首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H7 low pathogenic avian influenza viruses (LPAIVs) can mutate into highly pathogenic avian influenza viruses (HPAIVs). In addition to avian species, H7 avian influenza viruses (AIVs) also infect humans. In this study, two AIVs, H7N9 (20X-20) and H7N7 (34X-2), isolated from the feces of wild birds in South Korea in 2021, were genetically analyzed. The HA cleavage site of the two H7 Korean viruses was confirmed to be ELPKGR/GLF, indicating they are LPAIVs. There were no amino acid substitutions at the receptor-binding site of the HA gene of two H7 Korean viruses compared to that of A/Anhui/1/2013 (H7N9), which prefer human receptors. In the phylogenetic tree analysis, the HA gene of the two H7 Korean viruses shared the highest nucleotide similarity with the Korean H7 subtype AIVs. In addition, the HA gene of the two H7 Korean viruses showed high nucleotide similarity to that of the A/Jiangsu/1/2018(H7N4) virus, which is a human influenza virus originating from avian influenza virus. Most internal genes (PB2, PB1, PA, NP, NA, M, and NS) of the two H7 Korean viruses belonged to the Eurasian lineage, except for the M gene of 34X-2. This result suggests that active reassortment occurred among AIVs. In pathogenicity studies of mice, the two H7 Korean viruses replicated in the lungs of mice. In addition, the body weight of mice infected with 34X-2 decreased 7 days post-infection (dpi) and inflammation was observed in the peribronchiolar and perivascular regions of the lungs of mice. These results suggest that mammals can be infected with the two H7 Korean AIVs. Our data showed that even low pathogenic H7 AIVs may infect mammals, including humans, as confirmed by the A/Jiangsu/1/2018(H7N4) virus. Therefore, continuous monitoring and pathogenicity assessment of AIVs, even of LPAIVs, are required.  相似文献   

2.
Wild aquatic birds, a natural reservoir of avian influenza viruses (AIVs), transmit AIVs to poultry farms, causing huge economic losses. Therefore, the prevalence and genetic characteristics of AIVs isolated from wild birds in South Korea from October 2019 to March 2020 were investigated and analyzed. Fresh avian fecal samples (3256) were collected by active monitoring of 11 wild bird habitats. Twenty-eight AIVs were isolated. Seven HA and eight NA subtypes were identified. All AIV hosts were Anseriformes species. The HA cleavage site of 20 representative AIVs was encoded by non-multi-basic amino acid sequences. Phylogenetic analysis of the eight segment genes of the AIVs showed that most genes clustered within the Eurasian lineage. However, the HA gene of H10 viruses and NS gene of four viruses clustered within the American lineage, indicating intercontinental reassortment of AIVs. Representative viruses likely to infect mammals were selected and evaluated for pathogenicity in mice. JB21-58 (H5N3), JB42-93 (H9N2), and JB32-81 (H11N2) were isolated from the lungs, but JB31-69 (H11N9) was not isolated from the lungs until the end of the experiment at 14 dpi. None of infected mice showed clinical sign and histopathological change in the lung. In addition, viral antigens were not detected in lungs of all mice at 14 dpi. These data suggest that LPAIVs derived from wild birds are unlikely to be transmitted to mammals. However, because LPAIVs can reportedly infect mammals, including humans, continuous surveillance and monitoring of AIVs are necessary, despite their low pathogenicity.  相似文献   

3.
Wild birds play an important role in the emergence, evolution, and spread of zoonotic avian influenza viruses (AIVs). However, there are few studies on the cross-species transmission of the H3N8 AIV originating from wild birds. In this study, we investigated the transmissibility and pathogenicity of two H3N8 low pathogenic avian influenza viruses (LPAIVs) isolated from wild birds, GZA1 and XJ47, to mammals. The HA genes of both strains belonged to Eurasian isolates, while the other genes were derived from a variety of other subtypes of AIVs. Both strains can infect specific-pathogen-free (SPF) chickens, BALB/c mice, and guinea pigs. The XJ47 strain spread horizontally in SPF chickens and guinea pigs. The GZA1 strain did not spread horizontally but caused higher weight loss and mild lung inflammation in mice. P12-GZA1- and P12-XJ47-adapted strains obtained after 12 passages in the lung of mice showed enhanced pathogenicity in mice, which led to obvious clinical symptoms, lung inflammation, and 100% death. Both adapted strains have the reported mutation T97I in the PA, and the reported mutation D701N in PB2 has been found in the P12-GZA1-adapted strain. This study provides an important scientific basis for the continuous monitoring of wild AIVs and the mechanism underlying AIV cross-species transmission.  相似文献   

