首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Microcystins (MCs) and cylindrospermopsin (CYN) are among the cyanotoxins which occur naturally, produced by different cyanobacteria species when they grow or proliferate under favorable environmental conditions. From a toxicological point of view, their relevance is due to the deleterious effects that they have been reported to induce in a wide range of organisms, including humans. Cyanotoxins intake from contaminated water and food is an important source of human exposure. Various edible aquatic organisms, plants, and food supplements based on algae, can bioaccumulate these toxins. A thorough review of the scientific data available on this topic is provided, the studies on MCs being much more numerous than those focused on CYN. The scientific literature suggests that these cyanotoxins can be accumulated at concentrations higher than their respective recommended tolerable daily intake (TDI). Finally, the influence of different cooking procedures on their levels in food has been considered. In this regard, again studies on the matter dealing with CYN have been not yet raised. MCs contents have been reported to be reduced in muscle of fish after boiling, or cooking in a microwave-oven, although the effect of other traditional cooking processes such as frying, roasting or grilling have not been demonstrated.  相似文献   

2.
Toxic bloom-forming cyanobacteria can cause animal death and adversely affect human health. Blooms may contain microcystins (MCs), cyanobacterial heptapeptide hepatotoxins and other peptides such as anabaenopeptins and anabaenopeptilides. MCs have been shown to occur in various aquatic organisms including mussels, water snails, crustaceans and fish. Muscle and viscera samples from eight species of fish (Acipenser gueldenstaedtii, Carassius auratus, Carassius gibelio, Cyprinus carpio, Perca fluviatilis, Rutilus rubilio, Silurus aristotelis and Silurus glanis), a frog (Rana eperotica), a mussel (Anodonta sp.) and a water snail (Viviparus contectus) were analyzed by high-performance liquid chromatography (HPLC), protein phosphatase 1 (PP1) inhibition assay (PP1IA) and ELISA. MC(s) was detected in all fish, frog, mussel and water snail samples tested by PP1IA and ELISA, including the frog R. eperotica and the freshwater snail V. contectus, in which the occurrence of MCs was not previously known. MC concentration ranged from 20 to 1500 ng g(-1)dw and from 25 to 5400 ng g(-1)dw in muscle and visceral tissue of fishes and frogs, respectively. In mussel and water snail tissue MC concentration ranged from 1650 to 3495 ng g(-1)dw. HPLC analysis revealed peaks having the same UV spectrum as anabaenopeptin- or anabaenopeptilide-like compounds, not previously known to occur in aquatic fauna tissue. The concentrations of the compounds detected ranged from 1.5 to 230 microg g(-1)dw. Comparison of the PP1IA and ELISA showed that values obtained with PP1IA where higher than those obtained with ELISA. Anabaenopeptins and/or anabaenopeptilides occurring in faunal tissue may account for the higher PP1IA values as we found that PP1 activity was inhibited by the purified anabaenopeptins A (45-60% inhibition) and B (5-75% inhibition). Purified anabaenopeptilides 90A and 90B exhibited weaker PP1 inhibition activity (5-35 and 5-23% inhibition, respectively). This is the first report of MC occurrence in aquatic animals collected from freshwaters of southern Europe.  相似文献   

3.
Microcystins (MCs) are toxic monocyclic heptapeptides produced by many cyanobacteria. MCs, especially MC-LR, cause toxic effects in animals and are a recognized potent cause of environmental stress and health hazard in aquatic ecosystems when heavy blooms of cyanobacteria appear. Consequently, one of the major problems is the chronic exposure of fish to cyanotoxins in their natural environment. The present experiment involving chronic exposure confirmed initial findings on acute exposure to MC contamination: exacerbated physiological stress and tissue damage in several tissues of exposed medaka fish. The gonads were affected specifically. In female gonads the modifications included reduction of the vitellus storage, lysis of the gonadosomatic tissue and disruption of the relationships between the follicular cells and the oocytes. In the males, spermatogenesis appeared to be disrupted. This is the first report showing that a cyanotoxin can affect reproductive function, and so can impact on fish reproduction and thus fish stocks.  相似文献   

