首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Thermal deformation has a significant influence on the microstructure of high-strength antiseismic steel. The effect of hot deformation on the microstructure of experimental steel was studied by the Gleeble-3800 thermal simulator. The microstructure of the steel was characterized by the metallographic microscope, microhardness, tensile test, field emission scanning electron microscope, electron backscatter diffraction, and high-resolution transmission electron microscope. The results show that the core microstructure of the test steel is composed of polygonal ferrite and lamellar pearlite. The test steel is mainly ductile fracture. Tensile strength and hardness increase with the decrease of temperature. At 650 °C isothermal temperature, the ferrite distribution was uniform, the average grain size was 7.78 μm, the grain size grade reached 11, the pearlite lamellar spacing was 0.208 μm, and the tensile fracture was distributed with uniform equiaxed dimples. Polygonal ferrite grain boundaries have high density dislocations that can effectively block the initiation and propagation of cracks. However, there are some low dislocation boundaries and subgrain boundaries in ferrite grains. Precipitation strengthening is mainly provided by fine precipitates of V-rich carbonitride in experimental steel. The precipitates are round or narrow strips, about 70–100 nm in size, distributed along ferrite grain boundaries and matrix.  相似文献   

2.
Isothermal annealing of a eutectic dual phase Ni–Mn–Sn–Fe alloy was carried out to encourage grain growth and investigate the effects of grain size of the γ phase on the martensitic transformation behaviour and mechanical properties of the alloy. It is found that with the increase of the annealing time, the grain size and volume fraction of the γ phase both increased with the annealing time predominantly by the inter-diffusion of Fe and Sn elements between the γ phase and the Heusler matrix. The isothermal anneals resulted in the decrease of the e/a ratio and suppression of the martensitic transformation of the matrix phase. The fine γ phase microstructure with an average grain size of 0.31 μm showed higher fracture strength and ductility values by 28% and 77% compared to the coarse-grained counterpart with an average grain size of 3.31 μm. The fine dual phase microstructure shows a quasi-linear superelasticity of 4.2% and very small stress hysteresis during cyclic loading, while the coarse dual phase counterpart presents degraded superelasticity of 2.6% and large stress hysteresis. These findings indicate that grain size refinement of the γ phase is an effective approach in improving the mechanical and transformation properties of dual phase Heusler alloys.  相似文献   

3.
In the present paper, the designed thermomechanical process was applied to prepare ferrite/bainite multiphase microstructures in Si-rich low-alloy steel with a carbon content of 0.33 wt.% (0.33C) and 0.21 wt.% (0.21C). The microstructures were analyzed by scanning electron microscope, transmission electron microscope, and electron backscatter diffraction, and the mechanical properties (tensile and impact properties) were tested. The results showed that, on the premise of obtaining 15 vol.% ferrite in both steels, the ferrite grains in the 0.33C steel were polygonal with an average grain size of 2.2 μm, recrystallized more completely. However, the ferrite grains in the 0.21C steel were mainly long strip-shaped with a width of 2–4 μm, and the recrystallization degree was poor. In addition, upon increasing the austempering temperature, bainite ferrite laths were formed in the 0.33C steel, and the thickness was in the range of 81–123 nm. The morphology of bainite ferrite in the 0.21C steel gradually changed from lath to granular. Upon increasing the austempering temperature, the tensile strength and yield strength of both steels increased and the elongation decreased slightly. The impact energy of the two steels showed different trends upon increasing the austempering temperature, in which the impact energy of the 0.33C steel increased, while that of the 0.21C steel decreased. This is due to the difference size of the martensite-austenite constituents in the two steels.  相似文献   

4.
This work investigated the tensile characteristics of plain C–Mn steel with an ultrafine grained ferrite/cementite (UGF/C) microstructure and coarse-grained ferrite/pearlite (CGF/P) microstructure. The tensile tests were performed at temperatures between 77 K and 323 K. The lower yield and the ultimate tensile strengths were significantly increased when the microstructure was changed from the CGF/P to the UGF/C microstructures, but the total elongation and the uniform elongation decreased. A microstructural change from the CGF/P microstructure to the UGF/C microstructure had an influence on the athermal component of the lower yield and the ultimate tensile strengths but not on the thermal component. The UGF/C microstructure with a higher carbon content provided a higher strength without losing ductility because cementite particles restrained necking.  相似文献   

