileal tissue (0.76 ± 0.58 vs. 2.04 ± 0.89, p < 0.01). The HF-P group also showed decreased inflammation (TNFα: 316.13 ± 7.62 EU/mL vs. 355.59 ± 8.10 EU/mL, p < 0.01; IL-6: 51.78 ± 2.35 EU/mL vs. 58.98 ± 2.59 EU/mL, p < 0.01) and metabolic endotoxemia (2.83 ± 0.42 EU/mL vs. 0.68 ± 0.14 EU/mL, p < 0.01). These results suggest that apple-derived pectin could modulate gut microbiota, attenuate metabolic endotoxemia and inflammation, and consequently suppress weight gain and fat accumulation in diet induced obese rats.  相似文献   

11.
In the past few decades, obesity has reached pandemic proportions. Obesity is among the main risk factors for cardiovascular diseases, since chronic fat accumulation leads to dysfunction in vascular endothelium and to a precocious arterial stiffness. So far, not all the mechanisms linking adipose tissue and vascular reactivity have been explained. Recently, novel findings reported interesting pathological link between endothelial dysfunction with gut hormones and gut microbiota and energy homeostasis. These findings suggest an active role of gut secretome in regulating the mediators of vascular function, such as nitric oxide (NO) and endothelin-1 (ET-1) that need to be further investigated. Moreover, a central role of brain has been suggested as a main player in the regulation of the different factors and hormones beyond these complex mechanisms. The aim of the present review is to discuss the state of the art in this field, by focusing on the processes leading to endothelial dysfunction mediated by obesity and metabolic diseases, such as insulin resistance. The role of perivascular adipose tissue (PVAT), gut hormones, gut microbiota dysbiosis, and the CNS function in controlling satiety have been considered. Further understanding the crosstalk between these complex mechanisms will allow us to better design novel strategies for the prevention of obesity and its complications.  相似文献   

12.
During the last decades, the gut microbiota has gained much interest in relation to human health. Mounting evidence has shown a strict association between gut microbiota and obesity and its related diseases. Inflammation has been appointed as the driving force behind this association. Therefore, a better understanding of the mechanisms by which gut microbiota might influence inflammation in the host could pave for the identification of effective strategies to reduce inflammation-related diseases, such as obesity and obesity-related diseases. For this purpose, we carried out an extensive literature search for studies published in the English language during the last 10 years. Most relevant studies were used to provide a comprehensive view of all aspects related to the association of gut microbiota and low-grade inflammation with obesity. Accordingly, this narrative review reports the evidence on the key players supporting the role of gut microbiota in the modulation of inflammation in relation to obesity and its complications. Moreover, therapeutic approaches to reduce microbiota-related inflammation are discussed to provide potential targets for future research.  相似文献   

13.
Black tea was reported to alter the microbiome populations and metabolites in diet-induced obese mice and displays properties that prevent obesity, but the underlying mechanism of the preventative effect of black tea on high-fat diet (HFD) induced obesity has not been elucidated. Epigenetic studies are a useful tool for determining the relationship between obesity and environment. Here, we show that the water extract of black tea (Lapsang souchong, LS) reverses HFD-induced gut dysbiosis, alters the tissue gene expression, changes the level of a major epigenetic modification (DNA methylation), and prevents obesity in HFD feeding mice. The anti-obesity properties of black tea are due to alkaloids, which are the principal active components. Our data indicate that the anti-obesity benefits of black tea are transmitted via fecal transplantation, and the change of tissue gene expression and the preventative effects on HFD-induced obesity in mice of black tea are dependent on the gut microbiota. We further show that black tea could regulate the DNA methylation of imprinted genes in the spermatozoa of high-fat diet mice. Our results show a mechanistic link between black tea, changes in the gut microbiota, epigenetic processes, and tissue gene expression in the modulation of diet-induced metabolic dysfunction.  相似文献   

