首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipolysis in adipocytes is associated with phosphorylation of hormone sensitive lipase (HSL) and translocation of HSL to lipid droplets. In this study, adipocytes were cultured in a high-throughput format (96-well dishes), exposed to lipolytic agents, and then fixed and labeled for nuclei, lipid droplets, and HSL (or HSL phosphorylated on serine 660 [pHSLser660]). The cells were imaged via automated digital fluorescence microscopy, and high-content analysis (HCA) methods were used to quantify HSL phosphorylation and the degree to which HSL (or pHSLser660) colocalizes with the lipid droplets. HSL:lipid droplet colocalization was quantified through use of Pearson's correlation, Mander's M1 Colocalization, and the Tanimoto coefficient. For murine 3T3L1 adipocytes, isoproterenol, Lys-γ3-melanocyte stimulating hormone, and forskolin elicited the appearance and colocalization of pHSLser660, whereas atrial natriuretic peptide (ANP) did not. For human subcutaneous adipocytes, isoproterenol, forskolin, and ANP activated HSL phosphorylation/colocalization, but Lys-γ3-melanocyte stimulating hormone had little or no effect. Since ANP activates guanosine 3',5'-cyclic monophosphate (cGMP)-dependent protein kinase, HSL serine 660 is likely a substrate for cGMP-dependent protein kinase in human adipocytes. For both adipocyte model systems, adipocytes with the greatest lipid content displayed the greatest lipolytic responses. The results for pHSLser660 were consistent with release of glycerol by the cells, a well-established assay of lipolysis, and the HCA methods yielded Z' values >0.50. The results illustrate several key differences between human and murine adipocytes and demonstrate advantages of utilizing HCA techniques to study lipolysis in cultured adipocytes.  相似文献   

2.
POTENTIATION OF NATRIURETIC PEPTIDES BY NEUTRAL ENDOPEPTIDASE INHIBITORS   总被引:1,自引:0,他引:1  
1. Inhibitors of neutral endopeptidase (NEP) EC 3.4.24.11 were developed to regulate endogenous levels of the natriuretic and vasodilatory hormone atrial natriuretic peptide (ANP). The selective NEP inhibitor SQ 28603 enhanced the increases in plasma ANP and urinary excretion of ANP, cyclic GMP and sodium stimulated by infusion of human ANP in conscious monkeys. SQ 28603 also potentiated the renal and depressor responses to rat brain natriuretic peptide (BNP) in conscious spontaneously hypertensive rats (SHR) and human BNP in conscious monkeys. Therefore, selective NEP inhibitors protected both natriuretic peptides from degradation in vivo and enhanced their biological activities. 2. Selective NEP inhibitors lowered blood pressure in conscious DOCA/salt hypertensive rats and SHR with antihyper-tensive activity similar to that of exogenous ANP. Furthermore, simultaneous treatment with an angiotensin converting enzyme (ACE) inhibitor enhanced the depressor activity of the NEP inhibitor in SHR. 3. SQ 28603 stimulated urinary excretion of cyclic GMP and sodium in a dose-related manner in conscious dogs with tachycardia-induced heart failure. Addition of the ACE inhibitor captopril significantly reduced blood pressure and systemic vascular resistance while sustaining sodium excretion and increasing cardiac output, glomerular filtration rate and renal blood flow. Therefore, combined NEP and ACE inhibition produced a unique haemodynamic and renal profile in dogs with pacing-induced heart failure. 4. The novel dual metalloprotease inhibitor BMS-182657 potentiated the renal responses to exogenous ANP and suppressed the pressor response to angiotensin I in conscious monkeys, indicating in vivo inhibition of both NEP and ACE. BMS-182657 also reduced blood pressure and stimulated natriuresis in conscious 1-kidney 1-clip hypertensive dogs, demonstrating efficacy in a hypertensive model characterized by normal circulating levels of ANP and renin activity. Therefore, a dual metalloprotease inhibitor may offer a unique therapeutic approach for treatment of cardiovascular disorders.  相似文献   

