首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
HLA-E-restricted T cells represent a minor cytolytic T lymphocyte (CTL) population characterized by the surface expression of HLA class I-specific inhibitory receptors and by the capability of killing a large panel of allogeneic target cells (therefore named NK-CTL). Here we show that this subset of T cells is present in a sizeable fraction in the peripheral blood of human cytomegalovirus (HCMV)-seropositive healthy individuals. We provide evidence that NK-CTL recognize in an HLA-E-restricted fashion a naturally processed CMV-derived peptide in the transporter associated with antigen processing (TAP)-2(-/-) UL40+ RMA-S cell transfectants. Moreover, we show that they recognize and kill HCMV-infected target cells. NK-CTL are characterized by the CD8beta(dull) (CD45RA+)(CD28-)(CD27-)(CCR7-)(CD56+) surface phenotype, thus suggesting that they belong to the effector-memory cell compartment. Consistent with the effector-memory phenotype, they promptly produce IFN-gamma, but not IL-2, upon interaction with the specific HCMV UL40-derived peptide. Our data suggest that HLA-E-restricted CTL may represent an additional effector cell type involved in defenses against HCMV, a virus which escapes the control exerted by conventional CTL or NK cells.  相似文献   

2.
Cytolytic T lymphocytes (CTL) are known to recognize antigen peptides in association with major histocompatibility complex (MHC) class I molecules expressed on target cells. However, a fraction of human CD8(+) CTL has been shown to lyse certain natural killer (NK)-susceptible target cells via still undefined mechanism(s). These CD8(+) T cells, hereafter referred to as NK-CTL, are frequently composed of cells expressing one single TCR Vbeta expansion (different in different individuals), display a memory phenotype and express HLA class I-specific inhibitory NK receptors. Here we show that cell populations or clones of NK-CTL isolated from three healthy donors homogeneously expressed Vbeta16, Vbeta9 and Vbeta3 TCR, respectively. Various clones isolated under limiting dilution conditions from Vbeta16(+) cells of donor 1 displayed identical TCR Vbeta and Valpha rearrangements, thus suggesting a substantial monoclonality of the NK-CTL subset analyzed. NK-CTL lysed a number of NK-susceptible tumor target cells with the exception of those characterized by beta2-microglobulin (beta2m) deficiency. However, the latter targets became susceptible to lysis upon beta2m transfection. Using monoclonal antibodies specific for the relevant TCR Vbeta or beta2m we provide evidence suggesting that target cell lysis by NK-CTL is mediated by the TCR itself upon recognition of beta2m-associated proteins. The cellular distribution of the potential beta2m-associated proteins in susceptible target cells suggested, as a likely candidate for TCR-mediated recognition, the non-classical HLA-E molecule. The use, as target cells, of the murine TAP2-deficient RMA-S cells, either untransfected or transfected with HLA-E, and loaded with an appropriate HLA-E-binding peptide, provided the direct demonstration that HLA-E represents a ligand recognized by the TCR expressed by NK-CTL. This is the first evidence that human TCR alpha/beta can recognize HLA-E molecules, thus revealing a novel type of TCR-mediated recognition, which may offer new insight in immune responses in both normal and disease conditions.  相似文献   

3.
The cognate NK-DC interaction in inflamed tissues results in NK cell activation and acquisition of cytotoxicity against immature DC (iDC). This may represent a mechanism of DC selection required for the control of downstream adaptive immune responses. Here we show that killing of monocyte-derived iDC is confined to the NK cell subset that expresses CD94/NKG2A, but not killer Ig-like receptors (KIR). Consistent with these data, the expression of HLA-E (i.e. the cellular ligand of CD94/NKG2A) was down-regulated in iDC. On the other hand, HLA-B and HLA-C down-regulation in iDC was not sufficient to induce cytotoxicity in NK cells expressing KIR3DL1 or KIR2DL. Remarkably, CD94/NKG2A(+)KIR(-) NK cells were heterogeneous in their ability to kill iDC and an inverse correlation existed between their CD94/NKG2A surface density and the magnitude of their cytolytic activity. It is conceivable that the reduced CD94/NKG2A surface density enables these cells to efficiently sense the decrease of HLA-E surface expression in iDC. Finally, most NK cells that lysed iDC did not kill mature DC that express higher amounts of HLA class I molecules (including HLA-E)as compared with iDC. However, a small NK cell subset was capable of killing not only iDC but also mature DC.  相似文献   