14.
We are currently facing an obesity pandemic, with worldwide obesity rates having tripled since 1975. Obesity is one of the main risk factors for the development of non-communicable diseases, which are now the leading cause of death worldwide. This calls for urgent action towards understanding the underlying mechanisms behind the development of obesity as well as developing more effective treatments and interventions. Appetite is carefully regulated in humans via the interaction between the central nervous system and peripheral hormones. This involves a delicate balance in external stimuli, circulating satiating and appetite stimulating hormones, and correct functioning of neuronal signals. Any changes in this equilibrium can lead to an imbalance in energy intake versus expenditure, which often leads to overeating, and potentially weight gain resulting in overweight or obesity. Several lines of research have shown imbalances in gut hormones are found in those who are overweight or obese, which may be contributing to their condition. Therefore, this review examines the evidence for targeting gut hormones in the treatment of obesity by discussing how their dysregulation influences food intake, the potential possibility of altering the circulating levels of these hormones for treating obesity, as well as the role of short chain fatty acids and protein as novel treatments.  相似文献   

15.
The microbiota–gut–brain axis extends beyond visceral perception, influencing higher-order brain structures, and ultimately psychological functions, such as fear processing. In this exploratory pilot study, we attempted to provide novel experimental evidence of a relationship between gut microbiota composition and diversity, and fear-processing in obesity, through a behavioral approach. Women affected by obesity were enrolled and profiled for gut microbiota, through 16S rRNA amplicon sequencing. Moreover, we tested their ability to recognize facial fearful expressions through an implicit-facial-emotion-recognition task. Finally, a traditional self-report questionnaire was used to assess their temperamental traits. The participants exhibited an unbalanced gut microbiota profile, along with impaired recognition of fearful expressions. Interestingly, dysbiosis was more severe in those participants with altered behavioral performance, with a decrease in typically health-associated microbes, and an increase in the potential pathobiont, Collinsella. Moreover, Collinsella was related to a lower expression of the persistence temperamental trait, while a higher expression of the harm-avoidance temperament, related to fear-driven anxiety symptoms, was linked to Lactobacillus. Once confirmed, our findings could pave the way for the design of innovative microbiome-based strategies for the treatment of psychological and emotional difficulties by mitigating obesity-related consequences and behaviors.  相似文献   

16.
The metabolic benefits of time-restricted eating (TRE) in humans are statistically significant but not clinically relevant. Few data are available about the effects of TRE on the gut microbiota. We compared the effects of a TRE regimen (<12 h feeding; n = 25) with a time-unrestricted (TUE) regimen (>12 h feeding; n = 24), on the clinical and dietary variables and gut-microbiota composition in patients with obesity, who were subjected for 12 weeks to the same caloric restriction. Median weight loss was 4.0 kg and 2.2 kg in the TRE and TUE groups, respectively, with a between-group borderline difference (p = 0.049). No significant between-group difference was found in other dietary, anthropometric, or laboratory variables. There were no substantial between-group differences in alpha and beta diversity or gut-microbiota composition. The TRE group showed a significant increase in the frequency of Lachnospiraceae, Parasutterella, and Romboutsia at the study’s end. A TRE regimen induced small changes both in metabolic/dietary variables and in the gut-microbiota composition, with respect to the TUE. The microbial changes we have found were of uncertain clinical significance.  相似文献   

17.
Adzuki bean consumption has many health benefits, but its effects on obesity and regulating gut microbiota imbalances induced by a high-fat diet (HFD) have not been thoroughly studied. Mice were fed a low-fat diet, a HFD, and a HFD supplemented with 15% adzuki bean (HFD-AB) for 12 weeks. Adzuki bean supplementation significantly reduced obesity, lipid accumulation, and serum lipid and lipopolysaccharide (LPS) levels induced by HFD. It also mitigated liver function damage and hepatic steatosis. In particular, adzuki bean supplementation improved glucose homeostasis by increasing insulin sensitivity. In addition, it significantly reversed HFD-induced gut microbiota imbalances. Adzuki bean significantly reduced the ratio of Firmicutes/Bacteroidetes (F/B); enriched the occurrence of Bifidobacterium, Prevotellaceae, Ruminococcus_1, norank_f_Muribaculaceae, Alloprevotella, Muribaculum, Turicibacter, Lachnospiraceae_NK4A136_group, and Lachnoclostridium; and returned HFD-dependent taxa (Desulfovibrionaceae, Bilophila, Ruminiclostridium_9, Blautia, and Ruminiclostridium) back to normal status. PICRUSt2 analysis showed that the changes in gut microbiota induced by adzuki bean supplementation may be associated with the metabolism of carbohydrates, lipids, sulfur, and cysteine and methionine; and LPS biosynthesis; and valine, leucine, and isoleucine degradation.  相似文献   

