首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Melatonin stimulates calmodulin phosphorylation by protein kinase C   总被引:3,自引:0,他引:3  
Calmodulin (CaM)-dependent processes can be modulated by the availability of Ca(+2), the subcellular distribution of both CaM and its target proteins, CaM antagonism, and post-translational modifications such as CaM phosphorylation. Melatonin, the pineal secretory product synthesized during the dark phase of the photoperiod is an endogenous CaM antagonist. This indolamine causes CaM subcellular redistribution in epithelial MDCK and MCF-7 cells, and selectively activates protein kinase C alpha (PKC alpha) in neuronal N1E-115 cells. In the present work we have characterized the phosphorylation of CaM mediated by PKC alpha and its stimulation by melatonin in an in vitro reconstituted enzyme system. Additionally, the participation of MAPK and ERKs, downstream kinases of the PKC signaling pathway, was explored utilizing MDCK cell extracts as source of these kinases. Phosphorylation of CaM was characterized in the whole cells by MDCK cell metabolic labeling with [(32)P]-orthoposhospate, and CaM separation by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, as well as by immunocolocalization of phosphorylated threonine/serine residues and CaM in cultured cells incubated with melatonin. Our results show that melatonin increased CaM phosphorylation by PKC alpha with an EC(50) of 10(-8) m in the presence of the phorbol ester, phorbol-12-myristate-13-acetate (PMA) in the in vitro reconstituted enzyme system. An increase in phosphorylated CaM was also observed in cells cultured with melatonin, or PMA for 2 hr, while, PKC, MAPK, or ERK inhibitors abolished CaM phosphorylation elicited by melatonin in MDCK cell extracts. Our data show that melatonin can stimulate phosphorylation of CaM by PKC alpha in the in vitro reconstituted system and suggest that in MDCK cells this phosphorylation is accomplished by PKC. Modification of CaM by melatonin can be another route to inhibit CaM interaction with its target enzymes.  相似文献   

2.
Acute beta-adrenergic stimulation enhances cardiac contractility, accelerates muscle relaxation, and amplifies the inotropic and lusitropic response to increased stimulation frequency. These effects are modulated by phosphorylation of calcium handling and myofilament proteins such as troponin I (TnI) by protein kinase A (PKA). To more directly delineate the role of TnI PKA phosphorylation, transgenic mice were generated that overexpress cardiac TnI in which the serine residues normally targeted by PKA are mutated to aspartic acid to mimic constitutive phosphorylation (TnIDD22,23). Native cardiac TnI was near completely replaced in one transgenic line as assessed by in vitro phosphorylation, and this led to reduced calcium sensitivity of myofibrillar MgATPase, as expected. TnIDD22,23 mice had mildly enhanced basal systolic and diastolic function, and displayed marked augmentation of frequency-dependent inotropy and relaxation, with a peak frequency response 2-fold greater in mutants than controls (P<0.005). Increasing afterload prolonged relaxation more in nontransgenic than TnIDD22,23 (P<0.02), whereas contractile responses to afterload were similar between these strains. Isoproterenol treatment eliminated the differential force-frequency and afterload response between TnIDD22,23 and controls. In contrast to in vivo studies, isolated isometric trabeculae from nontransgenic and TnIDD22,23 mice had similar basal, isoproterenol-, and frequency-stimulated function, suggesting that muscle shortening may be important to TnI PKA effects. These results support a novel role for cardiac TnI PKA phosphorylation in the rate-dependent enhancement of systolic and diastolic function in vivo and afterload sensitivity of relaxation. These results have implications for cardiac failure in which force-frequency modulation is blunted and afterload relaxation sensitivity increased in association with diminished PKA TnI phosphorylation.  相似文献   