3.
In advanced heart failure (HF), the compensatory pulmonary vasodilation is attenuated due to the relative insufficiency of cGMP despite increased secretion of natriuretic peptides (NPs). Phosphodiesterase type 5 (PDE5) inhibitors prevent cGMP degradation, and thus may potentiate the effect of the NPs-cGMP pathway. We orally administered a specific PDE5 inhibitor, T-1032 (1 mg/kg; twice a day, n = 7) or placebo (n = 7) for 2 weeks in dogs with HF induced by rapid pacing (270 bpm, 3 weeks) and examined the plasma levels of atrial natriuretic peptide (ANP), cGMP, and hemodynamic parameters. We also examined the hemodynamic changes after injection of a specific NPs receptor antagonist, HS-142-1 (3 mg/kg), under treatment with T-1032. T-1032 significantly increased plasma cGMP levels compared with the vehicle group despite low plasma ANP levels associated with improvement in cardiopulmonary hemodynamics. HS-142-1 significantly decreased plasma cGMP levels in both groups, whereas it did not change all hemodynamic parameters in the vehicle group. In contrast, in the T-1032 group, HS-142-1 significantly increased pulmonary arterial pressure and pulmonary vascular resistance. These results indicated that long-term treatment with a PDE5 inhibitor improved pulmonary hypertension secondary to HF and the NPs-cGMP pathway contributed to this therapeutic effect.  相似文献   

4.
1. The effects of sodium supplements on the renal responses to human atrial natriuretic peptide (hANP 99–126) and to the selective inhibitors of neutral endopeptidase 3.4.24.11 (NEP) SQ 28 603 and candoxatrilat were determined in conscious monkeys. 2. When the monkeys’ diet was changed from 0.55% sodium to 1.1% sodium, the natriuretic response to 100 μmol/kg intravenous of SQ 28603 increased from 665 ± 64 to 1015 ± 224 μEq/3h. An acute oral load of 25 mEq sodium significantly increased the natriuresis stimulated by 300 pmol/kg, P.o., of SQ 28603 from 700 ± 332 μEq/3h in normal monkeys to 2437 ± 841 μEq/3h. Therefore, the non-human primate model was appropriate for investigating the effects of sodium loads on the urinary ANP and cGMP responses to exogenous ANP in the presence and absence of NEP inhibitors. 3. Graded intravenous infusions of saline increased basal urine volume and excretion of sodium and ANP. Salt supplements enhanced the diuretic, natriuretic and ANP responses to 0.3 nmol/kg intravenous of hANP 99–126 in monkeys treated with vehicle or 10 μmol/kg intravenous of candoxatrilat. The sodium and ANP excretions stimulated by hANP 99–126 were positively correlated with each other and with the calculated intravenous sodium load in the presence or absence of candoxatrilat. 4. SQ 28 603 and candoxatrilat (0.3 to 10 μmol/kg intravenous) each produced significant, dose-related potentiation of the natriuretic, cGMP and ANP responses to 0.3 nmol/kg intravenous of hANP 99–126 in monkeys receiving 5 mL/kg + 0.2 mL/min saline. In addition, the highest dose of SQ 28 603 produced significant depressor activity. 5. In conclusion, the increased natriuretic activity of hANP 99–126 in sodium loaded monkeys was mediated, in part, by increased ANP delivery to the guanylate cyclase linked ANP receptors in the distal renal tubules.  相似文献   