18.
Obesity is one of the main worldwide public health concerns whose clinical management demands new therapeutic approaches. Bariatric surgery is the most efficient treatment when other therapies have previously failed. Due to the role of gut microbiota in obesity development, the knowledge of the link between bariatric surgery and gut microbiota could elucidate new mechanistic approaches. This study aims to evaluate the long-term effects of bariatric surgery in the faecal metagenome and metabolome of patients with severe obesity. Faecal and blood samples were collected before and four years after the intervention from patients with severe obesity. Biochemical, metagenomic and metabolomic analyses were performed and faecal short-chain fatty acids were measured. Bariatric surgery improved the obesity-related status of patients and significantly reshaped gut microbiota composition. Moreover, this procedure was associated with a specific metabolome profile characterized by a reduction in energetic and amino acid metabolism. Acetate, butyrate and propionate showed a significant reduction with bariatric surgery. Finally, correlation analysis suggested the existence of a long-term compositional and functional gut microbiota profile associated with the intervention. In conclusion, bariatric surgery triggered long-lasting effects on gut microbiota composition and faecal metabolome that could be associated with the remission of obesity.  相似文献   

19.
Recent evidence indicates that maternal dietary intake, including dietary supplements, during pregnancy and lactation may alter the infant gut or breastmilk microbiota, with implications for health outcomes in both the mother and infant. To review the effects of maternal nutritional supplementation during pregnancy and lactation on the infant gut or breastmilk microbiota a systematic literature search was conducted. A total of 967 studies published until February 2020 were found, 31 were eligible and 29 randomized control trials were included in the qualitative synthesis. There were 23 studies that investigated the effects of probiotic supplementation, with the remaining studies investigating vitamin D, prebiotics or lipid-based nutrient supplements (LNS). The effects of maternal nutritional supplementation on the infant gut microbiota or breastmilk microbiota were examined in 21 and 12 studies, respectively. Maternal probiotic supplementation during pregnancy and lactation generally resulted in the probiotic colonization of the infant gut microbiota, and although most studies also reported alterations in the infant gut bacterial loads, there was limited evidence of effects on bacterial diversity. The data available show that maternal probiotic supplementation during pregnancy or lactation results in probiotic colonization of the breastmilk microbiota. There were no observed effects between probiotic supplementation and breastmilk bacterial counts of healthy women, however, administration of Lactobacillus probiotic to nursing women affected by mastitis was associated with significant reductions in breastmilk Staphylococcal loads. Maternal LNS supplementation during pregnancy and lactation increased bacterial diversity in the infant gut, whilst vitamin D and prebiotic supplementation did not alter either infant gut bacterial diversity or counts. Heterogeneity in study design precludes any firm conclusions on the effects of maternal nutritional supplementation during pregnancy and lactation on the infant gut or breastmilk microbiota, warranting further research.  相似文献   

20.
Pulmonary arterial hypertension (PAH) is a malignant pulmonary vascular disease characterized by increased pulmonary vascular resistance, pulmonary vasoconstriction, and right ventricular hypertrophy. Recent developments in genomics and metabolomics have gradually revealed the roles of the gut microbiota (GM) and its metabolites in cardiovascular diseases. Accumulating evidence reveals that the GM plays important roles in the occurrence and development of PAH. Gut microbiota dysbiosis directly increases the gut permeability, thereby facilitating pathological bacterial translocation and allowing translocation of bacterial products such as lipopolysaccharides from the gut into circulation. This process aggravates pulmonary perivascular inflammation and exacerbates PAH development through the endothelial–mesenchymal transition. Additionally, a shift in the composition of PAH also affects the gut metabolites. Changes in gut metabolites, such as decreased short-chain fatty acids, increased trimethylamine N-oxide, and elevated serotonin, contribute to pulmonary perivascular inflammation and pulmonary vascular remodeling by activating several signaling pathways. Studies of the intestinal microbiota in treating pulmonary hypertension have strengthened linkages between the GM and PAH. Probiotic therapy and fecal microbiota transplantation may supplement existing PAH treatments. In this article, we provide new insight for diagnosing, preventing and treating PAH by adding to the current knowledge of the intestinal flora mechanisms and its metabolites efficacy involved in PAH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号