3.
Normal cardiac function requires dynamic modulation of contraction. beta1-adrenergic-induced protein kinase (PK)A phosphorylation of cardiac myosin binding protein (cMyBP)-C may regulate crossbridge kinetics to modulate contraction. We tested this idea with mechanical measurements and echocardiography in a mouse model lacking 3 PKA sites on cMyBP-C, ie, cMyBP-C(t3SA). We developed the model by transgenic expression of mutant cMyBP-C with Ser-to-Ala mutations on the cMyBP-C knockout background. Western blots, immunofluorescence, and in vitro phosphorylation combined to show that non-PKA-phosphorylatable cMyBP-C expressed at 74% compared to normal wild-type (WT) and was correctly positioned in the sarcomeres. Similar expression of WT cMyBP-C at 72% served as control, ie, cMyBP-C(tWT). Skinned myocardium responded to stretch with an immediate increase in force, followed by a transient relaxation of force and finally a delayed development of force, ie, stretch activation. The rate constants of relaxation, k(rel) (s-1), and delayed force development, k(df) (s-1), in the stretch activation response are indicators of crossbridge cycling kinetics. cMyBP-C(t3SA) myocardium had baseline k(rel) and k(df) similar to WT myocardium, but, unlike WT, k(rel) and k(df) were not accelerated by PKA treatment. Reduced dobutamine augmentation of systolic function in cMyBP-C(t3SA) hearts during echocardiography corroborated the stretch activation findings. Furthermore, cMyBP-C(t3SA) hearts exhibited basal echocardiographic findings of systolic dysfunction, diastolic dysfunction, and hypertrophy. Conversely, cMyBP-C(tWT) hearts performed similar to WT. Thus, PKA phosphorylation of cMyBP-C accelerates crossbridge kinetics and loss of this regulation leads to cardiac dysfunction.  相似文献   

4.
Three protein kinase C (PKC) isozymes, type I, II, and III, have been identified as the major Ca2+/phospholipid-stimulated protein kinases in the various animal tissues. Based on the immunochemical analysis it was demonstrated that PKC I was encoded by gamma cDNA, PKC II by the alternatively spliced beta I and beta II cDNAs, and PKC III by alpha cDNA. The expression of these enzymes appears to be tissue-specific and developmentally regulated. The central nervous system expresses high level of all three isozymes and the peripheral tissues mainly PKC II and III. During brain development, the expression of PKC I appears to follow the progress of synaptogenesis, whereas PKC II and III increase progressively from fetus up to 2-3 weeks of age. The level of PKC I in adult brain is highest in the cerebellum, hippocampus, amygdala, and cerebral cortex especially in those cortical regions being important for visual information processing and storage. The role of PKC II and III in cellular regulation was investigated by treatment of rat basophilic leukemia cells with the phorbol ester, phorbol 12-myristate 13-acetate. This phorbol ester caused a faster degradation of PKC II than III, indicating a differential down-regulation of these two enzymes by this compound. The results presented in this study support the contention that each species of PKC has a distinct function in the regulation of a variety of cellular processes.  相似文献   

5.
We have investigated the mechanism underlying the modulation of the cardiac L-type Ca(2+) current by protein kinase C (PKC). Using the patch-clamp technique, we found that PKC activation by 4-alpha-phorbol 12-myristate 13-acetate (PMA) or rac-1-oleyl-2-acetylglycerol (OAG) caused a substantial reduction in Ba(2+) current through Ca(v)1.2 channels composed of alpha(1)1.2, beta(1b), and alpha(2)delta(1) subunits expressed in tsA-201 cells. In contrast, Ba(2+) current through a cloned brain isoform of the Ca(v)1.2 channel (rbC-II) was unaffected by PKC activation. Two potential sites of PKC phosphorylation are present at positions 27 and 31 in the cardiac form of Ca(v)1.2, but not in the brain form. Deletion of N-terminal residues 2-46 prevented PKC inhibition. Conversion of the threonines at positions 27 and 31 to alanine also abolished the PKC sensitivity of Ca(v)1.2. Mutant Ca(v)1.2 channels in which the threonines were converted singly to alanines were also insensitive to PKC modulation, suggesting that phosphorylation of both residues is required for PKC-dependent modulation. Consistent with this, mutating each of the threonines individually to aspartate in separate mutants restored the PKC sensitivity of Ca(v)1.2, indicating that a change in net charge by phosphorylation of both sites is responsible for inhibition. Our results define the molecular basis for inhibition of cardiac Ca(v)1.2 channels by the PKC pathway.  相似文献   

