首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ecotoxicity and genotoxicity of widely used veterinary antimicrobials oxytetracycline and flumequine was studied with six model organisms (Vibrio fischeri, Pseudomonas putida, Pseudokirchneriella subcapitata, Lemna minor, Daphnia magna, Escherichia coli). Overall median effective concentration (EC50) values ranged from 0.22 mg/L to 86 mg/L. Pseudomonas putida was the most sensitive organism (EC50 values for 16-h growth inhibition were 0.22 and 0.82 mg/L for oxytetracycline and flumequine, respectively), followed by duckweed Lemna minor (7-d growth inhibition, EC50 2.1 and 3.0 mg/L) and green alga Pseudokirchneriella subcapitata (4-d growth inhibition, EC50 3.1 and 2.6 mg/L). The least sensitive organism was Daphnia magna (48-h immobilization, lowest-observed-effect concentration [LOEC] of oxytetracycline of 400 mg/L). Oxytetracycline showed limited genotoxicity (SOS-chromotest with Escherichia coli, minimal genotoxic concentration of 500 mg/L), and flumequine was genotoxic at 0.25 mg/L. Based on the reported measured concentrations (MECs) and predicted no-effect concentrations (PNECs), oxytetracycline may be concluded to be of ecotoxicological concern (calculated risk quotient = 8), whereas flumequine seems to represent lower risk.  相似文献   

2.
本文以国际标准实验生物大型溞做为实验动物研究了节菱孢毒性培养物的毒性。结果表明节菱孢毒性培养物对大型溞的EC_(50)值分别为29.07mg/L(24h);20.57mg/L(48h);7.53mg/L(96h)。LC_(50)值分别为38.07mg/ (24h);24.37mg/L(48h);10.67mg/L(96h)。  相似文献   

3.
The effects of pH (5.3-8.7), water hardness (CaCO3 at 25-500 mg/L), dissolved organic carbon (DOC) concentration (1.6-18.4 mg/L), and DOC source on the chronic toxicity of copper to Daphnia magna were investigated by using a multifactorial, central composite test design. Natural dissolved organic matter (DOM) was collected at three sites in Belgium and The Netherlands by using reverse osmosis. For a total number of 35 toxicity tests performed, 21-d no-observed-effect concentrations (NOECs) of copper based on reproduction ranged from 29.4 to 228 microg/L and 21-d concentrations of copper causing 50% reduction of reproduction (EC50s) ranged from 41.5 to 316 microg/L. Statistical analysis revealed that DOC concentration and pH had a significant effect on copper toxicity but hardness (at the levels tested) did not. In general, an increase in pH or DOC resulted in a linear increase of 21-d NOEC and EC50 values. All DOMs (originating from three different sources) reduced copper toxicity to the same extent. Multiple linear regression analysis on the results of all 35 toxicity tests revealed that DOC concentration is the most important factor for chronic toxicity of copper to D. magna, explaining about 60% of the observed variability, whereas pH only explained about 15% of the observed variability. Regression models were developed (with DOC and pH as parameters) that were capable of predicting NOECs and EC50s within a factor of 1.9 from observed NOEC and EC50 values obtained with eight natural surface waters spiked with copper. Until future research further elucidates the mechanisms underpinning the observed bioavailability relations, these empirical regression models can become a first simple tool for regulatory applications.  相似文献   

4.
Resin acids, a class of wood extractives, are potential toxic constituents in many pulp and paper mill effluents. In the present investigation, the effects of two predominant resin acids, dehydroabietic acid (DHA) and abietic acid (ABA), on survival, reproduction, and growth of the freshwater crustacean Daphnia magna were assessed over its life cycle. Based on the experimentally determined acute toxicity data (48-h EC(50)'s) for DHA (7.48 mg/L) and ABA (7.98 mg/L), D. magna was treated chronically with each resin acid at nominal concentrations of 0, 0.25, 0.5, 1.0, 2.0, 4.0, and 8.0mg/L for 21 days. Both DHA and ABA at concentrations as high as 4.0mg/L did not affect physiological and reproductive parameters such as time to maturation, number of molting, number of broods, and number of offspring produced from surviving daphnids, while significant mortality was observed only at 8.0mg/L in both cases. However, a small but statistically significant decrease in Daphnia growth (body length) at the end of exposure was detected at concentrations as low as 0.5mg/L for DHA and 1.0mg/L for ABA, respectively. These results indicated that both DHA and ABA had the potential to exhibit weak growth inhibition without apparent negative effects on reproduction to D. magna at nonlethal concentration levels. This slight effect is not expected to be ecologically significant because the concentrations of DHA and ABA in biologically treated pulp and paper mill effluents are well below the effective levels observed in the present study.  相似文献   