4.
Natural killer (NK)-cytotoxic T lymphocytes (CTL) are a subset of CD8(+) cytolytic T lymphocytes that express human leukocyte antigen (HLA) class I-specific inhibitory receptors. They are detectable as monoclonal expansions in the blood of cytomegalovirus (CMV)-seropositive individuals displaying particular HLA-Cw allotypes. Similar to NK cells, they are capable of killing various allogeneic tumor cell lines, a function referred to as "NK-like activity." The mechanism underlying this unusual functional property has recently been clarified. Via their T-cell receptor, NK-CTL recognize the nonclassical HLA class I molecule HLA-E, which is characterized by a limited polymorphism and by the ability to bind peptides derived from the leader sequence of various HLA class I alleles as well as from few viral proteins. The analysis of the T-cell receptor avidity revealed that NK-CTL recognize with high avidity a CMV UL40-derived peptide. The HLA-E-restricted recognition of CMV by NK-CTL may represent an important immunologic strategy in defenses against this virus. Indeed, unlike conventional CTL, NK-CTL mediated lysis is apparently not affected by the downregulation of major histocompatibility complex class I that occurs during CMV infection. Because the CMV UL40-derived peptide is identical to the one generated from the leader sequence of various HLA-Cw alleles, NK-CTL are also able to display an "HLA-E-dependent alloreactivity" against allogeneic target cells expressing appropriate HLA-Cw alleles. This broad ability to recognize and kill allogeneic cells may pose serious problems in transplantation.  相似文献   

5.
NK cells selectively lyse tumor cells which do not express one or more MHC class I alleles. The ability to discriminate between self normal or tumor cells is due to the expression of MHC class I-specific killer inhibitory receptors (KIR). In the present study we analyzed melanoma cell lines which were highly susceptible to NK cell-mediated lysis in spite of the expression of a complete set of HLA class I alleles. Quantitative analysis of the HLA class I expression using allele-specific monoclonal antibodies (mAb) revealed a down-regulation of all HLA class I molecules. Treatment of melanoma cells with IFN-γ resulted in up-regulation of all HLA class I alleles that was paralleled by the acquisition of resistance to lysis. That resistance to lysis reflected the up-regulation of HLA class I molecules was revealed by the finding that mAb-mediated masking of either KIR or their HLA class I ligands completely restored the melanoma cell lysis. These results were obtained by the use of selected NK cell clones derived either from allogeneic or autologous donors. In addition, similar results were obtained using in vitro expanded autologous NK cell populations. Our data indicate that NK cells can lyse not only melanoma cells which have lost the expression of one or more HLA class I alleles but also cells expressing a decreased amount of class I molecules.  相似文献   