4.
Eight naturally purified microcystins (MCs), including MC-LR, -FR, -WR, -RR, [d-Asp(3)]MC-FR, -WR, -RR, and [Dha(7)]MC-RR were utilized to determine the effects of amino acid substitutions and modifications on MC-induced protein phosphatase inhibition activity and mouse toxicity. Catalytic subunits of protein phosphatase 1 (PP-1) and 2A (PP-2A) were purified and subjected to the inhibition assays, and intraperitoneal injection was used to administer MCs into mice for the toxicity assay. It is found that the replacement of the non-polar amino acid l-leucine at the second position of these heptacyclic peptide toxins by a polar l-arginine reduces their mouse toxicities and inhibitory activities against PP-1 and PP-2A to different extends. Demethylation of methyldehydroalanine (Mdha) at the seventh amino acid of MC-RR exhibits the least mouse toxicity and phosphatase inhibition. The loss of a methyl group on the common methylaspartic acid (MeAsp) at the third position of MC-FR, -WR, and -RR does not alter their toxicity levels, but dominantly reduces their activities in PP-1 inhibition compared to other substitutions or modifications. This suggests that the methyl group on MeAsp is also important for MCs inhibition. However, such a tendency is not observed for PP-2A. By comparing the LD(50) values of the mouse toxicity assay and IC(50) values of the PP-1 and PP-2A inhibition assay of eight MCs using linear regression, it is evident that the MC-induced toxicity is much more related to the inhibition of PP-2A than PP-1, which suggests that PP-2A inhibition may play a major role in the MC-induced mouse toxicity.  相似文献   

5.
《Toxin reviews》2013,32(3-4):99-114
Cyanobacteria are bloom-forming procaryotic microorganisms producing cyanotoxins—secondary metabolites toxic to aquatic and terrestial animals and also humans. ‘Alkaloid cyanotoxins are: neurotoxic anatoxin-a, saxitoxin and cytotoxic cylindrospermopsin, which inhibits protein synthesis in various cell types and neurotoxic saxitoxin. These substances are very harmful to many animal species. Moreover, they may accumulate at high concentrations in various tissues of aquatic animals such as bivalves and fish, which can be a source of intoxication for predators and humans. This review presents the current state of knowledge on the effects of alkaloid cyanotoxins on different animal species and human health.  相似文献   

6.
Eutrophication of surface water has increased significantly during the past decade, resulting in increased occurrences of toxic blooms. Cyanotoxins have become a global health threat to humans, wild animals, or domestic livestock. Hepatotoxic microcystins (MC) are the predominant cyanotoxins, which accumulate in aquatic organisms and are transferred to higher trophic levels. This is an issue of major concern in aquatic toxicology, as it involves the risk for human exposure through the consumption of contaminated fish and other aquatic organisms. The persistence and detoxification of MC in aquatic organisms are important issues for public health and fishery economics. Bioaccumulation of MC depends on the toxicity of the strains, mode of feeding, and detoxication mechanisms. Although mussels, as sessile filter feeders, seem to be organisms that ingest more MC, other molluscs like gastropods, as well as zooplankton and fish, may also retain average similar levels of toxins. Edible animals such as some species of molluscs, crustaceans, and fish present different risk because toxins accumulate in muscle at low levels. Carnivorous fish seem to accumulate high MC concentrations compared to phytophagous or omnivorous fish. This review summarizes the existing data on the distribution and dynamics of MC in contaminated aquatic organisms.  相似文献   