5.
Illegal use of nitrofurans (NFs) in aquaculture is of great concern for food safety throughout the world. A liquid chromatography-based method coupled to tandem mass spectrometry was developed and validated for measuring levels of four conventional NFs (nitrofurantoin, furazolidone, nitrofurazone, and furaltadone) and four additional NFs (nifursol, nifuroxazide, nifurpirinol, and sodium nifurstyrenate) in shellfish and fish samples. Limits of detection and quantitation were 0.01–0.2 µg/kg and 0.04–0.5 µg/kg for seven NFs, except for sodium nifurstyrenate (2 µg/kg and 5 µg/kg). Recoveries were 91.6–107.3 % with inter-day and intra-day relative standard deviations in the range of 0.8–9.6 % and 0.7–10.7 %, which were assessed at four fortification levels. The validated method was applied to 397 shellfish and 140 fish collected from South China in 2014−2017. The total non-compliant rate (>1.0 µg/kg) of the four major NFs was 4.3 % in shellfish (<0.03–7.8 µg/kg) and 5.0 % in fish (<0.03–6.8 µg/kg), with the newly added drugs undetected in all samples. Semicarbazide was frequently detected in several kinds of shellfish at lower levels (0.1–3.1 µg/kg) as reported in shrimps, indicating potential endogenous generation or environmental contamination. We propose that this method be used to monitor NF residues in the future.  相似文献   

6.
The fate and effects of cytostatic (anticancer or antineoplastic) pharmaceuticals in the environment are largely unknown, but they can contaminate wastewater treatment effluents and consequently aquatic ecosystems. In this paper, we have focused on five cytostatic compounds used in high amounts (cyclophosphamide, cisplatin, 5-fluorouracil, doxorubicin, and etoposide), and we have investigated their ecotoxicity in bacterial Pseudomonas putida growth-inhibition test, algal Pseudokirchneriella subcapitata growth-inhibition test, and Dapnia magna acute immobilization test. Genotoxicity also was assessed with Escherichia coli SOS-chromotest (with and without metabolic activation) and the GreenScreen Assay using yeast S. cerevisiae. All tested compounds showed significant effects in most of the assays with lowest-observed-effect concentrations and concentrations causing 50% effects (EC50s) values ranging within microg/L to mg/L. The most toxic compound was 5-fluorouracil in the assays with P. putida (EC50 = 0.027 mg/L) and P. subcapitata (EC50 = 0.11 mg/L), although cisplatin and doxorubicin were the most toxic to D. magna (EC50 = 0.64 and 2.0 mg/L, respectively). These two chemicals were also the most genotoxic in the SOS-chromotest (minimum genotoxic concentrations [MGC] = 0.07-0.2 mg/L), and 5-fluorouracil was the most genotoxic in the eukaryotic yeast assay (MGC = 0.02 mg/L). Our investigation seems to indicate generally lower risks of acute effects at concentrations expected in the environment. However, some effective concentrations were relatively low and chronic toxicity of cytostatics (and/or their transformation products), as well as specific sources of human pharmaceuticals such as hospital effluents, require research attention.  相似文献   