5.
In this paper, the effect of adding the refiner Sc to the high Zn/Mg ratio 7xxx series aluminum alloy melt on the hot tearing performance, microstructure, and mechanical properties of the alloy is studied. The hot tearing performance test (CRC) method is used to evaluate the hot tearing performance of the alloy. The squeeze casting process was used to form solid cylindrical parts to analyze the structure and properties of the alloy. This study shows that the hot cracking sensitivity of the alloy after the addition of the refiner Sc is significantly reduced. The ingot grain size is significantly reduced, and the average grain size is reduced from about 86 μm to about 53 μm. While the mechanical properties are significantly improved, and the tensile strength reduced from 552 MPa is increased to 571 MPa, and the elongation rate is increased from 11% to 14%.  相似文献   

6.
The room-temperature strength of Al0.3CoCrFeNi high-entropy alloys (HEAs) is relatively low owing to its intrinsic fcc structure. In the present study, the as-cast HEAs were subjected to cold rolling and subsequent annealing treatment (800, 900, and 1000 °C) to adjust the microstructures and tensile properties. This treatment process resulted in the partial recrystallization, full recrystallization, and grain coarsening with increasing the annealing temperature. It was found that the large and spherical B2 precipitates were generated in the recrystallized grain boundaries of three annealing states, while the small and elongated B2 precipitates were aligned along the deformation twins in the non-recrystallized region of the 800 °C-annealing state. The former B2 precipitates assisted in refining the recrystallized grains to quasi ultra-fine grain and fine grain regimes (with the grain sizes of ~0.9, ~2.2, and ~7.2 μm). The tensile results indicated that the decreased annealing temperature induced the gradual strengthening of this alloy but also maintained the ductility at the high levels. The yield strength and ultimate tensile strength in 800 °C-annealed specimen were raised as high as ~870 and ~1060 MPa and the ductility was maintained at ~26%. The strengthening behavior derived from the heterogeneous microstructures consisting of quasi ultra-fine recrystallized grains, non-recrystallized grains, deformation twins, dislocations, and B2 precipitates. Current findings offer the guidance for designing the HEAs with good strength and ductility.  相似文献   

7.
Due to the advantages of relatively low cost, increased energy efficiency, increased deposition rate, and the capacity to create medium to large scale components, wire + arc additive manufacturing (WAAM) has gained growing interest. Super martensitic stainless steel (SMSS) combines outstanding strength, ductility, and corrosion resistance, making it a great option for WAAM. In the present work, an SMSS component was successfully produced by WAAM. Additionally, the influence of post-manufactured heat treatment on the microstructural characteristics and mechanical properties of SMSS components was systematically examined. A microstructural analysis of the as-printed and heat-treated samples revealed the formation of typical martensite and a small amount of retained austenite. However, the sample heat-treated by solutionizing at 1050 °C for 1 h followed by aging at 400 °C for 2 h exhibited a finer martensitic structure with an effective grain size of 5.6 μm compared to as-printed sample, leading to an increase in ultimate tensile strength from 1054 ± 6 MPa to 1141 ± 3 MPa with a concomitant increase in elongation from 7.8 ± 0.4% to 12.6 ± 0.2%. Additionally, the fracture morphology of the solution + aging sample demonstrated a more uniform distribution and greater mean size of dimples, indicating better ductility.  相似文献   

8.
This article describes a technology for the thermomechanical treatment of stainless-steel piston rings. This technology makes it possible to obtain rings with an optimal combination of plastic and strength properties that is essential for piston rings. The following thermomechanical treatment is suggested for piston rings manufacturing: quenching at 1050 °C, holding for 30 min and cooling in water, then straining by the HPT method for eight cycles at cryogenic temperature and annealing at a temperature up to 600 °C. The resulting microstructure consisted of fine austenite grains sized 0.3 μm and evenly distributed carbide particles. Annealing above this temperature led to the formation of ferrite in the structure; however, preserving the maximum fraction of austenitic component is very important, since the reduction of austenite in the structure will cause a deterioration of corrosion resistance. The strength properties of steel after such treatment increased by almost two times compared with the initial ones: microhardness increased from 980 MPa to 2425 MPa, relative elongation increased by 20%. The proposed technology will improve the strength and performance characteristics of piston rings, as well as increase their service life, which will lead to significant savings in the cost of repair, replacement and downtime.  相似文献   