6.
Protein kinase C catalyzed phosphorylation of sterol carrier protein 2   总被引:1,自引:0,他引:1  
The transport of cholesterol to the inner mitochondrial membrane, a key step in steroidogenesis, is subject to hormonal modulation that, at least in part, could be mediated by protein phosphorylation. This step is stimulated by sterol carrier protein 2 (SCP2) and Ca2+. To explore whether SCP2 itself is a potential control point for regulation by Ca2+-dependent phosphorylation we investigated whether highly purified SCP2 could serve as a substrate for major type Ca2+ and non-Ca2+-dependent protein kinases. Phosphorylation by calmodulin protein kinase II (CaM-PK II), myosin light chain kinase (MLCK), cAMP-dependent kinase (PKA) and protein kinase C (PKC) was monitored under optimal conditions for each enzyme. PKA, CaM-PK II and MLCK catalyzed the radiolabeling of histone 2A, synapsin I and myosin light chain (MLC), known substrates for these kinases, respectively, yet no phosphate transfer to SCP2 was observed. In contrast, PKC from two different sources (rat and calf brain) effectively catalyzed the phosphorylation of the highly purified SCP2. The phosphorylation of SCP2 depended on the addition of Ca2+ and phospholipids and was completely blocked by Polymyxin B, a PKC inhibitor. PKC catalyzed phosphorylation of SCP2 displayed a similar dependence on the concentration of ATP. Lineweaver Burk plots of the data indicate Km values for ATP of approximately 6 microM for the phosphorylation of SCP2. Our results, which have revealed for the first time that SCP2 is a substrate for PKC, are consistent with the possibilities that the control of steroidogenesis by tropic hormones and by PKC activation are mediated, at least in part, by the phosphorylation/dephosphorylation of SCP2.  相似文献   

7.
Phosphorylation of cardiac troponin I (cTnI) by cAMP-dependent kinase (PKA), protein kinase C (PKC) and potentially other kinases modulates the activity of myofilaments. To elucidate the signaling mechanisms involving this modulation, it is important to determine the phosphorylation states of cTnI and its phosphorylation sites in a simple and efficient manner. In this report, we describe a method to determine the phosphorylation states of cTnI with non-equilibrium isoelectric focusing gel electrophoresis (NEIEF). Our method easily separates cTnI species with a single-charge difference. To further establish a role of PKC-dependent phosphorylation of cTnI, we have applied this approach to analysis of cTnI phosphorylation in the Tn complex following treatment with recombinant PKC, and in heart samples treated with a phorbol ester. Using mass spectrometry analysis of Tn and thin filaments, we identified Ser-23 and Ser-24 (normally considered to be PKA-dependent sites) as substrates for phosphorylation by PKC-beta and PKC-epsilon.  相似文献   

8.
Summary The aim of the study was to determine the role of protein kinase C (PKC) in protein phosphorylation in hypertrophied C. myocytes, particularly the phosphorylation of the 19 kDa protein which corresponds to myosin light chains. In myocardial hypertrophy the PKC activity in the cytosolic fraction of tissue homogenate was increased up to 253 % of control hearts, and in membrane fraction up to 140 % of the control value. Phorbol ester (TPA), the specific activator of protein kinase C, stimulated phosphorylation of the 19 kDa protein obtained from isolated myocytes to 181 ± 9 % of control value in normal and to 248 ± 66 % in hypertrophic myocytes. Taken together, these data suggest that protein kinase C might be involved in the increased phosphorylation of cardiac myosin light chain protein in myocardial hypertrophy.  相似文献   