7.
Aquatic toxicities of six benzimidazole-based anthelmintics-namely, albendazole, thiabendazole, flubendazole, febantel, fenbendazole, and oxfendazole-were evaluated with a marine bacterium, Vibrio fischeri, and a freshwater invertebrate, Daphnia magna. Delayed and chronic toxicity tests using D. magna also were conducted for benzimidazoles with high acute toxicity. Vibrio fischeri was greater than 10-fold less sensitive to most of the benzimidazoles tested compared to daphnids. For D. magna, the most acutely toxic anthelmintic compound tested was fenbendazole (48-h median effective concentration [EC50s], 16.5 microg/L), followed by flubendazole (48-h EC50, 66.5 micro/L), albendazole (48-h EC50, 67.9 microg/L), febantel (48-h EC50, 216.5 microg/L), thiabendazole (48-h EC50, 843.6 microg/L), and oxfendazole (48-h EC50, 1,168.4 microg/L). The lipophilicity parameter, log Kow, explained the observed acute D. magna toxicity of the individual benzimidazoles (r = -0.91, p < 0.01). Delayed expression of toxicity observed for 21 d after 96-h exposure to fenbendazole and flubendazole was not notable, which might result from the relatively high elimination constants for the chemicals. With chronic exposure to fenbendazole, D. magna survival, reproduction, and growth were significantly impacted at 1.25 to 4.1 microg/L (p < 0.05). Hazard quotients estimated for fenbendazole, albendazole, flubendazole, and febantel were 2,770, 9.7, 4, and 1.2, respectively, suggesting a need for further investigation and a potential for environmental concerns, particularly with fenbendazole.  相似文献   

8.
The toxicological effects of the sulfonylurea herbicide triasulfuron and its photoproducts were assessed on four aquatic organisms. Toxicity varied with tested organism and with triasulfuron irradiation time. Triasulfuron and its photoproducts had no significant effects on the crustacean (Cladocera) Daphnia magna (causing 50% effective concentration [EC50] [48 h] = 49 +/- 1 mg/L) and the marine bacteria Vibrio fischeri (EC50 [30 min] > 100 mg/L). In contrast, primary producers (the duckweed Lemna minor, the microalgae Pseudokirchneriella subcapitata, and Chlorella vulgaris) were very sensitive to triasulfuron (EC50s < 11 microg/L). For these organisms, triasulfuron photoproducts were less toxic than the parent compound but the residual toxicity observed still represented a potential environmental hazard.  相似文献   

9.
目的研究中央空调循环冷却水中杀生剂的生态安全性,探讨其毒性评价方法。方法采用大型水蚤急性毒性试验、卤虫无节幼体急性毒性试验和斜生栅藻生长抑制试验对强效杀生剂的生态毒性进行评价,用直线内插法计算EC50值及LC50值。结果强效杀生剂对大型水蚤的半数致死浓度24、48、96 h LC50分别为0.004 4、0.001 2及0.000 8 mg/L,半数影响浓度24、48、96 h EC50分别为0.002 7、0.001 3、0.000 8 mg/L。强效杀生剂对卤虫无节幼体的半数致死浓度24、48、96 h LC50分别为0.096、0.048、0.032 mg/L。强效杀生剂对斜生栅藻的半数影响浓度24、48和96 h EC50分别为57、28及1.62 mg/L。结论强效杀生剂对大型水蚤和斜生栅藻有较强的毒性,因此对水环境中的生物具有较强的生态毒性,应该加强对其使用的管理。  相似文献   

10.
A LC-MS-MS method is presented to analyze simultaneously the metabolites of four nitrofuran veterinary drugs in animal muscle tissue e.g., furazolidone, furaltadone, nitofurantoina and nitrofurazone. The sample clean up were performed by a liquid-liquid extraction with ethyl acetate, after a hydrolysis and derivatization with 2-nitrobenzaldehyde. Nitrofurane metabolites were determined by LC-ESI-MS/MS in positive mode. The LC was equipped with column Luna C18 Phenomenex. A binary gradient mobile phase was used as methanol solvent B containing 0.5 mM ammonium acetate and methanol (80:20 v/v). The method was validated according to criteria of Decision Commission No 2002/657/EC. Samples were fortified with metabolites of nitrofuran between 0.5-2.0 microg/kg with AOZ-d4, and AMOZ-d5 as internal standard. The mean recoveries from meat spiked at 1.0 microg/kg were 84.5-109.7%. Limit of decision (CCalpha) was between 0.25-0.57 and capability of detection (CCbeta) 0.32-0.77 microg/kg.  相似文献   