9.
In the present paper, the Mg-11Gd-2Y-1Zn alloys with different Al addition were fabricated by the gravity permanent mold method. The effect of Al content on microstructure evolution and mechanical properties of as-cast Mg-11Gd-2Y-1Zn alloy was studied by metallographic microscope, scanning electron microscope, XRD and tensile testing. The experimental results showed that the microstructure of as-cast Mg-11Gd-2Y-1Zn alloy consisted of α-Mg phase and island-shaped Mg3 (RE, Zn) phase. When Al element was added, Al2RE phase and lamellar Mg12REZn (LPSO) phase were formed in the Mg-11Gd-2Y-1Zn alloy. With increasing Al content, LPSO phase and Mg3 (RE, Zn) phase gradually decreased, while Al2RE phase gradually increased. There were only α-Mg and Al2RE phases in the Mg-11Gd-2Y-1Zn-5Al alloy. With the increase of Al content, the grain size decreased firstly and then increased. When the Al content was 1 wt.%, the grain size of the alloy was the minimum value (28.9 μm). The ultimate tensile strength and elongation increased firstly and then decreased with increasing Al addition. And the fracture mode changed from intergranular fracture to transgranular fracture with increasing addition. When Al addition was 1 wt.%, the maximum ultimate tensile strength reached 225.6 MPa, and the elongation was 7.8%. When the content of Al element was 3 wt.%, the maximum elongation reached 10.2% and the ultimate tensile strength was 207.7 MPa.  相似文献   

10.
The vacuum hot-rolled SUS314/Q235 stainless steel clad plate has many drawbacks including serious interface alloy element diffusion, stainless steel cladding’s sensitization, and carbon steel substrate’s low strength. In this study, the comprehensive properties were systematically adjusted by changing the thickness of the Ni interlayer (0, 100, 200 μm) and the quenching temperature (1000~1150 °C). The results showed that the Ni interlayer can obviously hinder the diffusion of carbon element, so as to achieve the purpose of eliminating the decarburized layer and reducing the carbon content of the carburized layer. Meanwhile, the perfect metallurgical bonding between the substrate and cladding can be obtained, effectively improving the stainless steel clad plate’s tensile shear strength and comprehensive mechanical properties, and significantly reduce the brittleness of the carburized layer. As the quenching temperature increases, the grains coarsening of carbon steel and stainless steel became more and more serious, and the sensitization phenomenon and the thickness of the carburized layer are gradually decreased. The stainless steel clad plate (Ni layer thickness of 100 μm) quenched at 1050 °C had the best comprehensive mechanical properties. Herein, the interface shear strength, tensile strength and the fracture elongation reached 360.5 MPa, 867 MPa and 16.10%, respectively, achieving strengthening and toughening aim. This is attributed to the disappearance of the sensitization phenomenon, the grain refinement and the lower interface residual stress.  相似文献   

11.
Scroll compressors are popularly applied in air-conditioning systems. The conventional fabrication process causes gas and shrinkage porosity in the scroll. In this paper, the electromagnetic stirring (EMS)-based semisolid multicavity squeeze casting (SMSC) process is proposed for effectively manufacturing wrought aluminum alloy scrolls. Insulation temperature, squeeze pressure, and the treatment of the micromorphology and mechanical properties of the scroll were investigated experimentally. It was found that reducing the insulation temperature can decrease the grain size, increase the shape factor, and improve mechanical properties. The minimum grain size was found as 111 ± 3 μm at the insulation temperature of 595 °C. The maximum tensile strength, yield strength, and hardness were observed as 386 ± 8 MPa, 228 ± 5 MPa, and 117 ± 5 HV, respectively, at the squeeze pressure of 100 MPa. The tensile strength and hardness of the scroll could be improved, and the elongation was reduced by the T6 heat treatment. The optimal process parameters are recommended at an insulation temperature in the range of 595–600 °C and a squeeze pressure of 100 MPa. Under the optimal process parameters, scroll casting was completely filled, and there was no obvious shrinkage defect observed inside. Its microstructure is composed of fine and spherical grains.  相似文献   

12.
Ductile-to-brittle transition (DBT) temperature and brittle fracture stress, σF, are important toughness criteria for structural materials. In this paper, low-carbon steels with an ultrafine elongated grain (UFEG) structure (transverse grain size 1.2 μm) and with two ferrite (α)-pearlite structure with grain sizes 10 µm and 18 µm were prepared. The UFEG steel was fabricated using multipass warm biaxial rolling. The tensile tests with a cylindrical specimen and three-point bending tests with a single-edge-notched specimen were performed at −196 °C. The local stress near the notch was quantitatively calculated via finite element analysis (FEA). The σF for each sample was quantified based on the experimental results and FEA. The relationship between σF and dα in the wide range of 1.0 μm to 138 μm was plotted, including data from past literature. Finally, the conditions of grain size and temperature that cause DBT fracture in low-carbon steel were shown via the stress−d−1/2 map. The results quantitatively showed the superiority of α grain size for brittle fracture.  相似文献   