5.
Nitric oxide (NO) and atrial natriuretic peptide (ANP) may induce vascular relaxation by increasing the production of cyclic guanosine monophosphate (cGMP), an important mediator of vascular tone during sepsis. This study aimed to determine whether regulation of NO and the ANP system is altered in lipopolysaccharide (LPS)-induced kidney injury. LPS (10 mg.kg(-1)) was injected in the tail veins of male Sprague-Dawley rats; 12 hours later, the kidneys were removed. Protein expression of NO synthase (NOS) and neutral endopeptidase (NEP) was determined by semiquantitative immunoblotting. As an index of synthesis of NO, its stable metabolites (nitrite/nitrate, NOx) were measured using colorimetric assays. mRNA expression of the ANP system was determined by real-time polymerase chain reaction. To determine the activity of guanylyl cyclase (GC), the amount of cGMP generated in response to sodium nitroprusside (SNP) and ANP was calculated. Creatinine clearance decreased and fractional excretion of sodium increased in LPS-treated rats compared with the controls. Inducible NOS protein expression increased in LPS-treated rats, while that of endothelial NOS, neuronal NOS, and NEP remained unchanged. Additionally, urinary and plasma NOx levels increased in LPS-treated rats. SNP-stimulated GC activity remained unchanged in the glomerulus and papilla in the LPS-treated rats. mRNA expression of natriuretic peptide receptor (NPR)-C decreased in LPS-treated rats, while that of ANP and NPR-A did not change. ANP-stimulated GC activity reduced in the glomerulus and papilla. In conclusion, enhancement of the NO/cGMP pathway and decrease in ANP clearance were found play a role in the pathogenesis of LPS-induced kidney injury.  相似文献   

6.
The addition of atrial natriuretic peptide (ANP) to isolated human adipocytes in primary culture from very obese individuals resulted in an inhibition of leptin release after a 24- or 48-hr incubation. There was also an inhibition of leptin release by isoproterenol (ISO) that was partially reversed by insulin, whereas the inhibition due to ANP was unaffected. Similar results were seen with N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulphonamide (H-89), which is a cell-permeable inhibitor of protein kinase A. H-89 markedly reduced the effects of ISO on both lipolysis and leptin release without affecting the stimulation of lipolysis or the inhibition of leptin release due to ANP. Inhibition of endogenous nitric oxide formation using N(omega)-nitro-L-arginine resulted in a 20% increase in leptin release over 48 hr, which suggests that the nitric oxide/cyclic GMP pathway might play a small role in the regulation of endogenous leptin release. Similarly, the addition of the nitric oxide donor (Z)-1-[2-aminoethyl)-N-(2-aminoethyl)diazen-1-ium-1,2-diolate (DETA NONOate) at 0.1 or 1 microM to explants of human adipose tissue enhanced lipolysis by 29%. Our data demonstrate that the lipolytic effect of ANP is probably secondary to stimulation of cyclic GMP accumulation in human adipocytes, and this is accompanied by an inhibition of leptin release.  相似文献   

7.

Background

Clinical use of selective PDE3 inhibitors as cardiotonic agents is limited because of their chronotropic and lipolytic side effects. In our previous work, we synthesized a new PDE3 inhibitor named MC2 (6-[4-(4-methylpiperidin-1-yl)-4-oxobutoxy]-4-methylquinolin-2(1H)-one) which produced a high positive inotropic action with a negative chronotropic effect. This work was done to evaluate the effects of MC2 on adipocytes and compare its effects with those of amrinone and cilostamide.

Methods

Preadipocytes were isolated from rat adipose tissue and differentiated to adipocyte in the presence of cilostamide, amrinone or MC2. Lipolysis and adipogenesis was evaluated by measuring glycerol level and Oil Red O staining, respectively. Adipocyte proliferation and apoptosis were determined with MTT assay and Annexin V/PI staining, respectively.

Results

Differentiation to adipocyte was induced by amrinone but not by cilostamide or MC2. Basal and isoproterenol-stimulated lipolysis significantly increased by cilostamide (p < 0.05). Similarly, amrinone enhanced the stimulated lipolysis (p < 0.01). On the other hand, MC2 significantly decreased both adipogenesis (p < 0.05) and stimulated lipolysis (p < 0.001). Also, incubation of differentiated adipocytes with MC2 caused the loss of cell viability, which was associated with the elevation in apoptotic rate (p < 0.05).