7.
Microcystins (MCs) are the most commonly studied cyanotoxins. While these past studies have mainly focused on the toxicity of MCs, the evolutionary history of life has shown that toxicity can be considered as an assigned role to MCs. Nowadays, there is a growing interest in understanding the importance of cyanotoxins in any of the physiological processes or beyond at the ecological level. This review evaluates variously proposed intracellular and extracellular functions of MCs and how they benefit the producing cyanobacterium. However, the strain-specific and divergent laboratory and field results obtained to date have made it difficult to generalize.  相似文献   

8.
Harmful algal blooms expose humans and animals to microcystins (MCs) through contaminated drinking water. While hepatotoxicity following acute exposure to MCs is well documented, neurotoxicity after sub-lethal exposure is poorly understood. We developed a novel statistical approach using a generalized linear model and the quasibinomial family to analyze neurotoxic effects in adult Caenorhabditis elegans exposed to MC-LR or MC-LF for 24 h. Selective effects of toxin exposure on AWA versus AWC sensory neuron function were determined using a chemotaxis assay. With a non-monotonic response MCs altered AWA but not AWC function, and MC-LF was more potent than MC-LR. To probe a potential role for protein phosphatases (PPs) in MC neurotoxicity, we evaluated the chemotactic response in worms exposed to the PP1 inhibitor tautomycin or the PP2A inhibitor okadaic acid for 24 h. Okadaic acid impaired both AWA and AWC function, while tautomycin had no effect on function of either neuronal cell type at the concentrations tested. These findings suggest that MCs alter the AWA neuron at concentrations that do not cause AWC toxicity via mechanisms other than PP inhibition.  相似文献   

9.
Chronic and subchronic toxicity resulting from exposure to microcystins (MCs) receives increasing attention due to the risk of bioaccumulation of these toxins by aquatic animals, including fish. The mechanisms of action of MCs that target the liver, involve modifications of protein phosphorylation resulting from phosphatases 1 and 2A inhibition. Therefore, studying phosphoprotein modifications by using a specific phosphoprotein stain Pro-Q Diamond in fish liver contaminated with MC-leucine-arginine (MC-LR), the most toxic MC, should help dissecting disturbed signaling and metabolic networks. We have recently used this technology to identify several proteins that are modulated either in expression or phosphorylation in the liver of medaka following short-term exposure to MC-LR by balneation. In the present study, we have decided to use an alternative way of introducing the toxin into fish; that is by gavage (force-feeding). This was first achieved using tritiated MC-LR and allowed us to quantify the quantity of toxin incorporated into fish and to demonstrate that the toxin is mainly accumulated in liver. Afterwards a proteomics study limited to liver cytosolic proteins of contaminated animals showed that several proteins were up or down regulated either in quantity or in phosphorylation or both. Some of them had been previously detected as modified in balneation experiments but new molecules were identified as involved in signal transduction pathways activated by the toxin. In addition, in the conditions used (5 microg toxin/g body weight) anatomopathological studies supported a process of apoptonecrosis established after 24h, which was suggested to proceed by the evolution of some of the proteins after 2h contamination.  相似文献   

10.
Microcystins (MCs) are toxic monocyclic heptapeptides produced by many cyanobacteria. Over 70 MCs have been successfully isolated and identified, of which MC-LR is the most commonly occurring toxin. Microcystins, especially MC-LR, cause toxic effects in mammals, birds and fish and are a recognized potent cause of environmental stress and pose a potential health hazard in aquatic ecosystems when heavy blooms of cyanobacteria appear. They also constitute a public health threat to people via drinking water and food chains. The concentrations of MC-LR can be very low, even in fish displaying severely disrupted tissues, which makes it essential to devise selective and sensitive histochemical methods for identifying and localizing MC-LR in target organs, such as liver and intestine. The aim of the study reported here was to analyze the presence of MC-LR in contaminated fish tissues using immunohistochemical methods. The present experiment involving subacute exposure confirmed our initial hypothesis that subacute and acute exposure to microcystin contamination can exacerbate physiological stress, induce sustained pathological damage, and affect the immune response in exposed medaka fish.  相似文献   

