首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, molybdenum disulfide (MoS2) film samples were prepared at different temperatures and annealed through magnetron sputtering technology. The surface morphology, crystal structure, bonding structure, and optical properties of the samples were characterized and analyzed. The surface of the MoS2 films prepared by radio frequency magnetron sputtering is tightly coupled and well crystallized, the density of the films decreases, and their voids and grain size increase with the increase in deposition temperature. The higher the deposition temperature is, the more stable the MoS2 films deposited will be, and the 200 °C deposition temperature is an inflection point of the film stability. Annealing temperature affects the structure of the films, which is mainly related to sulfur and the growth mechanism of the films. Further research shows that the optical band gaps of the films deposited at different temperatures range from 0.92 eV to 1.15 eV, showing semiconductor bandgap characteristics. The optical band gap of the films deposited at 200 °C is slightly reduced after annealing in the range of 0.71–0.91 eV. After annealing, the optical band gap of the films decreases because of the two exciton peaks generated by the K point in the Brillouin zone of MoS2. The blue shift of the K point in the Brillouin zone causes a certain change in the optical band gap of the films.  相似文献   

2.
Ge2Sb2Te5 (GST-225) is a chalcogenide material with applications in nonvolatile memories. However, chalcogenide material properties are dependent on the deposition technique. GST-225 thin films were prepared using three deposition methods: magnetron sputtering (MS), pulsed laser deposition (PLD) and a deposition technique that combines MS and PLD, namely MSPLD. In the MSPLD technique, the same bulk target is used for sputtering but also for PLD at the same time. The structural and optical properties of the as-deposited and annealed thin films were characterized by Rutherford backscattering spectrometry, X-ray reflectometry, X-ray diffraction, Raman spectroscopy and spectroscopic ellipsometry. MS has the advantage of easily leading to fully amorphous films and to a single crystalline phase after annealing. MS also produces the highest optical contrast between the as-deposited and annealed films. PLD leads to the best stoichiometric transfer, whereas the annealed MSPLD films have the highest mass density. All the as-deposited films obtained with the three methods have a similar optical bandgap of approximately 0.7 eV, which decreases after annealing, mostly in the case of the MS sample. This study reveals that the properties of GST-225 are significantly influenced by the deposition technique, and the proper method should be selected when targeting a specific application. In particular, for electrical and optical phase change memories, MS is the best suited deposition method.  相似文献   

3.
Halide perovskite solar cells (HPSCs) are promising photovoltaic materials due to their excellent optoelectronic properties, low cost, and high efficiency. Here, we demonstrate atmospheric solution processing and stability of cesium tin-lead triiodide (CsSnPbI3) thin films for solar cell applications. The effect of additives, such as pyrazine and guanidinium thiocyanate (GuaSCN), on bandgap, film morphology, structure, and stability is investigated. Our results indicate the formation of a wide bandgap (>2 eV) structure with a mixed phase of tin oxide (SnO2) and Cs(Sn, Pb)I3. The addition of pyrazine decreases the intensity of SnO2 peaks, but the bandgap does not change much. With the addition of GuaSCN, the bandgap of the films reduces to 1.5 eV, and a dendritic structure of Cs(Sn, Pb)I3 is observed. GuaSCN addition also reduces the oxygen content in the films. To enable uniform film crystallization, cesium chloride (CsCl) and dimethyl sulfoxide (DMSO) additives are used in the precursor. Both CsCl and DMSO suppress dendrite formation with the latter resulting in uniform polycrystalline films with a bandgap of 1.5 eV. Heat and light soaking (HLS) stability tests at 65 °C and 1 sun for 100 h show all film types are stable with temperature but result in phase segregation with light exposure.  相似文献   