Conclusion

Our data indicate that selective PDE3 inhibitors produce differential effects on adipogenesis and lipolysis. MC2 has proapoptotic and antilipolytic effects on adipocytes and does not stimulate adipogenesis. Therefore, in comparison with the clinically available selective PDE3 inhibitors, MC2 has lowest metabolic side effects and might be a good candidate for treatment of congestive heart failure.  相似文献   

8.
The incidence of obesity in the developed world is increasing at an alarming rate. Concurrent with the increase in the incidence of obesity is an increase in the incidence of type 2 diabetes. Cyclic AMP (cAMP) and cGMP are key second messengers in all cells; for example, when it comes to processes of relevance for the regulation of energy metabolism, cAMP is a key mediator in the regulation of lipolysis, glycogenolysis, gluconeogenesis and pancreatic β cell insulin secretion. PDE3B, one of several enzymes which hydrolyze cAMP and cGMP, is expressed in cells of importance for the regulation of energy homeostasis, including adipocytes, hepatocytes, hypothalamic cells and β cells. It has been shown, using PDE3 inhibitors and gene targeting approaches in cells and animals, that altered levels of PDE3B result in a number of changes in the regulation of glucose and lipid metabolism and in overall energy homeostasis. This article highlights the complexity involved in the regulation of PDE3B by hormones, and in the regulation of downstream metabolic effects by PDE3B in several interacting tissues.  相似文献   

9.
The second messenger, cAMP, is one of the most important regulatory signals for control of steroidogenesis. This review focuses on current knowledge about regulation of cyclic nucleotides by phosphodiesterases (PDEs) in steroidogenic tissues. The first PDE known to directly regulate steroidogenesis was PDE2, the cGMP-stimulated PDE. PDE2 mediates ANP/cGMP-induced decreases in aldosterone production. Recently, the PDE8 family has been shown to control steroidogenesis in two tissues. Specifically, PDE8A regulates testosterone production by itself and in concert with additional IBMX-sensitive PDEs. PDE8B modulates basal corticosterone synthesis via acute and chronic mechanisms. In addition to cAMP-dependent pathways, cGMP signaling also can promote steroidogenesis, and PDE5 modulates this process. Finally, PDE mutations may lead to several human diseases characterized by abnormal steroid levels.  相似文献   

10.
Involvement of phosphodiesterase isoenzymes (PDEs) in guanosine-3',5'-cyclic monophosphate (cGMP) hydrolysis was analyzed in aortic smooth muscle cells. Four families of PDEs were separated from pig aorta: PDE1 (calcium-calmodulin-activated), PDE3 (cGMP-inhibited), PDE4 (adenosine 3',5'-cyclic monophosphate [cAMP]-specific), and PDE5 (cGMP-specific). Within this PDE complement, PDE1 and PDE5 mostly contributed to the hydrolysis of cGMP both in the presence and absence of calcium-calmodulin. The role of these isoenzymes in cGMP degradation was analyzed in primary cultures of porcine aortic smooth muscle cells after stimulation with sodium nitroprusside (SNP) or atrial natriuretic factor (ANF). Pretreatment with 10 microM zaprinast, a concentration that selectively inhibits PDE5, did not potentiate the SNP- or ANF-induced rise of cGMP, questioning the widespread opinion that only PDE5 accounts for cGMP hydrolysis in this tissue. Further evidence came from experiments assessing the effect of zaprinast or 3-isobutyl-1-methylxanthine at concentrations inhibiting both type 1 and type 5 isoenzymes, in which this potentiation was clearly seen. Contribution of cGMP egression to the control of intracellular cGMP levels after SNP or ANF stimulation was also investigated. Shortly after guanylate cyclase activation, extracellular cGMP levels surpassed intracellular levels. However, comparison of the amounts of cGMP extruded to the extracellular medium with those degraded by PDEs leads to the conclusion that efflux is of relatively minor importance in regulating intracellular cGMP levels. In cells made tolerant to SNP, selective PDE5 inhibition synergistically increased intra- and extracellular cGMP amounts after SNP stimulation. These results indicate a previously undescribed greater relevance of PDE5 after tolerance development in aortic smooth muscle cells.  相似文献   