4.
Please cite this paper as: Chander et al. (2012) Molecular and phylogenetic analysis of matrix gene of avian influenza viruses isolated from wild birds and live bird markets in the USA. Influenza and Other Respiratory Viruses 7(4), 513–520. Background  Wild birds are the natural hosts for influenza A viruses (IAVs) and provide a niche for the maintenance of this virus. Objectives  This study was undertaken to analyze nucleotide sequences of the matrix (M) gene of AIVs isolated from wild birds and live bird markets (LBMs) to index the changes occurring in this gene. Methods  M‐gene of 229 avian influenza virus (AIV) isolates obtained from wild birds and LBMs was amplified and sequenced. Full‐length sequences (∼900 nt.) thus obtained were analyzed to identify changes that may be associated with resistance to adamantanes. Phylogenetic analysis of all sequences was performed using clustalw, and evolutionary distances were calculated by maximum composite likelihood method using mega (ver. 5.0) software. Results  Twenty‐seven different viral subtypes were represented with H3N8 being the most dominant subtype in wild birds and H7N2 being the predominant subtype among isolates from LBMs. Phylogenetic analysis of the M‐gene showed a high degree of nucleotide sequence identity with US isolates of AIVs but not with those of Asian or European lineages. While none of the isolates from wild birds had any antiviral resistance–associated mutations, 17 LBM isolates carried polymorphisms known to cause reduced susceptibility to antiviral drugs (adamantanes). Of these 17 isolates, 16 had S31N change and one isolate had V27A mutation. Conclusions  These results indicate independent evolution of M‐gene in the absence of any antiviral drugs leading to mutations causing resistance indicating the need for continued active surveillance of AIVs.  相似文献   

5.
Genetic analysis of circulating avian influenza viruses (AIVs) in wild birds at different geographical regions during the same period could improve our knowledge about virus transmission dynamics in natural hosts, virus evolution as well as zoonotic potential. Here, we report the genetic and molecular characterization of H6N2 influenza viruses isolated from migratory birds in Turkey, Egypt, and Uganda during 2017–2018. The Egyptian and Turkish isolates were genetically closer to each other than they were to the virus isolated from Uganda. Our results also suggest that multiple reassortment events were involved in the genesis of the isolated viruses. All viruses contained molecular markers previously associated with increased replication and/or pathogenicity in mammals. The results of this study indicate that H6N2 viruses carried by migratory birds on the West Asian/East African and Mediterranean/Black Sea flyways have the potential to transmit to mammals including humans. Additionally, adaptation markers in these viruses indicate the potential risk for poultry, which also increases the possibility of human exposure to these viruses.  相似文献   

6.
In 2021, several isolates of the H5N5 avian influenza virus (AIV) were detected in Europe and the Russian Federation, which differed from those detected in 2020. Genetic analysis revealed a relationship between the highly pathogenic avian influenza H5N5 subtype, detected in Europe, and some isolates detected in the Russian Federation territory in 2020–2021: it was shown that both originated in the Caspian Sea regions around the autumn of 2020. The appearance of H5N5 subtype viruses in the spring of 2021 in Europe and the Russian Federation was not associated with the mass migration of birds from Africa. The results of the analysis revealed the presence of a deletion in the stem of a neuraminidase between bp 139 and 204 (open reading frame). It has been shown that AIVs of the H5N5 subtype are capable of long-term circulation in wild bird populations with the possibility of reassortment. The results also highlighted the need for careful monitoring of the circulation of AIVs in the Caspian Sea region, the role of which, in the preservation and emergence of new antigenic variants of such viruses in Eurasia, is currently underestimated.  相似文献   