4.
Motivated by their utility in CdTe-based thin film photovoltaics (PV) devices, an investigation of thin films of the magnesium-zinc oxide (MgxZn1−xO or MZO) alloy system was undertaken applying spectroscopic ellipsometry (SE). Dominant wurtzite phase MZO thin films with Mg contents in the range 0 ≤ x ≤ 0.42 were deposited on room temperature soda lime glass (SLG) substrates by magnetron co-sputtering of MgO and ZnO targets followed by annealing. The complex dielectric functions ε of these films were determined and parameterized over the photon energy range from 0.73 to 6.5 eV using an analytical model consisting of two critical point (CP) oscillators. The CP parameters in this model are expressed as polynomial functions of the best fitting lowest CP energy or bandgap E0 = Eg, which in turn is a quadratic function of x. As functions of x, both the lowest energy CP broadening and the Urbach parameter show minima for x ~ 0.3, which corresponds to a bandgap of 3.65 eV. As a result, it is concluded that for this composition and bandgap, the MZO exhibits either a minimum concentration of defects in the bulk of the crystallites or a maximum in the grain size, an observation consistent with measured X-ray diffraction line broadenings. The parametric expression for ε developed here is expected to be useful in future mapping and through-the-glass SE analyses of partial and complete PV device structures incorporating MZO.  相似文献   

5.
Nanocomposite multi-layer TiO2/V2O5/TiO2 thin films were prepared via electron-beam evaporation using high-purity targets (TiO2 and V2O5 purity > 99.9%) at substrate temperatures of 270 °C (TiO2) and 25 °C (V2O5) under a partial pressure of oxygen of 2 × 10−4 mbar to maintain the stoichiometry. Rutherford backscattering spectrometry was used to confirm the layer structure and the optimal stoichiometry of the thin films, with a particle size of 20 to 40 nm. The thin films showed an optical transmittance of ~78% in the visible region and a reflectance of ~90% in the infrared. A decrease in transmittance was observed due to the greater cumulative thickness of the three layers and multiple reflections at the interface of the layers. The optical bandgap of the TiO2 mono-layer was ~3.49 eV, whereas that of the multi-layer TiO2/V2O5/TiO2 reached ~3.51 eV. The increase in the optical bandgap was due to the inter-diffusion of the layers at an elevated substrate temperature during the deposition. The intrinsic, structural, and morphological features of the TiO2/V2O5/TiO2 thin films suggest their efficient use as a solar water heater system.  相似文献   

6.
We report a surfactant-free exfoliation method of WS2 flakes combined with a vacuum filtration method to fabricate thin (<50 nm) WS2 films, that can be transferred on any arbitrary substrate. Films are composed of thin (<4 nm) single flakes, forming a large size uniform film, verified by AFM and SEM. Using statistical phonons investigation, we demonstrate structural quality and uniformity of the film sample and we provide first-order temperature coefficient χ, which shows linear dependence over 300–450 K temperature range. Electrical measurements show film sheet resistance RS = 48 MΩ/□ and also reveal two energy band gaps related to the intrinsic architecture of the thin film. Finally, we show that optical transmission/absorption is rich above the bandgap exhibiting several excitonic resonances, and nearly feature-less below the bandgap.  相似文献   

7.
As-received BaTiO3 nanopowders of average grain sizes 50 nm and 100 nm were functionalized by (3-aminopropyl)triethoxysilane (APTES) and mixed with poly(methyl methacrylate)/toluene solution. The nanocomposite solution was spin coated on Si substrates to form thin films. The photoluminescence spectrum of the pure powder was composed of a bandgap emission at 3.0 eV and multiple bands centered about 2.5 eV. Surface functionalization of the BaTiO3 powder via APTES increases overall luminescence at room temperature while only enhancing bandgap emission at low-temperature. Polymer coating of the functionalized nanoparticles significantly enhances bandgap emissions while decreasing emissions associated with near-surface lattice distortions at 2.5 eV.  相似文献   