11.
Microcystins (MCs) are hepatotoxins with potent inhibitor activity of protein phosphatases PP1 and PP2A. These non-ribosomal peptides are getting more and more attention due to their acute toxicity and potent tumor-promoting activity. These toxins are produced by freshwater cyanobacteria. The most toxic and most commonly encountered variant in aquatic environment is MC-LR (MC Leucine-Arginine). It has been used for toxicological investigations on the liver of intoxicated medaka. Differential proteome as well as differential phosphoproteome analyses have been performed for providing new information on early responses to the toxin. The experiments are also aiming at selecting biomarkers of MC-LR exposure. In the 2D electrophoresis gel protein maps from cytosol of liver cells of animals exposed or non-exposed to the cyanotoxin, 15 spots showed a significant increase or decrease of their stain signal either in specific phosphoprotein stain or total protein stain. Thirteen of these proteins have been identified by mass spectrometry. Among them, phenylalanine hydroxylase (PAH) and keratin 18 type I showed variations in phosphorylation stain in possible agreement with inhibition of PP2A activity. The other identified proteins exhibited variations in their expression level. The identified proteins appear to be involved in cytoskeleton assembly, cell signalling, oxidative stress and apoptosis. Such results confirm that proteomics and phosphoproteomics approaches may become valuable tools to identify signalling pathways implied in MC-LR effects. From accumulated data, specific pools of biomarkers could possibly be selected as specific for toxin exposure.  相似文献   

12.
13.
The occurrence of toxic cyanobacteria in the aquatic environment constitutes a serious risk for the ecological balance and the functioning of ecosystems. The presence of cyanotoxins in ecosystems could have eventual adverse effects on aquatic plants, which play an important biological role as primary producers. The original aim of this study was to investigate microcystin (MC) accumulation, detoxication and oxidative stress induction in the free-floating aquatic vascular plant Lemna gibba (Duckweed, Lemnaceae). Experiments were carried out with a range of MC levels, obtained from toxic Microcystis culture extracts (0.075, 0.15, 0.22 and 0.3 microg equiv.MC-LR mL(-1)). During chronic exposure of the plant to MC, we examined the growth, photosynthetic pigment contents and also the physiological behavior related to toxin accumulation, possible biodegradation and stress oxidative processes of L. gibba. For the last reason, changes in peroxidase activity and phenol compound content were determined. This is a first report using phenol compounds as indicators of biotic stress induced by MC contamination in aquatic plants. Following MC exposure, a significant decrease of plant growth and chlorophyll content was observed. Also, it was demonstrated that L. gibba could take up and bio-transform microcystins. A suspected MC degradation metabolite was detected in treated Lemna cells. In response to chronic contamination with MCs, changes in the peroxidase activity and qualitative and quantitative changes in phenolic compounds were observed after 24h of plant exposure. The physiological effects induced by chronic exposure to microcystins confirm that in aquatic ecosystems plants coexisting with toxic cyanobacterial blooms may suffer an important negative ecological impact. This may represent a sanitary risk due to toxin bioaccumulation and biotransfer through the food chain.  相似文献   

14.
Harmful algal blooms (HABs) and their toxins are a significant and continuing threat to aquatic life in freshwater, estuarine, and coastal water ecosystems. Scientific understanding of the impacts of HABs on aquatic ecosystems has been hampered, in part, by limitations in the methodologies to measure cyanotoxins in complex matrices. This literature review discusses the methodologies currently used to measure the most commonly found freshwater cyanotoxins and prymnesins in various matrices and to assess their advantages and limitations. Identifying and quantifying cyanotoxins in surface waters, fish tissue, organs, and other matrices are crucial for risk assessment and for ensuring quality of food and water for consumption and recreational uses. This paper also summarizes currently available tissue extraction, preparation, and detection methods mentioned in previous studies that have quantified toxins in complex matrices. The structural diversity and complexity of many cyanobacterial and algal metabolites further impede accurate quantitation and structural confirmation for various cyanotoxins. Liquid chromatography–triple quadrupole mass spectrometer (LC–MS/MS) to enhance the sensitivity and selectivity of toxin analysis has become an essential tool for cyanotoxin detection and can potentially be used for the concurrent analysis of multiple toxins.  相似文献   