11.
Agents that stimulate breakdown of adipocyte triglyceride to glycerol and free fatty acids (lipolysis) and increase basal metabolic rate (thermogenesis) have potential benefit as therapeutics for obesity. In the adipocyte, cAMP levels regulate both lipolysis and thermogenesis. PDE3B is one of the major cAMP-hydrolysing cyclic nucleotide phosphodiesterases in the adipocyte and PDE3 inhibitors induce lipolysis in vitro and in vivo. PDE3 inhibitors also elevate metabolic rate in human subjects, though the mechanism of this effect has not yet been determined. Hence, PDE3 inhibitors have a combination of metabolic properties that suggests their utility for the treatment of obesity. PDE3 inhibitors may also have effects on glucose homeostasis, and the relevance of this finding to the possible use of PDE3 inhibitors in obese diabetics is discussed.  相似文献   

12.
Essential physiological homeostatic processes such as vascular tone, fluid balance, cardiorenal function, and sensory processes are regulated by the second messenger cyclic guanosine 3′, 5′-monophosphate (cGMP). Dysregulation of cGMP-dependent pathways plays an important role in cardiovascular diseases such as hypertension, pulmonary hypertension, heart failure, or erectile dysfunction. Thus, the cGMP pathway consisting of the cGMP-generating guanylyl cyclases, protein kinases, and phosphodiesterases (PDE) has evolved to an important drug target and is the focus of a wide variety of research fields ranging from unraveling mechanisms on the molecular level to understanding the regulation of physiological and pathophysiological processes by cGMP. Based on the results from basic and preclinical research, therapeutic drugs have been developed which modulate the cGMP pathway and are investigated in clinical trials. Riociguat, a nitric oxide (NO)-independent soluble guanylyl cyclase stimulator; recombinant B-type natriuretic peptide (BNP); or recombinant atrial natriuretic peptide (ANP) and PDE5 inhibitors are cGMP-modulating drugs that are already available for the treatment of pulmonary hypertension, acute heart failure, and erectile dysfunction, respectively. The latest results from basic to clinical research on cGMP were presented on the 6th International Conference on cGMP in Erfurt, Germany, and are summarized in this article.  相似文献   

13.
(1) Cyclic GMP (cGMP) has been shown to be an important modulator of cardiac contractile function. A major component of cGMP regulation of contractility is cGMP-mediated inhibition of the cardiac calcium current (I(Ca)). An under-appreciated aspect of cyclic nucleotide signalling is hydrolysis of the cyclic nucleotide (i.e., breakdown by phosphodiesterases (PDEs)). The role of cGMP hydrolysis in regulating I(Ca) has not been studied. Thus the purpose of this study was to investigate if inhibition of cGMP hydrolysis can modulate I(Ca) in isolated guinea-pig ventricular myocytes. (2) Zaprinast, a selective inhibitor of cGMP-specific PDE (PDE5), caused a significant increase in cGMP levels in myocytes, but was without affect on basal or beta-adrenergic stimulated cAMP levels (consistent with its actions as a specific inhibitor of PDE5). (3) Zaprinast inhibited I(Ca) that was pre-stimulated with cAMP elevating agents (isoproterenol, a beta-adrenergic agonist; or forskolin, a direct activator of adenylate cyclase). The effect of zaprinast was greatly reduced by KT5823, an inhibitor of cGMP-dependent protein kinase (PKG). (4) Zaprinast also significantly inhibited basal I(Ca) when perforated-patch or whole-cell recording with physiological pipette calcium concentration (10(-7) M) was used. However, this effect was not observed when using standard calcium-free whole-cell recording conditions. (5) These results indicate that inhibition of cGMP hydrolysis can decrease both basal and cAMP-stimulated I(Ca). Thus, cGMP hydrolysis may likely be an important step for physiological modulation of I(Ca). This regulation may also be important in disease states in which cGMP production is increased and PDE5 expression is altered, such as heart failure.  相似文献   