9.
The heart is remarkably adaptable in its ability to vary its function to meet the changing demands of the circulatory system. During times of physiological stress, cardiac output increases in response to increased sympathetic activity, which results in protein kinase A (PKA)-mediated phosphorylations of the myofilament proteins cardiac troponin (cTn)I and cardiac myosin-binding protein (cMyBP)-C. Despite the importance of this mechanism, little is known about the relative contributions of cTnI and cMyBP-C phosphorylation to increased cardiac contractility. Using engineered mouse lines either lacking cMyBP-C (cMyBP-C(-/-)) or expressing a non-PKA phosphorylatable cTnI (cTnI(ala2)), or both (cMyBP-C(-/-)/cTnI(ala2)), we investigated the roles of cTnI and cMyBP-C phosphorylation in the regulation of the stretch-activation response. PKA treatment of wild-type and cTnI(ala2) skinned ventricular myocardium accelerated stretch activation such that the response was indistinguishable from stretch activation of cMyBP-C(-/-) or cMyBP-C(-/-)/cTnI(ala2) myocardium; however, PKA had no effect on stretch activation in cMyBP-C(-/-) or cMyBP-C(-/-)/cTnI(ala2) myocardium. These results indicate that the acceleration of stretch activation in wild-type and cTnI(ala2) myocardium is caused by phosphorylation of cMyBP-C and not cTnI. We conclude that the primary effect of PKA phosphorylation of cTnI is reduced Ca(2+) sensitivity of force, whereas phosphorylation of cMyBP-C accelerates the kinetics of force development. These results predict that PKA phosphorylation of myofibrillar proteins in living myocardium contributes to accelerated relaxation in diastole and increased rates of force development in systole.  相似文献   

10.
11.
Ryanodine receptor (RyR2) dysfunction, which may result from a variety of mechanisms, has been implicated in the pathogenesis of cardiac arrhythmias and heart failure. In this review, we discuss the important role of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in the regulation of RyR2-mediated Ca(2+) release. In particular, we examine how pathological activation of CaMKII can lead to an increased risk of sudden arrhythmic death. Finally, we discuss how reduction of CaMKII-mediated RyR2 hyperactivity might reduce the risk of arrhythmias and may serve as a rationale for future pharmacotherapeutic approaches.  相似文献   

12.
Protein kinase C (PKC) and Syk protein tyrosine kinase play critical roles in immune cell activation including that through the high-affinity IgE receptor, FcepsilonRI. Mechanisms by which PKC activation leads to the activation of Ras, a family of GTPases essential for immune cell activation, have been elusive. We present evidence that Tyr-662 and Tyr-658 of PKCbetaI and PKCalpha, respectively, are phosphorylated by Syk in the membrane compartment of FcepsilonRI-stimulated mast cells. These phosphorylations require prior PKC autophosphorylation of the adjacent serine residues (Ser-661 and Ser-657, respectively) and generate a binding site for the SH2 domain of the adaptor protein Grb-2. By recruiting the Grb-2/Sos complex to the plasma membrane, these conventional PKC isoforms contribute to the full activation of the Ras/extracellular signal-regulated kinase signaling pathway in FcepsilonRI-stimulated mast cells.  相似文献   

13.
Protein kinase C (PKC) isoforms are being elucidated as an increasingly diverse family of enzymes involved in the downstream signal transduction and cell function in various types of cells. To date, 11 PKC isoforms have been identified; they are grouped according to their molecular structure and mode of activation: conventional PKCs (alpha, beta I, beta II, and gamma), novel PKCs (delta, epsilon, mu, theta, and eta), and atypical PKCs (zeta, and iota/lambda). Eosinophils are involved in the pathogenesis of allergic diseases such as bronchial asthma, pollinosis, and atopic dermatitis as well as in the inflammatory response to parasitic infections. Recent studies using selective activators and inhibitors of individual PKC isoforms have revealed that this enzyme is involved in eosinophil dynamics such as cell motility and other functions. However, the role of PKCs in eosinophil functions has been not wholly understood. In this review, we have focused upon and summarized the current knowledge regarding the role of PKC isoforms in eosinophil functions.  相似文献   