6.
Interaction of NK cells with autologous immature dendritic cells (iDCs) results in reciprocal activation. We have previously reported that NK cells trigger iDC to polarize and secrete IL-18; in turn, DC-activated NK cells secrete the nuclear protein/proinflammatory cytokine high mobility group box protein 1 (HMGB1), which induces DC maturation and prevents DC from lysis. However, activated NK cells can also kill iDC. To investigate whether effector and maturative properties may coexist or segregate in different NK subsets, human NK cell clones were generated and analyzed for their effects on iDC. We found that the ability of different NK cell clones to induce iDC maturation is unlinked to their phenotypic and cytolytic features but correlates with the relocation of HMGB1 from nucleus to cytoplasm. "Maturative" NK cell clones secrete HMGB1 spontaneously. It is interesting that secretion is strongly enhanced by engagement of the surface molecule NKp30 but only slightly induced by triggering of the activating NK receptor CD16. However, culturing freshly isolated NK cells for 1 week with low doses of anti-CD16 triggers the relocation of HMGB1 from nucleus to cytoplasm and its spontaneous secretion, resulting in a stronger maturation potential of the NK cells. Together, our data indicate that NK cells comprise functionally different subsets, endowed with different capacities to secrete HMGB1 and to induce maturation of autologous iDC. Nonetheless, maturation properties can be modulated by different stimuli. This suggests that depending on the environmental stimuli, NK/iDC interaction can lead to different outcomes, thus influencing immune response.  相似文献   

7.
HLA-G molecules are known to exert immunosuppressive action on DC maturation and on NK cells, and can in consequence inhibit respectively T cell responses and NK cytolysis. In this study, we show that monocyte-derived DC, differentiated in the presence of GM-CSF and IL-4, are sensitive to soluble (s) HLA-G molecules during LPS/IFN-gamma maturation as demonstrated by the decrease of CD80 and HLA-DR expressions and IL-12 secretion. Moreover, DC pretreated with sHLA-G were found to activate NK/DC crosstalk less than non-treated DC. Early activation of NK cells co-cultured with autologous DC was diminished as assessed by CD69 expression. The IFN-gamma production was impaired whereas a slight inhibition of the NK cell cytotoxicity against Daudi cell line was observed. Since sHLA-G is expressed in grafts or sites of tumour proliferation, its indirect action on NK cells via DC could constitute a pathway of early inhibition for both innate and specific immune responses.  相似文献   

8.
There is growing interest in HLA-E-restricted T-cell responses as a possible novel, highly conserved, vaccination targets in the context of infectious and malignant diseases. The developing field of HLA multimers for the detection and study of peptide-specific T cells has allowed the in-depth study of TCR repertoires and molecular requirements for efficient antigen presentation and T-cell activation. In this study, we developed a method for efficient peptide thermal exchange on HLA-E monomers and multimers allowing the high-throughput production of HLA-E multimers. We optimized the thermal-mediated peptide exchange, and flow cytometry staining conditions for the detection of TCR and NKG2A/CD94 receptors, showing that this novel approach can be used for high-throughput identification and analysis of HLA-E-binding peptides which could be involved in T-cell and NK cell-mediated immune responses. Importantly, our analysis of NKG2A/CD94 interaction in the presence of modified peptides led to new molecular insights governing the interaction of HLA-E with this receptor. In particular, our results reveal that interactions of HLA-E with NKG2A/CD94 and the TCR involve different residues. Altogether, we present a novel HLA-E multimer technology based on thermal-mediated peptide exchange allowing us to investigate the molecular requirements for HLA-E/peptide interaction with its receptors.  相似文献   

9.
Molecular interactions in natural killer (NK) cell-mediated killing of dendritic cells (DC) have under recent years come under scrutiny. Upon stimulation with IFN-γ or lipopolysaccharide, DC become relatively resistant to NK cell-mediated lysis. In the present study, we investigated the role of Qa1b on DC and its receptor NKG2A on NK cells in the protection of mature DC from NK cells. We demonstrate that while both NKG2A+ and NKG2A- NK cells can efficiently lyse unstimulated DC, NKG2A+ NK cells but not NKG2A- NK cells are largely impaired in their ability to lyse mature DC. Similarly, mature DC from mice expressing H-2Db, whose leader peptide sequence binds and stabilizes Qa1b, were resistant to NK cell-mediated killing, suggesting that stable Qa1b expression contributes to the protection of mature DC. This finding was further validated by the demonstration that addition of the Qdm leader peptide could protect TAP1-/- DC from NK cell-mediated lysis both in vitro and in vivo . The present data suggest that stable expression of Qa1 on the surface of mature DC contributes to the protection of DC from NK cell-mediated lysis.  相似文献   