14.
目的:探讨大豆黄素衍生物IRXH609(LRX)的减肥作用和可能的机理。方法:以高脂饮食诱导肥胖大鼠,测量体重、Lee’s指数、腹腔脂肪重量、摄食量、血脂和血糖,检验LRX灌服30d后的减肥效果;体外培养诱导分化3T3-L1前脂肪细胞,观察药物对脂肪细胞增殖、脂质合成和分解的影响。结果:LRX显著降低高脂饮食诱导的肥胖大鼠体重、Lee’s指数、腹腔脂肪重量;降低血液中TC和游离脂肪酸(FFA)含量;抑制3T3-L1前脂肪细胞增殖;显著提高3T3-L1前脂肪细胞内激素敏感脂酶(HSL)活性,促进脂肪分解释放甘油(Gly),减少细胞内TG含量。结论:LRXH609有显著的减肥和调血脂作用,可能的机理是通过抑制前脂肪细胞增殖和分化,激活HSL促进脂肪细胞内TG分解,降低脂肪细胞内TG存储量。  相似文献   

15.
The immune system is closely linked to human metabolic diseases. Serum levels of IL-6 increase with obesity and insulin resistance. Not only does IL-6 decrease the insulin sensitivity of human cells such as adipocytes, but it also regulates the lineage commitment of naïve T cells into interleukin (IL)-17A-producing CD4(+) T (Th17) cells. Although IL-17A exerts a variety of effects on somatic tissues, its functional role in human adipocytes has not been identified. In this work, we show that IL-17A inhibits adipocyte differentiation in human bone marrow mesenchymal stem cells (hBM-MSCs), while promoting lipolysis of differentiated adipocytes. We find that IL-17A increases both mRNA and protein secretion of IL-6 and IL-8 during adipocyte differentiation in hBM-MSCs. IL-17A up-regulates cyclooxygenase (COX)-2 gene expression and thereby increases the level of prostaglandin (PG) E2 in differentiated adipocyes. The suppression of anti-adipogenic PGE2 by COX inhibitors such as aspirin and NS-398 partially blocked the effect of IL-17A on adipocyte differentiation in hBM-MSCs. Therefore, IL-17A exhibits its inhibitory effect in part via the COX-2 induction in differentiated adipocytes. In addition, treatment with anti-IL-17A antibody neutralizes IL-17A-mediated effects on adipocyte differentiation and function. These results suggest that IL-17A plays a regulatory role in both the metabolic and inflammatory processes of human adipocytes, similar to other pro-inflammatory cytokines such as IL-1, IFNγ, and TNFα.  相似文献   

16.

BACKGROUND AND PURPOSE

By controlling intracellular cyclic nucleotide levels, phosphodiesterases (PDE) serve important functions within various signalling pathways. The PDE2 and PDE5 families are allosterically activated by their substrate cGMP via regulatory so-called GAF domains. Here, we set out to identify synthetic ligands for the GAF domains of PDE2 and PDE5.

EXPERIMENTAL APPROACH

Using fluorophore-tagged, isolated GAF domains of PDE2 and PDE5, promising cGMP analogues were selected. Subsequently, the effects of these analogues on the enzymatic activity of PDE2 and PDE5 were analysed.

KEY RESULTS

The PDE2 ligands identified, 5,6-DM-cBIMP and 5,6-DCl-cBIMP, caused pronounced, up to 40-fold increases of the cAMP- and cGMP-hydrolysing activities of PDE2. The ligand for the GAF domains of PDE5, 8-Br-cGMP, elicited a 20-fold GAF-dependent activation and moreover revealed a time-dependent increase in PDE5 activity that occurred independently of a GAF ligand. Although GAF-dependent PDE5 activation was fast at high ligand concentrations, it was slow at physiologically relevant cGMP concentrations; PDE5 reached its final catalytic rates at 1 µM cGMP after approximately 10 min.