14.
目的 探讨蛋白激酶C(PKC)不均一性表达与室性心律失常(VA)之间的联系.方法 30只兔经Iangendorff心脏灌流系统,分别在基线、PKC激动剂(phorbol-12-myristate-13-acetate,100 nmol/L)及PKC抑制剂(bisindolylmaleimide,500 nmol/L)状态下,应用程控刺激(S1S2)及动态S1刺激记录心室10个局部位点的动作电位时限(APD)、有效不应期(ERP)以及交替和VA发生阈值,分析APD及ERP的空间离散度(COv).同时运用Real-time PCR技术检测心室各点PKC亚型的mRNA表达量.结果 应用PKC激动剂可导致各记录位点APD及ERP发生不均一性缩短,使离散度指标COV-APD90和COV-ERP显著增大(P<0.05),左心室较明显(COV-APD90:0.05±0.01比0.08±0.03,P<0.01;COV-ERP:0.05±0.01比0.09±0.03,P<0.01).在PKC激动剂作用下,VA诱发率较基线状态下显著升高(86.7%比40.0%,P<0.05),并且各点发生APD交替现象和VA的阈值明显降低(P<0.05).但PKC抑制剂可减小复极离散度以及升高交替和VA阈值,并使之恢复至基线水平.分析各点PKC亚型表达发现PKC-α和PKC-β的mRNA表达存在空间差异性,且该特征与PKC激动剂灌注前后APD及ERP差值的标准化比值呈现相似分布趋势.结论 PKC激活导致心室空间电生理特征的不均一性主要归因于PKC亚型的差异性分布,为VA的发生提供了潜在条件.  相似文献   

15.
Catecholamine-stimulated lipolysis occurs by activating adenylate cyclase and raising cAMP levels, thereby increasing protein kinase A (PKA) activity. This results in phosphorylation and modulated activity of several key lipolytic proteins. Adipose triglyceride lipase (ATGL) is the primary lipase for the initial step in triacylglycerol hydrolysis, and ATGL activity is increased during stimulated lipolysis. Here, we demonstrate that murine ATGL is phosphorylated by PKA at several serine residues in vitro and identify Ser(406) as a functionally important site. ATGL null adipocytes expressing ATGL S406A (nonphosphorylatable) had reduced stimulated lipolysis. Studies in mice demonstrated increased ATGL Ser(406) phosphorylation during fasting and moderate intensity exercise, conditions associated with elevated lipolytic rates. ATGL Ser(404) (corresponding to murine Ser(406)) phosphorylation was increased by β-adrenergic stimulation but not 5'AMP-activated protein kinase activation in human subcutaneous adipose tissue explants, which correlated with lipolysis rates. Our studies suggest that β-adrenergic activation can result in PKA-mediated phosphorylation of ATGL Ser(406), to moderately increase ATGL-mediated lipolysis.  相似文献   