15.
Microcystins (MCs) are common toxins produced by freshwater cyanobacteria, and they represent a potential health risk to aquatic organisms and animals, including humans. Specific inhibition of protein phosphatases 1 and 2A is considered the typical mechanism of MCs toxicity, but the exact mechanism has not been fully elucidated. To further our understanding of the toxicological mechanisms induced by MCs, this study is the first to use a chemical proteomic approach to screen proteins that exhibit special interactions with MC‐arginine‐arginine (MC‐RR) from zebrafish (Danio rerio) liver. Seventeen proteins were identified via affinity blocking test. Integration of the results of previous studies and this study revealed that these proteins play a crucial role in various toxic phenomena of liver induced by MCs, such as the disruption of cytoskeleton assembly, oxidative stress, and metabolic disorder. Moreover, in addition to inhibition of protein phosphate activity, the overall toxicity of MCs was simultaneously modulated by the distribution of MCs in cells and their interactions with other target proteins. These results provide new insight into the mechanisms of hepatotoxicity induced by MCs. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1206–1216, 2016.  相似文献   

16.
Polycyclic aromatic hydrocarbons are an important class of environmental pollutants that are known to be carcinogenic and immunotoxic. This review summarizes the diverse literature on the effects of these pollutants on innate and acquired immunity in fish and the mechanism of PAH-induced immunotoxicity. Among innate immune parameters, many authors have focused on macrophage activities in fish exposed to polycyclic aromatic hydrocarbons. Macrophage respiratory burst appears especially sensitive to polycyclic aromatic hydrocarbons. Among acquired immune parameters, lymphocyte proliferation appears highly sensitive to polycyclic aromatic hydrocarbon exposure. However, the effects of polycyclic aromatic hydrocarbons on both specific and non-specific immunity are contradictory and depend on the mode of exposure, the dose used or the species studied. In contrast to mammals, fewer studies have been done in fish to determine the mechanism of polycyclic aromatic hydrocarbon-induced toxicity. This phenomenon seems to implicate different intracellular mechanisms such as metabolism by cytochrome P4501A, binding to the Ah-receptor, or increased intracellular calcium. Advances in basic knowledge of fish immunity should lead to improvements in monitoring fish health and predicting the impact of polycyclic aromatic hydrocarbons on fish populations, which is a fundamental ecotoxicological goal.  相似文献   

17.

Background and purpose:

Okadaic acid (OA) and microcystins (MCs) are structurally different toxins with the same mechanism of action, inhibition of serine/threonine protein phosphatases (PPs). Methyl okadaate (MeOk), a methyl ester derivative of OA, was considered almost inactive due to its weak inhibition of PP1 and PP2A. Here, we have investigated the activity and potency of MeOk in hepatic cells in comparison with that of OA and MCs.

Experimental approach:

We tested the effects of MeOK, OA and microcystin-leucine and arginine (MC-LR) on the metabolic rate, the actin cytoskeleton and glucose uptake in a rat hepatocyte cell line (Clone 9) and in primary cultured rat hepatocytes. PP2A was assayed to compare OA and MeOk activity.

Key results:

MeOk disrupted the actin cytoskeleton and depressed the metabolic rate of both types of rat hepatocytes, being six-fold less potent than OA in Clone 9 cells but nearly six-fold more potent in primary cultured hepatocytes. However, unlike OA, MeOk did not change glucose uptake in these cells, suggesting a weak inhibition of PP2A, as confirmed in direct assays of PP2A activity.