11.
Summary The short-term toxicity (EC50 respectively LC50 after 2 or 4 days) of 13 feed additives was determined to 4 freshwater organisms of different trophical levels: Chlorella pyrenoidosa, Daphnia magna, Lebistes reticulatus and Salmo gairdneri. The most toxic (LC(EC)50 < 1 mg/1) were robenidine (to all tested organisms) and stenorol (to Daphnia); moderately toxic (1 < LC(EC)50 < 10 mg/1) was pyrimethamine. Amprolium, ethopabate, furazolidone and zoalene proved to be little toxic (LC (EC)50 > 10 mg/1); whereas buquinolate, carbadox, clopidol, decoquinate, grofas and sulfaquinoxaline were under the experimental conditions not toxic for the tested organisms.  相似文献   

12.
As a result of evidence of the ecotoxicity of nitrofurans, the acute toxicity of furazolidone was tested in vivo on two aquatic organisms, Artemia salina and Daphnia magna, which are both crustaceans. Toxicity studies were also performed on larvae of Culex pipiens molestus. Results indicated a significant toxicity of the compound on Culex pipiens and Daphnia magna, while Artemia salina proved to be the least sensitive.  相似文献   

13.
Perfluorooctane sulfonate (PFOS) is an anthropogenic compound found in trace amounts in many environmental compartments far from areas of production. This, along with the highly persistent nature of PFOS, presents a concern for possible effects in aquatic ecosystems. The objective of this study was to determine the toxicity of PFOS in representative freshwater organisms. Toxicity testing using standard laboratory protocols was performed on the green algae Selenastrum capricornutum and Chlorella vulgaris, the floating macrophyte Lemna gibba, and the invertebrates Daphnia magna and Daphnia pulicaria. No observable effect concentration (NOEC) values were generated from the most sensitive endpoints for all organisms. Autotroph inhibition of growth NOEC values were 5.3, 8.2, and 6.6 mg/L for S. capricornutum, C. vulgaris, and L. gibba, respectively. The 48-h immobility NOEC values for D. magna and D. pulicaria were 0.8 and 13.6 mg/L, respectively. In comparison to immobility, the 21-day lethality NOEC for D. magna was 5.3 mg/L. Based on effect (immobility) values, the most sensitive of all test organisms was D. magna. The most sensitive organism based on 50% inhibition of growth (IC(50)) was L. gibba, with an IC(50) value of 31.1 mg/L determined from wet weight. This is 4.3 times less than the LC(50) for D. pulicaria, which was 134 mg/L. Significant adverse effects (p < or = 0.05) were observed for all organisms in concentrations >134 mg/L. The results indicate that under laboratory conditions PFOS is acutely toxic to freshwater organisms at concentrations at or near 100 mg/L. Based on known environmental concentrations of PFOS, which occur in the low ng/L to low microg/L range, there is no apparent risk to freshwater systems. However, further work is required to investigate long-term effects in these and other freshwater organisms.  相似文献   

14.
Bioavailability models predicting acute and/or chronic zinc toxicity to a green alga (Pseudokirchneriella subcapitata), a crustacean (Daphnia magna), and a fish (Oncorhynchus mykiss) were evaluated in a series of experiments with spiked natural surface waters. The eight selected freshwater samples had varying levels of bioavailability modifying parameters: pH (5.7-8.4), dissolved organic carbon (DOC, 2.48-22.9 mg/L), Ca (1.5-80 mg/L), Mg (0.79-18 mg/L), and Na (3.8-120 mg/L). In those waters, chronic zinc toxicity (expressed as 10% effective concentrations [EC10]) varied up to 20-fold for the alga (72-h EC10 from 27.3 to 563 microg Zn/L), and approximately sixfold for the crustacean (21-d EC10 from 59.2 to 387 microg Zn/L), and fivefold for the fish (30-d LC10, lethal concentration for 10% of the organisms, from 185 to 902 microg Zn/L). For P. subcapitata a refined bioavailability model was developed by linking an empirical equation, which predicts toxicity expressed as free Zn2+ activity as a function of pH, to the geochemical speciation model WHAM/Model V. This model and previously developed acute and/or chronic biotic ligand models for D. magna and 0. mykiss generally predicted most effect concentrations by an error of less than a factor of two. In waters with pH > 8, however, chronic toxicity to D. magna was underestimated by a factor 3 to 4. Based on the results of this validation exercise and earlier research, we determined applicability ranges for pH (6-8) and Ca (5-160 mg/L) in which all three developed models are valid. Within these ranges, all three models may be considered useful tools for taking into account bioavailability in regulatory assessments of zinc.  相似文献   