8.
Magnesium hydroxide (Mg(OH)2) thin films were deposited by the drop-dry deposition (DDD) method using an aqueous solution containing Mg(NO3)2 and NaOH. DDD was performed by dropping the solution on a substrate, heating-drying, and rinsing in water. Effects of different deposition conditions on the surface morphology and optical properties of Mg(OH)2 thin films were researched. Films with a thickness of 1−2 μm were successfully deposited, and the Raman peaks of Mg(OH)2 were observed for them. Their transmittance in the visible range was 95% or more, and the bandgap was about 5.8 eV. It was found that the thin films have resistivity of the order of 105 Ωcm. Thus, the transparent and semiconducting Mg(OH)2 thin films were successfully prepared by DDD.  相似文献   

9.
In our study, transparent and conductive films of NiOx were successfully deposited by sol-gel technology. NiOx films were obtained by spin coating on glass and Si substrates. The vibrational, optical, and electrical properties were studied as a function of the annealing temperatures from 200 to 500 °C. X-ray Photoelectron (XPS) spectroscopy revealed that NiO was formed at the annealing temperature of 400 °C and showed the presence of Ni+ states. The optical transparency of the films reached 90% in the visible range for 200 °C treated samples, and it was reduced to 76–78% after high-temperature annealing at 500 °C. The optical band gap of NiOx films was decreased with thermal treatments and the values were in the range of 3.92–3.68 eV. NiOx thin films have good p-type electrical conductivity with a specific resistivity of about 4.8 × 10−3 Ω·cm. This makes these layers suitable for use as wideband semiconductors and as a hole transport layer (HTL) in transparent solar cells.  相似文献   

10.
Zinc sulfide (ZnS) thin films with variable structural, optical, electrical, and thermoelectric properties were obtained by changing the source-to-substrate (SSD) distance in the physical-vapor-thermal-coating (PVTC) system. The films crystallized into a zinc-blende cubic structure with (111) preferred orientation. The films had a wide 3.54 eV optical band gap. High-quality homogenous thin films were obtained at 60 mm SSD. The sheet resistance and resistivity of the films decreased from 1011 to 1010 Ω/Sq. and from 106 to 105 Ω-cm, when SSD was increased from 20 mm to 60 mm, respectively. The phase and band gap were also verified by first principles that were in agreement with the experimental results. Thermoelectric characteristics were studied by using the semi-classical Boltzmann transport theory. The high quality, wide band gap, and reduced electrical resistance make ZnS a suitable candidate for the window layer in solar cells.  相似文献   

11.
Drop–dry deposition (DDD) is a method of depositing thin films by heating and drying the deposition solution dropped on a substrate. We prepared Ni(OH)2 precursor thin films by DDD and annealed them in air to prepare NiO thin films. The appropriate deposition conditions were found by changing the number of drop–dry cycles and the concentrations of chemicals in the solution, and the Ni(OH)2 precursor film with a thickness of 0.3 μm and optical transmittance of more than 95% was successfully deposited. Raman and X-ray diffraction measurements were performed, and it was found that the NiO film was successfully fabricated after annealing at 400 °C. The p-type conductivity of the annealed film was confirmed by photoelectrochemical measurements. In addition, we prepared n-type ZnO by electrochemical deposition on NiO thin films. The current–voltage measurement results show that the ZnO/NiO heterojunction had rectification properties.  相似文献   

12.
A study of indium-incorporated copper selenide thin-film deposition on a glass substrate using the successive ionic adsorption and reaction method (SILAR) and the resulting properties is presented. The films were formed using these steps: selenization in the solution of diseleniumtetrathionate acid, treatment with copper(II/I) ions, incorporation of indium(III), and annealing in an inert nitrogen atmosphere. The elemental and phasal composition, as well as the morphological and optical properties of obtained films were determined. X-ray diffraction data showed a mixture of various compounds: Se, Cu0.87Se, In2Se3, and CuInSe2. The obtained films had a dendritic structure, agglomerated and not well-defined grains, and a film thickness of ~90 μm. The band gap values of copper selenide were 1.28–1.30 eV and increased after indium-incorporation and annealing. The optical properties of the formed films correspond to the optical properties of copper selenide and indium selenide semiconductors.  相似文献   