Conclusions and implications:

Although MeOk was originally described as a weakly bioactive molecule, it clearly depressed the metabolic rate and disrupted the cytoskeleton in primary and immortalized rat hepatocytes. Furthermore, MeOk affected primary hepatocytes at much lower concentrations than those affecting immortalized cells. These effects were unrelated to PP2A inhibition. Our results suggest the risk to public health from MeOk in foodstuffs should be re-evaluated.  相似文献   

18.
The presence of cyanotoxins and its bioaccumulation in the food chain is an increasingly common problem worldwide. Despite the toxic effects produced by Anatoxin-a (ATX-a), this neurotoxin has been less studied compared to microcystins (MCs) and cylindrospermopsin (CYN). Studies conducted under laboratory conditions are of particular interest because these provide information which are directly related to the effects produced by the toxin. Currently, the World Health Organization (WHO) considers the ATX-a toxicological database inadequate to support the publication of a formal guideline reference value. Therefore, the aim of the present work is to compile all of the in vitro and in vivo toxicological studies performed so far and to identify potential data gaps. Results show that the number of reports is increasing in recent years. However, more in vitro studies are needed, mainly in standardized neuronal cell lines. Regarding in vivo studies, very few of them reflect conditions occurring in nature and further studies with longer periods of oral exposure would be of interest. Moreover, additional toxicological aspects of great interest such as mutagenicity, genotoxicity, immunotoxicity and alteration of hormonal balance need to be studied in depth.  相似文献   

19.
Saqrane S  Oudra B 《Toxins》2009,1(2):113-122
The world-wide occurrence of harmful cyanobacteria blooms "CyanoHAB" in fresh and brackish waters creates problems for all life forms. During CyanoHAB events, toxic cyanobacteria produce cyanotoxins at high levels that can cause chronic and sub-chronic toxicities to animals, plants and humans. Cyanotoxicity in eukaryotes has been mainly focused on animals, but during these last years, data, related to cyanotoxin (mainly microcystins, MCs) impact on both aquatic and terrestrials crop plants irrigated by water containing these toxins, have become more and more available. This last cited fact is gaining importance since plants could in a direct or indirect manner contribute to cyanotoxin transfer through the food chain, and thus constitute a potent health risk source. The use of this contaminated irrigation water can also have an economical impact which appears by a reduction of the germination rate of seeds, and alteration of the quality and the productivity of crop plants. The main objective of this work was to discuss the eventual phytotoxicity of cyanotoxins (microcystins) as the major agricultural impacts induced by the use of contaminated water for plant irrigation. These investigations confirm the harmful effects (ecological, eco-physiological, socio-economical and sanitary risk) of dissolved MCs on agricultural plants. Thus, cyanotoxin phytotoxicity strongly suggests a need for the surveillance of CyanoHAB and the monitoring of water irrigation quality as well as for drinking water.  相似文献   

20.
Microcystins (MCs) have been reported to induce oxidative stress in aquatic organisms including fish. The effect of acute exposure to toxic cyanobacterial material containing MCs on antioxidant enzymes and lipid peroxidation has been studied in liver, kidney and gills of tilapia fish (Oreochromis niloticus). Fish were orally exposed to a single dose of cyanobacterial cells containing 120 microg/fish MC-LR and sacrificed at 24 and 72 h. The activities of glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT) enzymes in the studied organs decreased in general 24 and 72 h after the dose application, although elevation of CAT and GR was found in liver at 72 h post exposure in comparison to 24h values. In contrast, the lipid peroxidation level increased significantly in all the studied organs with the liver (3.6-fold) proving to be the most affected. Protein oxidation was also increased 1.5-fold in the liver. However, recovery in these parameters was observed in liver 72 h after exposure. The results show that an acute dose of MCs does not induce an adaptative response of the antioxidant enzymes, as a sub-chronic exposure to MCs in tilapia fish does, but a general decrease in them with an initial recovery of the oxidative damage after 72 h, expressed as enhancement of CAT and GR activities and a reduction of LPO and protein oxidation in comparison to 24h values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号