15.
Room-temperature ionic liquids (RTILs) recently have generated great interest as a result of their potential commercial applications. In particular, because of their negligible vapor pressure and low inflammability, they have been suggested as green alternatives to traditional organic solvents. The toxicity and potential environmental risk of this heterogeneous class of chemicals, however, are poorly understood. An alkyl-substituted RTIL, 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF(4)]), is one of the most widely used cations of RTILs, and information regarding its toxicity is relatively extensive. On the other hand, oxygenated chain-substituted ionic liquids, 1-methoxyethyl-3-methylimidazolium salts (moemims), are a new class of RTILs that have been poorly studied. Here, we compared the acute toxicity of [bmim][BF(4)] and moemims to the crustacean Daphnia magna (end point, 48-h immobilization) and the bacterium Vibrio fischeri (end point, 15-min inhibition of bioluminescence). The concentrations of [bmim][BF(4)] resulting in 50% of the maximum adverse effect (EC50s) for D. magna and V. fischeri were 5.18 and 300 mg/L, respectively, and were consistent with previously published values. The EC50s of the two moemims for D. magna are very similar, ranging from 209 to 222 mg/L in different experimental trials, and are higher by two orders of magnitude than the EC50 of [bmim][BF(4)]. The EC50s of 1-methoxyethyl-3-methylimidazolium tetrafluoroborate ([moemim][BF(4)]) and 1-methoxyethyl-3-methylimidazolium dicyanamide ([moemim][dca]) for V. fischeri are 3,196 and 2,406 mg/L, respectively. Results indicate that introduction of an oxygenated side chain in the imidazolium cation can greatly reduce the toxicity of RTILs and that these RTILs are less toxic than commonly used chlorinated solvents, such as tricloromethane, but are more toxic than nonchlorinated solvent, such as methanol and acetone.  相似文献   

16.
The objective of the present study was to assess the predictive capacity of the acute Cu biotic ligand model (BLM) as applied to chronic Cu toxicity to Daphnia magna in freshwaters from Chile and synthetic laboratory-prepared waters. Samples from 20 freshwater bodies were taken, chemically characterized, and used in the acute Cu BLM to predict the 21-d chronic Cu toxicity for D. magna. The half-maximal effective concentration (EC50) values, determined using the Organisation for Economic Co-operation and Development (OECD) 21-d reproduction test (OECD Method 211), were compared with the BLM simulated EC50 values. The same EC50 comparison was performed with the results of 19 chronic tests in synthetic media, with a wide range of hardness and alkalinity and a fixed 2 mg/L dissolved organic carbon (DOC) concentration. The acute BLM was modified only by adjustment of the accumulation associated with 50% of an effect value (EA50). The modified BLM model was able to predict, within a factor of two, 95% of the 21-d EC50 and 89% of the 21-d half-maximal lethal concentrations (LC50) in natural waters, and 100% of the 21-d EC50 and 21-d LC50 in synthetic waters. The regulatory implications of using a slightly modified version of an acute BLM to predict chronic effects are discussed.  相似文献   

17.
During desert locust plagues large amounts of insecticides are used for control operations. Drift from these treatments and accidental overspraying may contaminate small surface waters such as temporary ponds. The present study describes methods for static acute toxicity tests with two abundant organisms that occur in temporary ponds in the African Sahel region: the fairy shrimp Streptocephalus sudanicus Daday (Branchiopoda, Anostraca, Streptocephalidae) and the backswimmer Anisops sardeus Herrich-Sch?ffer (Hemiptera, Notonectidae). The organisms were captured in the field and 48-h static toxicity tests were conducted in the laboratory. The assays were used to screen the toxicity of 11 formulated synthetic insecticides used in desert locust control and of spores of the mycopesticide Metarhizium anisopliae var. acridum. Most of the synthetic insecticides tested were highly toxic to both organisms (LC50 or EC50<1 mg/L). Exceptions were the toxicity of diflubenzuron to A. sardeus (moderately toxic: 1相似文献   