16.
Mitogen-activated protein kinase cascades are conserved in fungal, plant, and metazoan species. We expressed murine MAP kinase kinase kinase (MEKK) in the yeast Saccharomyces cerevisiae to determine whether this kinase functions as a general or specific activator of genetically and physiologically distinct MAP-kinase-dependent signaling pathways and to investigate how MEKK is regulated. Expression of MEKK failed to correct the mating deficiency of a ste11 delta mutant that lacks an MEKK homolog required for mating. MEKK expression also failed to induce expression of a reporter gene controlled by the HOG1 gene product (Hog1p), a yeast MAP kinase homolog involved in response to osmotic stress. Expression of MEKK did correct the cell lysis defect of a bck1 delta mutant that lacks an MEKK homolog required for cell-wall assembly. MEKK required the downstream MAP kinase homolog in the BCK1-dependent pathway, demonstrating that it functionally replaces the BCK1 gene product (Bck1p) rather than bypassing the pathway. MEKK therefore selectively activates one of three distinct MAP-kinase-dependent pathways. Possible explanations for this selectivity are discussed. Expression of the MEKK catalytic domain, but not the full-length molecule, corrected the cell-lysis defect of a pkc1 delta mutant that lacks a protein kinase C homolog that functions upstream of Bck1p. MEKK therefore functions downstream of the PKC1 gene product (Pkc1p). The N-terminal noncatalytic domain of MEKK, which contains several consensus protein kinase C phosphorylation sites, may, therefore, function as a negative regulatory domain. Protein kinase C phosphorylation may provide one mechanism for activating MEKK.  相似文献   

17.
18.
The phosphorylation of protein I, a specific neuronal protein, has been found to be regulated both by cyclic AMP (cAMP) and by calcium, in intact as well as in lysed synaptosome preparations from rat brain. In order to determine the phosphorylation site(s) of protein I that were regulated by cAMP and calcium, protein I was purified after it was phosphorylated under various conditions. This purified protein I was then subjected either to peptide mapping after limited proteolysis in sodium dodecyl sulfate/polyacrylamide gels or to tryptic fingerprinting. 8-Br-cAMP selectively increased the phosphorylation of the same protein I peptide fragment in both intact and lysed synaptosomes. Depolarization-induced calcium influx into intact synaptosomes, or the addition of calcium to lysed synaptosomes, caused a stimulation of the phosphorylation not only of this peptide but also of other distinct peptides. Differential regulation by cAMP and calcium of the phosphorylation of multiple sites on the same neuronal protein may provide a molecular basis for interactions between these two second-messenger systems in certain nerve terminal functions.  相似文献   

19.
The GDP-bound alpha subunit of transducin, but not the guanosine 5'-[gamma-thio]triphosphate-bound one, undergoes phosphorylation on tyrosine residues by the insulin receptor kinase and on serine residues by protein kinase C. Holotransducin is poorly phosphorylated by the insulin receptor kinase and is not phosphorylated by protein kinase C. Neither holotransducin nor any of its subunits were phosphorylated by the cAMP-dependent protein kinase. That a given subunit of transducin undergoes multisite phosphorylation depending on the type of nucleotide bound to it or the nature of the kinase suggests that hormone-dependent phosphorylation could provide a versatile mode for regulation of guanine nucleotide-binding protein (G protein) function. In particular, the findings that certain G proteins serve as substrates for both the insulin receptor kinase and protein kinase C implicate G proteins in playing a key role in mediating the action of insulin and ligands that act to activate protein kinase C.  相似文献   

20.
To learn more about the signalling pathways involved in superoxide anion production in guinea pig alveolar macrophages, triggered by Trichinella spiralis infection, protein level and phosphorylation of mitogen activated protein (MAP) kinases and protein kinase C (PKC) were investigated. Infection with T. spiralis, the nematode having ‘lung phase’ during colonization of the host, enhances PKC phosphorylation in guinea pig alveolar macrophages. Isoenzymes β and δ of PKC have been found significantly phosphorylated, although their location was not changed as a consequence of T. spiralis infection. Neither in macrophages from T. spiralis‐infected guinea pig nor in platelet‐activating factor (PAF)‐stimulated macrophages from uninfected animals, participation of MAP kinases in respiratory burst activation was statistically significant. The parasite antigens seem to act through macrophage PAF receptors, transducing a signal for enhanced NADPH oxidase activity, as stimulating effect of newborn larvae homogenate on respiratory burst was abolished by specific PAF receptor antagonist CV 6209. A suppressive action of T. spiralis larvae on host alveolar macrophage innate immunological response was reflected by diminished protein level of ERK2 kinase and suppressed superoxide anion production, in spite of high level of PKC phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号