CONCLUSIONS AND IMPLICATIONS

We conclude that the delayed activation of PDE5 is required to shape biphasic, spike-like cGMP signals. Phosphorylation of PDE5 further enhances activity and conserves PDE5 activation, thereby enabling PDE5 to act as a molecular memory balancing cGMP responses to nitric oxide or natriuretic peptide signals.  相似文献   

17.
We studied the hormonal, renal and hemodynamic effects of prolonged treatment with SCH 39370, a new neutral endopeptidase (NEP) inhibitor, in experimental congestive heart failure (CHF). Coronary-ligated CHF rats and sham-operated controls received vehicle or SCH 39370 30 mg/kg s.c. twice daily for six days. In rats with heart failure, SCH 39370 elevated the high plasma atrial natriuretic peptide (ANP) and cyclic guanosine monophosphate (cGMP) levels 2-fold both initially and at the end of the experiment. Initially, water balance was more negative in SCH 39370-treated CHF rats than in those treated with vehicle. In all SCH 39370-treated rats, ANP, cGMP and electrolyte excretion and diuresis were pronounced for 6 h after injection but attenuated thereafter. Blood pressure and pulse remained unchanged. On reverse phase high performance liquid chromatography (HPLC), ANP-(99-126) appeared to be the only circulating form of ANP in rats with heart failure. Three forms have been discovered in patients with heart failure. HPLC revealed only intact ANP in plasma of rats with heart failure during SCH 39370 treatment. NEP inhibitors may provide a new tool for treating chronic heart failure.  相似文献   

18.
Cyclic nucleotides (cAMP and cGMP) are the main second messengers linked to vasodilatation. They are synthesized by cyclases and degraded by different types of phosphodiesterases (PDE). The effect of PDE inhibition and cyclases stimulation on 5-hydroxytryptamine (5-HT; 1 microM) and histamine (10 microM) contracted arteries was analysed. Stimulation of guanylate cyclase or adenylate cyclase relaxed the histamine- and 5-HT-induced contractions indicating that intracellular increase of cyclic nucleotides leads to vasodilatation of the human umbilical artery. We investigated the role of different PDE families in the regulation of this effect. The presence of the different PDE types in human umbilical artery smooth muscle was analysed by RT-PCR and the expression of PDE1B, PDE3A, PDE3B, PDE4C, PDE4D and PDE5A was detected. The unspecific PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX; 50 microM) relaxed histamine-contracted human umbilical artery on 47.4+/-7.2%. This effect seems to be due to PDE4 and PDE5 inhibition because among the selective PDE inhibitors used only the PDE4 inhibitor (rolipram; 1 microM) and the PDE5 inhibitors (dipyridamole and T0156; 3 microM and 1 microM respectively) induced significant relaxation (39.0+/-8.7, 30.4+/-6.0 and 36.3+/-2.8 respectively). IBMX, dipyridamole and T0156 produced similar relaxation on 5-HT-induced contraction. After forskolin, the addition of IBMX or rolipram increased the effect of the adenylate cyclase stimulator and almost completely relaxed the human umbilical artery contracted by histamine (92.5+/-4.9 and 90.9+/-4.7 respectively), suggesting a main role of PDE4. The data obtained with 5-HT contracted arteries confirmed this, because only rolipram and IBMX significantly increased the forskolin vasodilator effect. The administration of dipyridamole and T0156 after sodium nitroprusside (SNP) induced a significant increase of the SNP relaxant effect on histamine-contracted arteries, but PDE1 and PDE3 inhibition did not increase the effect of the guanylate cyclase stimulator. Similar effects were obtained in 5-HT contracted arteries, the SNP induced relaxation was increased by the PDE5 inhibition, but not by PDE1 or PDE3 inhibition. In summary, our results demonstrate that: 1) the increase of cAMP and/or cGMP levels induces relaxation of the human umbilical vascular smooth muscle; 2) four families of PDE are expressed in this smooth muscle: PDE1, PDE3, PDE4 and PDE5; 3) between these families, PDE4 and PDE5 are the key enzymes involved in the regulation of the relaxation associated to cAMP and cGMP, respectively.  相似文献   