18.
The degradation of phthalic acid diesters may lead to formation of o-phthalic acid and phthalic acid monoesters. The ecotoxic properties of the monoesters have never been systematically investigated, and concern has been raised that these degradation products may be more toxic than the diesters. Therefore, the aquatic toxicity of phthalic acid, six monoesters, and five diesters of o-phthalic acid was tested in three standardized toxicity tests using the bacteria Vibrio fischeri, the green algae Pseudokirchneriella subcapitata, and the crustacean Daphnia magna. The monoesters tested were monomethyl, monoethyl, monobutyl, monobenzyl, mono(2-ethylhexyl), and monodecyl phthalate, while the diesters tested were dimethyl, diethyl, dibutyl, butylbentyl, and di(2-ethylhexyl)phthalate, which were assumed to be below their water solubility. The median effective concentration (EC50) values for the three organisms ranged from 103 mg/L to >4.710 mg/L for phthalic acid, and corresponding values for the monoesters ranged from 2.3 mg/L (monodecyl phthalate in bacteria test) to 4,130 mg/L (monomethyl phthalate in bacteria test). Dimethyl and diethyl phthalate were found to be the least toxic of the diesters (EC50 26.2-377 mg/L), and the toxicity of the other diesters (butylbenzyl and dibutyl phthalate) ranged from 0.96 to 7.74 mg/L. In general, the phthalate monoesters (degradation products) were less toxic than the corresponding diesters (mother compounds).  相似文献   

19.
The aquatic toxicity of para-methylstyrene was evaluated in acute toxicity studies using fathead minnows (Pimephales promelas), daphnids (Daphnia magna), and freshwater green algae (Selenastrum capricornutum). Static tests were performed in sealed containers with no headspace to minimize loss of this volatile compound to the atmosphere. Concentrations of para-methylstyrene in test solutions were analyzed by gas chromatography equipped with a purge and trap module and flame ionization detection. Test results are based on mean, measured concentrations. para-Methylstyrene was moderately toxic to fathead minnows, daphnids, and green algae. The 96-h LC(50) and NOEC for fathead minnows were 5.2 and 2.6 mg/L, respectively. The 48-h EC(50) and NOEC for daphnids were 1.3 and 0.81 mg/L, respectively. The 72-h EC(50) and NOEC for green algae were 2.3 and 0.53 mg/L, respectively; these effects were algistatic rather than algicidal. para-Methylstyrene's potential impact on aquatic ecosystems is significantly mitigated by its volatility, an important fate process.  相似文献   

20.
The environmental toxicity associated with silver nanoparticles (AgNPs) has been a major focus in nanotoxicology. The Ag(+) released from AgNPs may affect ecotoxicity, although whether the major toxic effect is governed by Ag(+) ions or by AgNPs themselves is unclear. In the present study, we have examined the ecotoxicity of AgNPs in aquatic organisms, silver ion-release kinetics of AgNPs, and their relationship. The 48-h median effective concentration (EC50) values for Daphnia magna of powder-type AgNP suspensions were 0.75?μg/L (95% confidence interval [CI]?=?0.71-0.78) total Ag and 0.37?μg/L (95% CI?=?0.36-0.38) dissolved Ag. For sol-type AgNP suspension, the 48-h EC50 values for D. magna were 7.98?μg/L (95% CI?=?7.04-9.03) total Ag and 0.88?μg/L (95% CI?=?0.80-0.97) dissolved Ag. The EC50 values for the dissolved Ag of powder-type and sol-type AgNPs for D. magna showed similar results (0.37?μg/L and 0.88?μg/L) despite their differences of EC50 values in total Ag. We observed that the first-order rate constant (k) of Ag(+) ions released from AgNPs was 0.0734/h at 0.05?mg/L total Ag at 22°C within 6?h. The kinetic experiments and the toxicity test showed that 36% and 11% of sol-type AgNPs were converted to the Ag(+) ion form under oxidation conditions, respectively. Powder-type AgNPs showed 49% conversion rate of Ag(+) ion from AgNPs. We also confirmed that Ag(+) ion concentration in AgNP suspension reaches an equilibrium concentration after 48?h, which is an exposure time of the acute aquatic toxicity test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号