7.
Avian influenza virus (AIV) subtypes H5 and H7, possessing the ability to mutate spontaneously from low pathogenic (LP) to highly pathogenic (HP) variants, are major concerns for enormous socio-economic losses in the poultry industry, as well as for fatal human infections. Through antigenic drift and shift, genetic reassortments of the genotypes pose serious threats of increased virulence and pathogenicity leading to potential pandemics. In this study, we isolated the H7-subtype AIVs circulating in the Republic of Korea during 2018–2019, and perform detailed molecular analysis to study their circulation, evolution, and possible emergence as a zoonotic threat. Phylogenetic and nucleotide sequence analyses of these isolates revealed their distribution into two distinct clusters, with the HA gene sharing the highest nucleotide identity with either the A/common teal/Shanghai/CM1216/2017, isolated from wild birds in Shanghai, China, or the A/duck/Shimane/2014, isolated from Japan. Mutations were found in HA (S138A (H3 numbering)), M1 (N30D and T215A), NS1 (P42S), PB2 (L89V), and PA (H266R and F277S) proteins—the mutations had previously been reported to be related to mammalian adaptation and changes in the virulence of AIVs. Taken together, the results firmly put forth the demand for routine surveillance of AIVs in wild birds to prevent possible pandemics arising from reassortant AIVs.  相似文献   

8.
9.
Wild aquatic birds are natural reservoirs of low‐pathogenicity avian influenza viruses (LPAIVs). Laughing gulls inoculated with four gull‐origin LPAIVs (H7N3, H6N4, H3N8, and H2N3) had a predominate respiratory infection. By contrast, mallards inoculated with two mallard‐origin LPAIVs (H5N6 and H4N8) became infected and had similar virus titers in oropharyngeal (OP) and cloacal (CL) swabs. The trend toward predominate OP shedding in gulls suggest a greater role of direct bird transmission in maintenance, whereas mallards shedding suggests importance of fecal‐oral transmission through water contamination. Additional infectivity and pathogenesis studies are needed to confirm this replication difference for LPAI viruses in gulls.  相似文献   

10.
Within-host viral diversity offers a view into the early stages of viral evolution occurring after a virus infects a host. In recent years, advances in deep sequencing have allowed for routine identification of low-frequency variants, which are important sources of viral genetic diversity and can potentially emerge as a major virus population under certain conditions. We examined within-host viral diversity in turkeys and chickens experimentally infected with closely related H7N3 avian influenza viruses (AIVs), specifically one high pathogenicity AIV (HPAIV) and two low pathogenicity AIV (LPAIVs) with different neuraminidase protein stalk lengths. Consistent with the high mutation rates of AIVs, an abundance of intra-host single nucleotide variants (iSNVs) at low frequencies of 2–10% was observed in all samples collected. Furthermore, a small number of common iSNVs were observed between turkeys and chickens, and between directly inoculated and contact-exposed birds. Notably, the LPAIVs have significantly higher iSNV diversities and frequencies of nonsynonymous changes than the HPAIV in both turkeys and chickens. These findings highlight the dynamics of AIV populations within hosts and the potential impact of genetic changes, including mutations in the hemagglutinin gene that confers the high pathogenicity pathotype, on AIV virus populations and evolution.  相似文献   

11.
Since 2013, highly pathogenic H5N6 avian influenza viruses (AIVs) have emerged in poultry and caused sporadic human infections in Asia. The recent discovery of three new avian H5N6 viruses – A/oriental magpie-robin/Guangdong/SW8/2014 (H5N6), A/common moorhen/Guangdong/GZ174/2014 (H5N6) and A/Pallas's sandgrouse/Guangdong/ZH283/2015 (H5N6) – isolated from apparently healthy wild birds in Southern China in 2014–2015 raises great concern for the spread of these highly pathogenic AIVs (HPAIVs) and their potential threat to human and animal health. In our study, we conducted animal experiments and tested their pathogenicity in ducks, chickens and mice. Ducks can carry and shed the H5N6 HPAIVs, but show no ill effects. On the other hand, these H5N6 HPAIVs can efficiently infect, transmit and cause death in chickens. Due to the overlap of habitats, domestic ducks play an important role in circulating AIVs between poultry and wild birds. Our results raise the possibility that wild birds disseminate these H5N6 HPAIVs to poultry along their flyways and thus pose a great threat to the poultry industry. These viruses are also highly pathogenic to mice, suggesting they pose a potential threat to mammals and, thus, public health. One virus isolated in 2015 replicates much more efficiently and is more lethal in these animals than the two other viruses isolated in 2014. It seems that the H5N6 viruses tend to be more lethal as time passes. Therefore, it is necessary to vigilantly monitor H5N6 HPAIVs in wild birds and poultry.  相似文献   