13.
The present study investigates the microstructure and mechanical properties of ultra-low carbon bainitic steel (UCBS) under different cold rolling reductions. When the rolling reduction ratios were increased to 80%, the microstructure was refined, and the lath width of the bainite decreased from 601 nm to 252 nm. The ultimate tensile strength and yield strength increased from 812 MPa and 683 MPa to 1195 MPa and 1150 MPa, respectively, whereas the elongation decreased from 15.9% to 7.9%. In addition, the dislocation density increased from 8.3 × 1013 m−2 to 4.87 × 1014 m−2 and a stronger γ-fiber texture was obtained at the 80% cold rolling reduction ratio. The local stress distribution and kernel average misorientation were not uniform and became more severe with increased rolling reduction ratios. The strength increment of UCBS was primarily due to boundary strengthening and dislocation strengthening. The theoretical strength increment agreed well with the experimental measurements, which can be helpful for the design and production of UCBS for broad engineering applications.  相似文献   

14.
An austenite-ferrite duplex low-density steel (Fe–12Mn–7Al–0.2C–0.6Si, wt%) was designed and fabricated by cold rolling and annealing at different temperatures. The tensile properties, microstructure evolution, deformation mechanism and stacking fault energy (SFE) of the steel were systemically investigated at ambient temperature. Results show two phases of fine equiaxed austenite and coarse band-like δ-ferrite in the microstructure of the steel. With increasing annealing temperature, the yield and tensile strengths decrease while the total elongation increases. At initial strains, the deformation is mainly concentrated in the fine austenite and grain boundaries of the coarse δ-ferrite, and the interior of the coarse δ-ferrite gradually deforms with further increase in the strain to 0.3. No twinning-induced plasticity (TWIP) or transformation-induced plasticity (TRIP) occurred during the tensile deformation. Considering element segregation and two-phase proportion, the chemical composition of austenite was measured more precisely. The SFE of the austenite is 39.7 mJ/m2, and the critical stress required to produce deformation twins is significantly higher than the maximum flow stress of the steel.  相似文献   

15.
The paper presents the microstructure and mechanical property of pure aluminum (Al) fabricated by multi-pass caliber rolling at room temperature. The finite element modeling (FEM) simulation was performed to explore the changes in rolling force, effective stress and strain, and temperature under various rolling passes. As the number of rolling passes increased, the overall temperature, effective stress, and strain gradually increased, while the maximum rolling force decreased. In addition, due to the dynamic recrystallization (DRX), the average grain size reduced from 1 mm to 14 µm with the increase in rolling passes. The dislocation density increased and it gradually evolved into the high-angle grain boundaries (HAGBs). Moreover, the initial cubic texture rotated to the brass component and finally changed to a mixture of Cube and Brass types. The highest tensile yield strength (TYS), ultimate tensile strength (UTS) and elongation (El.) of caliber rolled pure Al (116 MPa, 135 MPa, and 17%, respectively) can be achieved after 13 rolling passes, which mainly attributed to grain refinement.  相似文献   

16.
Transformation Induced Plasticity (TRIP)-assisted annealed martensitic (TAM) steel sheets with various microalloying additions such as niobium, vanadium, or titanium were prepared on laboratory scale and subjected to a double-quenching and austempering heat treatment cycle. Slow strain rate tensile (SSRT) was tested on the investigated TAM steels with and without hydrogen charging to reveal their tensile behaviors and hydrogen induced embrittlement effects. Microstructure observations by scanning electron microscope (SEM) are composed of a principal annealed martensitic matrix and 11.0–13.0% volume fraction of retained austenite, depending on the type of microalloying addition in the different steels. SSRT results show that these TRIP-assisted annealed martensitic steels under air media conditions combine high tensile strength (>1000 MPa) and good ductility (~25%), while under hydrogen charging condition, both tensile strength and ductility decrease where tensile strength ranges between 680 and 760 MPa, down from 1000–1100 MPa, and ductility loss ratio is between 78.8% and 91.1%, along with a total elongation of less than 5%. Hydrogen charged into steel matrix leads to the appearance of cleavage fractures, implying the occurrence of hydrogen induced embrittlement effect in TAM steels. Thermal hydrogen desorption results show that there are double-peak hydrogen desorption temperature ranges for these microalloyed steels, where the first peak corresponds to a high-density dislocation trapping effect, and the second peak corresponds to a hydrogen trapping effect exerted by microalloying precipitates. Thermal desorption analysis (TDS) in combination with SSRT results demonstrate that microalloying precipitates act as irreversible traps to fix hydrogen and, thus, retard diffusive hydrogen motion towards defects, such as grain boundaries and dislocations in microstructure matrix, and eventually reduce the hydrogen induced embrittlement tendency.  相似文献   