19.
An isoquinolone derivative, methyl-2-(4-aminophenyl)-1, 2-dihydro-1-oxo-7-(2-pyridinylmethoxy)-4-(3,4, 5-trimethoxyphenyl)-3-isoquinoline carboxylate sulfate (T-1032), was found to be a novel potent inhibitor of cyclic GMP (cGMP)-binding cGMP-specific phosphodiesterase (PDE5). We investigated the inhibitory effects of T-1032 on six PDE isozymes isolated from canine tissues. T-1032 specifically inhibited the hydrolysis of cGMP by PDE5 partially purified from canine lung, at a low concentration (IC(50) = 1.0 nM, K(i) = 1.2 nM), in a competitive manner. In contrast, the IC(50) values of T-1032 for PDE1, PDE2, PDE3, and PDE4 were more than 1 microM. T-1032 also inhibited PDE6 from canine retina with an IC(50) of 28 nM, which is of the same order of magnitude as the IC(50) of sildenafil. cGMP hydrolytic activities of two alternative splice variants of canine PDE5 expressed in COS-7 cells were inhibited by this compound to a similar extent. T-1032 increased the intracellular concentration of cGMP in cultured rat vascular smooth muscle cells in the presence and absence of C-type natriuretic peptide, an activator of membrane-bound guanylate cyclase, whereas the compound did not change cyclic AMP levels. These data indicated that T-1032, which belongs to a new structural class of PDE5 inhibitors, is a potent and selective PDE5 inhibitor. This compound may be useful in pharmacological studies to examine the role of a cGMP/PDE5 pathway in tissues.  相似文献   

20.
Cyclic nucleotide phosphodiesterase (PDE) activity from the 105,000 g supernatant of human, bovine and rat aorta smooth muscle cells was resolved by DEAE-trisacryl chromatography into three major forms showing similar properties in each species. In addition to the two PDE forms previously characterized in vascular tissues (a cAMP-PDE and a calmodulin-dependent PDE), a cGMP-PDE, insensitive to calmodulin, was isolated and characterized in the aorta of the three species. Each isolated PDE form was differently inhibited by various chemical compounds, and these compounds produced effects on cyclic nucleotide levels in isolated rat aorta which could be expected from their inhibitory effect on isolated PDE forms. At concentrations non-selectively inhibiting the three isolated PDE forms (including the calmodulin-dependent one), IBMX (3-isobutyl-1-methylxanthine) and trequinsin markedly and dose-dependently increased both cAMP and cGMP aorta levels (up to 7-fold, in presence of 500 microM IBMX). By contrast selective inhibitors of cGMP-PDE or cAMP-PDE could only induce a moderate elevation (by 1.5-3-fold) in cGMP or cAMP levels, respectively. In the case of M&B 22,948, a highly specific and potent inhibitor of cGMP-PDE, a concentration-dependent increase in tissue cGMP levels was produced by concentrations (in the microM range) active in inhibiting the isolated enzyme. In the case of selective cAMP-PDE inhibitors (rolipram and Ro 20-1724), however, a significant increase in aorta cAMP content was induced only in the presence of drug concentrations which were much higher (200 and 500 microM, respectively) than those inhibiting the isolated enzyme (IC50:5 and 18 microM, respectively). Inhibitors of both cGMP-PDE and cAMP-PDE (dipyridamole, cilostamide and its derivative AAL 05) produced the same moderate effects as did the combination of a selective cGMP-PDE inhibitor and a selective cAMP-PDE inhibitor on the levels of both cGMP and cAMP. These results show that the three forms of PDE isolated from aortic smooth muscle retain properties that they exhibit in the tissue and which are similar in the three species examined, including man. They suggest that each form participates in a specific manner to the regulation of cAMP and cGMP concentrations in aorta smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号