12.
Seasonal H3N2 influenza virus has always been a potential threat to public health. The reassortment of the human and avian H3N2 influenza viruses has resulted in major influenza outbreaks, which have seriously damaged human life and health. To assess the possible threat of the H3N2 avian influenza virus to human health, we performed whole-genome sequencing and genetic evolution analyses on 10 H3N2 field strains isolated from different hosts and regions in 2019–2020 and selected representative strains for pathogenicity tests on mice. According to the results, the internal gene cassettes of nine strains had not only undergone reassortment with the H1, H2, H4, H6, and H7 subtypes, which circulate in poultry and mammals, but also with H10N8, which circulates in wild birds in the natural environment. Three reassorted strains were found to be pathogenic to mice, of these one strain harboring MP from H10N8 showed a stronger virulence in mice. This study indicates that reassorted H3N2 AIVs may cross the host barrier to infect mammals and humans, thereby, necessitating persistent surveillance of H3N2 AIVs.  相似文献   

13.
Many high pathogenicity avian influenza (HPAI) cases in wild birds due to H5N1 HPAI virus (HPAIV) infection were reported in northern Japan in the winter of 2021–2022. To investigate the epidemiology of HPAIVs brought to Japan from surrounding areas, a genetic analysis of H5 HPAIVs isolated in northern Japan was performed, and the pathogenicity of the HPAIV in chickens was assessed by experimental infection. Based on the genetic analysis of the hemagglutinin gene, pathogenic viruses detected in northern Japan as well as one in Sakhalin, the eastern part of Russia, were classified into the same subgroup as viruses prevalent in Europe in the same season but distinct from those circulating in Asia in winter 2020–2021. High identities of all eight segment sequences of A/crow/Hokkaido/0103B065/2022 (H5N1) (Crow/Hok), the representative isolates in northern Japan in 2022, to European isolates in the same season could also certify the unlikeliness of causing gene reassortment between H5 HPAIVs and viruses locally circulating in Asia. According to intranasal challenge results in six-week-old chickens, 50% of the chicken-lethal dose of Crow/Hok was calculated as 104.5 times of the 50% egg-infectious dose. These results demonstrated that the currently prevalent H5 HPAIVs could spread widely from certain origins throughout the Eurasian continent, including Europe and the Far East, and implied a possibility that contagious viruses are gathered in lakes in the northern territory via bird migration. Active monitoring of wild birds at the global level is essential to estimate the geographical source and spread dynamics of HPAIVs.  相似文献   

14.
An outbreak caused by H7N3 low pathogenicity avian influenza virus (LPAIV) occurred in commercial turkey farms in the states of North Carolina (NC) and South Carolina (SC), United States in March of 2020. Subsequently, H7N3 high pathogenicity avian influenza virus (HPAIV) was detected on a turkey farm in SC. The infectivity, transmissibility, and pathogenicity of the H7N3 HPAIV and two LPAIV isolates, including one with a deletion in the neuraminidase (NA) protein stalk, were studied in turkeys and chickens. High infectivity [<2 log10 50% bird infectious dose (BID50)] and transmission to birds exposed by direct contact were observed with the HPAIV in turkeys. In contrast, the HPAIV dose to infect chickens was higher than for turkeys (3.7 log10 BID50), and no transmission was observed. Similarly, higher infectivity (<2–2.5 log10 BID50) and transmissibility were observed with the H7N3 LPAIVs in turkeys compared to chickens, which required higher virus doses to become infected (5.4–5.7 log10 BID50). The LPAIV with the NA stalk deletion was more infectious in turkeys but did not have enhanced infectivity in chickens. These results show clear differences in the pathobiology of AIVs in turkeys and chickens and corroborate the high susceptibility of turkeys to both LPAIV and HPAIV infections.  相似文献   