13.
Modification has been made to TiO2 thin film to improve the wettability and the absorption of light. The sol-gel spin coating method was successfully used to synthesize GO/TiO2 thin films using a titanium (IV) isopropoxide (TTIP) as a precursor. Different amounts of polyethylene glycol (PEG) (20 to 100 mg) were added into the parent sol solution to improve the optical properties and wettability of the GO/TiO2 thin film. The effect of different amounts of PEG was characterized using X-ray diffraction (XRD) for the phase composition, scanning electron microscopy (SEM) for microstructure observation, atomic force microscopy (AFM) for the surface topography, ultraviolet–visible spectrophotometry (UV-VIS) for the optical properties and wettability of the thin films by measuring the water contact angle. The XRD analysis showed the amorphous phase. The SEM and AFM images revealed that the particles were less agglomerated and surface roughness increases from 1.21 × 102 to 2.63 × 102 nm when the amount of PEG increased. The wettability analysis results show that the water contact angle of the thin film decreased to 27.52° with the increase of PEG to 80 mg which indicated that the thin film has hydrophilic properties. The optical properties also improved significantly, where the light absorbance wavelength became wider and the band gap was reduced from 3.31 to 2.82 eV with the presence of PEG.  相似文献   

14.
Perovskite-type N‑substituted SrTiO3 thin films with a preferential (001) orientation were grown by pulsed laser deposition on (001)-oriented MgO and LaAlO3 substrates. Application of N2 or ammonia using a synchronized reactive gas pulse produces SrTiO3-x:Nx films with a nitrogen content of up to 4.1 at.% if prepared with the NH3 gas pulse at a substrate temperature of 720 °C. Incorporating nitrogen in SrTiO3 results in an optical absorption at 370‑460 nm associated with localized N(2p) orbitals. The estimated energy of these levels is ≈2.7 eV below the conduction band. In addition, the optical absorption increases gradually with increasing nitrogen content.  相似文献   

15.
In this study, silicon nitride (SiNx) thin films were deposited on polyimide (PI) substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD) system. The gallium-doped zinc oxide (GZO) thin films were deposited on PI and SiNx/PI substrates at room temperature (RT), 100 and 200 °C by radio frequency (RF) magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si) thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI.  相似文献   

16.
A powerful characterization technique, pulse capacitance-voltage (CV) technique, was used to investigate oxide traps before and after annealing for lanthanide zirconium oxide thin films deposited on n-type Si (111) substrates at 300 °C by liquid injection Atomic Layer Deposition (ALD). The results indicated that: (1) more traps were observed compared to the conventional capacitance-voltage characterization method in LaZrOx; (2) the time-dependent trapping/de-trapping was influenced by the edge time, width and peak-to-peak voltage of a gate voltage pulse. Post deposition annealing was performed at 700 °C, 800 °C and 900 °C in N2 ambient for 15 s to the samples with 200 ALD cycles. The effect of the high temperature annealing on oxide traps and leakage current were subsequently explored. It showed that more traps were generated after annealing with the trap density increasing from 1.41 × 1012 cm−2 for as-deposited sample to 4.55 × 1012 cm−2 for the 800 °C annealed one. In addition, the leakage current density increase from about 10−6 A/cm2 at Vg = +0.5 V for the as-deposited sample to 10−3 A/cm2 at Vg = +0.5 V for the 900 °C annealed one.  相似文献   