17.
Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nb (TA32) titanium alloy is a kind of near α high temperature titanium alloy with great application prospects in aero-engine afterburners and cruise missiles. However, there are still few studies on the microstructure and mechanical properties of TA32 specimens produced by selective laser melting (SLM) technology. In this study, TA32 specimens with high strength (tensile strength of 1267 MPa) and moderate ductility (elongation after fracture of 8%) were obtained by selective laser melting. The effect of laser power on the microstructure and mechanical behavior was studied and the results demonstrated that the average grain size increases with increasing laser power from 200 W to 400 W. Micro-zone composition analysis was carried out by energy dispersion spectrum (EDS), showing that the Al concentration inner grains is higher than that near grain boundaries. Fracture analysis results demonstrated that the fracture mode of SLM TA32 specimens was cleavage fracture. The tensile strength of the specimens built with a laser power of 250 W at 500 °C, 550 °C and 600 °C was measured as 869 MPa, 819 MPa and 712 MPa, respectively.  相似文献   

18.
The tensile properties and damping capacity of cold-rolled Fe–20Mn–12Cr–3Ni–3Si alloys were investigated. The martensitic transformation was identified, including surface relief with a specific orientation and partial intersection. Besides, as the cold rolling degree increased, the volume fraction of ε-martensite increased, whereas α’-martensite started to form at the cold rolling degree of 15% and slightly increased to 6% at the maximum cold rolling degree. This difference may be caused by high austenite stability by adding alloying elements (Mn and Ni). As the cold rolling degree increased, the tensile strength linearly increased, and the elongation decreased due to the fractional increment in the volume of martensite. However, the damping capacity increased until a 30% cold rolling degree was approached, and then decreased. The irregular tendency of the damping capacity was confirmed, depicting that it increased to a specific degree and then decreased as the tensile strength and elongation increased. Concerning the relationship between the tensile properties and the damping capacity, the damping capacity increased and culminated, and then decreased as the tensile properties and elongation increased. The damping capacity in the high-strength area tended to decrease because it is difficult to dissipate vibration energy into thermal energy in alloys with high strength. In the low-strength area, on the other hand, the damping capacity increased as the strength increased since the increased volume fraction of ε-martensite is attributed to the increase in the damping source.  相似文献   

19.
To further improve the mechanical properties of H13 steel at room and high temperatures, its precipitates were regulated based on the Thermo-Calc results. Scanning electron microscope (SEM), electron backscattering diffraction (EBSD), transmission electron microscope (TEM), and X-ray diffraction (XRD) Rietveld refinement were used to study the effect of the intercritical annealing on the microstructure and mechanical properties of H13 steel. The results show that the intercritical annealing at 850~95 °C increased the VC volume fraction from 2.23 to 3.03~3.48%. Increasing the VC volume fraction could inhibit the M7C3 precipitation from 10.01 to 6.63~5.72% during tempering. A large amount of VC also promoted the M23C6 precipitation during tempering at higher dislocation densities. The intercortical annealing simultaneously increased the elongation of H13 steel. An excellent combination (room temperature: ultimate tensile strength (UTS) of 898 MPa and total elongation (TEL) of 19.35%, 650 °C: UTS of 439 MPa, and TEL of 27.80%) could be obtained when intercritical annealing is performed at 900 °C. Meanwhile, after aging at 650 °C for 128 h, the room temperature UTS and TEL decreased by only 31 MPa and 0.52%, respectively.  相似文献   

20.
Achieving magnesium-rare earth alloys with excellent mechanical properties remains a challenging goal in the aerospace industry. The integrated extrusion and equal channel angular pressing were employed to refine grain and improve the mechanical properties of Mg-xNd-2.0Sm-0.4Zn-0.4Zr alloys. The effect of Nd element on microstructure and mechanical properties of the extruded and subsequently aged alloys were carried out by varying the amount of the Nd element from 0 wt.% to 2.5 wt.%. The optical microscopy results indicated that the grain size was remarkably refined by the addition of Nd element. The grain size decreased from 29.7 μm to 10.9 μm with increasing of the Nd element from 0 wt.% to 2.5 wt.%. The transmission electron microscopy results showed that the nano-scaled basal lamellar precipitates, prismatic lamellar precipitates and granular precipitates were formed in α-Mg matrix. The amount of the precipitates increased significantly by the addition of Nd. Moreover, the strength of the alloys significantly improved with Nd. Superior strength and considerable plasticity were obtained as the content of Nd element reached 2.0 wt.%, while the tensile strength of the Mg-2.0Nd-Sm-Zn-Zr alloy (315 ± 5 MPa) increased by 35.8% with respect to the Nd-free alloy (232 ± 3 MPa).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号