15.
The outbreaks of H5N2 avian influenza viruses have occasionally caused the death of thousands of birds in poultry farms. Surveillance during the 2018 winter season in South Korea revealed three H5N2 isolates in feces samples collected from wild birds (KNU18-28: A/Wild duck/South Korea/KNU18-28/2018, KNU18-86: A/Bean Goose/South Korea/KNU18-86/2018, and KNU18-93: A/Wild duck/South Korea/KNU18-93/2018). Phylogenetic tree analysis revealed that these viruses arose from reassortment events among various virus subtypes circulating in South Korea and other countries in the East Asia–Australasian Flyway. The NS gene of the KNU18-28 and KNU18-86 isolates was closely related to that of China’s H10N3 strain, whereas the KNU18-93 strain originated from the H12N2 strain in Japan, showing two different reassortment events and different from a low pathogenic H5N3 (KNU18-91) virus which was isolated at the same day and same place with KNU18-86 and KNU18-93. These H5N2 isolates were characterized as low pathogenic avian influenza viruses. However, many amino acid changes in eight gene segments were identified to enhance polymerase activity and increase adaptation and virulence in mice and mammals. Experiments reveal that viral replication in MDCK cells was quite high after 12 hpi, showing the ability to replicate in mouse lungs. The hematoxylin and eosin-stained (H&E) lung sections indicated different degrees of pathogenicity of the three H5N2 isolates in mice compared with that of the control H1N1 strain. The continuing circulation of these H5N2 viruses may represent a potential threat to mammals and humans. Our findings highlight the need for intensive surveillance of avian influenza virus circulation in South Korea to prevent the risks posed by these reassortment viruses to animal and public health.  相似文献   

16.

Background

There is insufficient knowledge about the relation of avian influenza virus (AIV) to migratory birds in South America. Accordingly, we studied samples obtained over a 4‐year period (2009‐2012) from wild birds at a major wintering site in southern Brazil.

Methods

We obtained 1212 oropharyngeal/cloacal samples from wild birds at Lagoa do Peixe National Park and screened them for influenza A virus by RT‐PCR amplification of the matrix gene. Virus isolates were subjected to genomic sequencing and antigenic characterization.

Results

Forty‐eight samples of 1212 (3.96%) contained detectable influenza virus RNA. Partial viral sequences were obtained from 12 of these samples, showing the presence of H2N2 (1), H6Nx (1), H6N1 (8), H9N2 (1), and H12N5 (1) viruses. As H6 viruses predominated, we generated complete genomes from all 9 H6 viruses. Phylogenetic analyses showed that they were most similar to viruses of South American lineage. The H6N1 viruses caused no disease signs in infected ferrets and, despite genetic differences, were antigenically similar to North American isolates.

Conclusions

Lagoa do Peixe National Park is a source of multiple AIV subtypes, with the levels of influenza virus in birds being highest at the end of their wintering period in this region. H6N1 viruses were the predominant subtype identified. These viruses were more similar to viruses of South American lineage than to those of North American lineage.
  相似文献   

17.
The H9N2 virus continues to spread in wild birds and poultry worldwide. At the beginning of 2016, the H9N2 Avian influenza virus (AIV) was detected in Morocco for the first time; despite the implementation of vaccination strategies to control the disease, the virus has become endemic in poultry in the country. The present study was carried out to investigate the origins, zoonotic potential, as well as the impact of vaccination on the molecular evolution of Moroccan H9N2 viruses. Twenty-eight (28) H9N2 viruses collected from 2016 to 2021 in Moroccan poultry flocks were isolated and their whole genomes sequenced. Phylogenetic and evolutionary analyses showed that Moroccan H9N2 viruses belong to the G1-like lineage and are closely related to viruses isolated in Africa and the Middle East. A high similarity among all the 2016–2017 hemagglutinin sequences was observed, while the viruses identified in 2018–2019 and 2020–2021 were separated from their 2016–2017 ancestors by long branches. Mutations in the HA protein associated with antigenic drift and increased zoonotic potential were also found. The Bayesian phylogeographic analyses revealed the Middle East as being the region where the Moroccan H9N2 virus may have originated, before spreading to the other African countries. Our study is the first comprehensive analysis of the evolutionary history of the H9N2 viruses in the country, highlighting their zoonotic potential and pointing out the importance of implementing effective monitoring systems.  相似文献   