17.
Magneto-optic (MO) imaging and sensing are at present the most developed practical applications of thin-film MO garnet materials. However, in order to improve sensitivity for a range of established and forward-looking applications, the technology and component-related advances are still necessary. These improvements are expected to originate from new material system development. We propose a set of technological modifications for the RF-magnetron sputtering deposition and crystallization annealing of magneto-optic bismuth-substituted iron-garnet films and investigate the improved material properties. Results show that standard crystallization annealing for the as-deposited ultrathin (sputtered 10 nm thick, amorphous phase) films resulted in more than a factor of two loss in the magneto-optical activity of the films in the visible spectral region, compared to the liquid-phase grown epitaxial films. Results also show that an additional 10 nm-thick metal-oxide (Bi2O3) protective layer above the amorphous film results in ~2.7 times increase in the magneto-optical quality of crystallized iron-garnet films. On the other hand, the effects of post-deposition oxygen (O2) plasma treatment on the magneto-optical (MO) properties of Bismuth substituted iron garnet thin film materials are investigated. Results show that in the visible part of the electromagnetic spectrum (at 532 nm), the O2 treated (up to 3 min) garnet films retain higher specific Faraday rotation and figures of merit compared to non-treated garnet films.  相似文献   

18.
In the present study, we adopt an easy and cost-effective route for preparing Cu2ZnSnS4 (CZTS)-absorber nanoparticles by a mechanochemical method using non-toxic and environmentally benign solvents (butanol, methyl ethyl ketone, and ethanol). The gram-scale synthesis of absorber nanoparticles was achieved in a non-hazardous, zero-waste process without using high-vacuum equipment. The effects of annealing and Na incorporation on the properties of spin-coated CZTS thin films were scrutinized. The deposited samples showed kesterite crystal structure and single phase. The morphological results revealed an improvement in the surface morphology after annealing. The optical bandgaps of the thin films lied in the range of 1.50–1.57 eV with p-type nature. Finally, photovoltaic devices were fabricated, and their cell performance parameters were studied. An efficiency of 0.16% was observed. The present study provides a potential route for the cost-effective fabrication of CZTS-based photovoltaic devices.  相似文献   

19.
A competitive new technology, organic metallic halide perovskite solar cells feature a wide working area, low manufacturing costs, a long lifespan, and a significant amount of large efficacy of power conversion (PCE). The spin-coating technique was utilized for the fabrication of pure CH3NH3PbBr3 (MAPbBr3) thin films, and these films are implanted with 600 keV silver (Ag) ions at fluency rate of 6 × 1014 and 4 × 1014 ions/cm2. XRD analysis confirmed the cubic structure of MAPbBr3. A high grain size was observed at the fluency rate of 4 × 1014 ions/cm2. The UV-Vis spectroscopic technique was used to calculate the optical properties such as the bandgap energy (Eg), refractive index (n), extinction coefficients (k), and dielectric constant. A direct Eg of 2.44 eV was measured for the pristine film sample, whereas 2.32 and 2.36 eV were measured for Ag ion-implanted films with a 4 × 1014 and 6 × 1014 ions/cm2 fluence rate, respectively. The solar cells of these films were fabricated. The Jsc was 6.69 mA/cm2, FF was 0.80, Voc was 1.1 V, and the efficiency was 5.87% for the pristine MAPbBr3-based cell. All of these parameters were improved by Ag ion implantation. The maximum values were observed at a fluency rate of 4 × 1014 ions/cm2, where the Voc was 1.13 V, FF was 0.75, Jsc was 8.18 mA/cm2, and the efficiency was 7.01%.  相似文献   

20.
Thin films containing 3D-ordered semiconductor quantum wires offer a great tool to improve the properties of photosensitive devices. In the present work, we investigate the photo-generated current in thin films consisting of an interconnected 3D-ordered network of Ge quantum wires in an alumina matrix. The films are prepared using nitrogen-assisted magnetron sputtering co-deposition of Ge and Al2O3. We demonstrate a strong photocurrent generation in the films, much stronger than in similar films containing Ge quantum dots. The enhanced photocurrent generation is the consequence of the multiple exciton generation and the films’ specific structure that allows for efficient carrier transport. Thin film with the largest nitrogen content showed enhanced performance compared to other thin films with 1.6 excitons created after absorption of a single photon at an energy nearly equal to the double bandgap value. The bandgap value depends on the geometrical properties of the quantum wires, and it is close to the maximum of the solar irradiance in this case. In addition, we show that the multiple exciton generation is the most pronounced at the photon energy values equal to multiple values of the thin film bandgap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号