18.
Migratory birds carried clade 2.3.4.4B H5Nx highly pathogenic avian influenza (HPAI) viruses to South Africa in 2017, 2018 and 2021, where the Gauteng Province is a high-risk zone for virus introduction. Here, we combined environmental faecal sampling with sensitive rRT-PCR methods and direct Ion Torrent sequencing to survey wild populations between February and May 2022. An overall IAV incidence of 42.92% (100/231) in water bird faecal swab pools or swabs from moribund or dead European White Storks (Ciconia ciconia) was detected. In total, 7% of the IAV-positive pools tested H5-positive, with clade 2.3.4.4B H5N1 HPAI confirmed in the storks; 10% of the IAV-positive samples were identified as H9N2, and five complete H9N2 genomes were phylogenetically closely related to a local 2021 wild duck H9N2 virus, recent Eurasian LPAI viruses or those detected in commercial ostriches in the Western and Eastern Cape Provinces since 2018. H3N1, H4N2, H5N2 and H8Nx subtypes were also identified. Targeted surveillance of wild birds using environmental faecal sampling can thus be effectively applied under sub-Saharan African conditions, but region-specific studies should first be used to identify peak prevalence times which, in southern Africa, is linked to the peak rainfall period, when ducks are reproductively active.  相似文献   

19.
目的对2009年分离自华东地区某活禽交易市场的1株国内未见报道的H6N6亚型禽流感病毒进行了全基因序列的测定,以探讨该病毒各基因片段的可能来源。方法通过常规的血清学试验确定病毒HA亚型,经RT-PCR方法扩增出各基因片段,连接到pGEM-Teasy载体上进行序列测定,利用BLAST进行序列的同源性分析,并结合GenBank中已收录的H6N6亚型流感病毒及其它相关序列进行遗传进化分析。结果 BLAST结果显示该H6N6病毒的HA基因与近年台湾分离株A/duck/Kingmen/E322/2004(H6N2)的核苷酸一致性最高(94.0%),推导的氨基酸剪切位点序列为P-Q-I-E-T-R-G,是典型低致病性禽流感病毒的特征序列;NA基因与华东地区分离株A/duck/EasternChina/160/2002(H4N6)的亲缘关系最近(核苷酸一致性91.0%);而PB1基因与荷兰2003年间分离的H7N7亚型流感病毒关系密切;PA基因则与1999-2000年间意大利分离的H7N1亚型流感病毒亲缘关系较近;NS1蛋白在第218位提前引入终止密码子致使C末端缺失13个氨基酸。结论国内首次分离到的H6N6亚型禽流感病毒的基因组构成较为复杂,但8个基因片段均属于欧亚系,与分离自北美地区的H6N6病毒的遗传距离较远,分别位于不同的进化分支。  相似文献   

20.
In 2020–2021, the second massive dissemination of a highly pathogenic avian influenza of the H5Nx subtype occurred in Europe. During this period, the virus caused numerous outbreaks in poultry, including in the Czech Republic. In the present study, we provide an insight into the genetic variability of the Czech/2021 (CZE/2021) H5N8 viruses to determine the relationships between strains from wild and domestic poultry and to infer transmission routes between the affected flocks of commercial poultry. For this purpose, whole genome sequencing and phylogenetic analysis of 70 H5N8 genomes representing 79.7% of the cases were performed. All CZE/2021 H5N8 viruses belonged to the 2.3.4.4b H5 lineage and circulated without reassortment, retaining the A/chicken/Iraq/1/2020 H5N8-like genotype constellation. Phylogenetic analysis suggested the frequent local transmission of H5N8 from wild birds to backyard poultry and extensive spread among commercial poultry farms. In addition, the analysis suggested one cross-border transmission event. Indirect transmission via contaminated materials was considered the most likely source of infection. Improved biosecurity and increased collaboration between field veterinarians and the laboratory are essential to limit the local spread of the virus and to reveal and interrupt critical routes of infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号