10.
Lysis of human cytomegalovirus (HCMV)-infected fibroblasts by autologous natural killer (NK) cells was examined in vitro. For NK cell clones, receptor expression was determined at the level of mRNA and cell-surface protein and compared to the lysis of HCMV AD169 strain-infected fibroblasts in which HLA class I was >70% downregulated. The clones ranged broadly in their ability to lyse AD169-infected fibroblasts, correlating neither with the expression of inhibitory KIR, leukocyte inhibitory receptor-1, or CD94:NKG2A receptors nor with the number of different inhibitory KIR expressed per clone. Some lines of polyclonal NK cells preferentially lysed AD169-infected cells and similarly lysed fibroblasts infected with mutant virus RV798, which lacks the genes for downregulating HLA class I. These results demonstrate that NK cell lysis of HCMV-infected autologous fibroblasts is more complex than a simple missing-self mechanism involving downregulation of HLA class I and failure to engage inhibitory self-specific KIR.  相似文献   

11.
Ifosfamide is a DNA-alkylating agent used frequently in chemotherapy of human malignancies. Ifosfamide and its major decomposition products deplete intracellular glutathione (GSH). Glutathione is the major intracellular thiol reductant that protects cells against oxidative injury. Ifosfamide depletion of intracellular GSH in human dendritic cells (DC), T cells and natural killer (NK) cells impairs their functional activity which can be restored by reconstituting GSH. Here we assessed the effect of ifosfamide on DC-mediated stimulation of NK cell proliferation via T cells and on direct DC stimulation of NK cell cytotoxicity and interferon (IFN)-gamma production. Indirect DC stimulation of NK cell proliferation via T cells and T cell-derived interleukin (IL)-2 were reduced by ifosfamide treatment of DC and reconstitution of GSH in DC restored both responses. When DC and NK cells were treated with ifosfamide, DC could overcome the negative effect of ifosfamide on NK cytotoxic function whereas NK cell IFN-gamma production was less efficiently restored. The ability of IL-2 activated NK cells to kill autologous immature DC or to induce DC maturation was reduced moderately by treatment of both cell types with ifosfamide. Overall, our results suggest that DC may stimulate anti-tumour effector cells in patients even if they had received treatment with chemotherapeutic agents such as ifosfamide.  相似文献   

12.
Human CMV (HCMV) has evolved several strategies to evade the immune system of the infected host. Here, we investigated the role of the HCMV-encoded protein UL40 in the modulation of NK cell lysis. UL40 carries in its leader sequence a nonameric peptide similar to that found in many HLA class I molecules leader sequences. This peptide up-regulates the expression of HLA-E, the ligand for the NK cell inhibitory receptor CD94/NKG2A. The UL40-encoded HLA-E-binding peptide was present in all HCMV clinical (4636, 13B, 109B, 3C) and laboratory (AD169) strains analyzed. However, transfection of UL40 in different cell lines (293T, 721.221, K562) did not consistently confer protection from NK lysis (as measured using NKL and the newly generated NK line Nishi), despite a moderate up-regulation of HLA-E. Interestingly, combined transfection and treatment with IFN-gamma increased the inhibitory effect, via an HLA-E- and CD94/NKG2A-dependent mechanism. Although cells transfected with UL40 derived from either AD169 or 3C showed protection from NK cell lysis, infection of fibroblasts with the viruses resulted in a strong inhibition only with the clinical strain 3C. Our results suggest that UL40 and IFN-gamma-dependent up-regulation of HLA-E is only one possible mechanism to avoid NK cell recognition of HCMV infected cells.  相似文献   

13.
NK and DC reciprocal interactions have only recently been investigated. In this study, we focused on the interplay between NK cells and DC in two models of bacterial infection. Immature monocyte-derived DC were cultured in the presence of live Escherichia coli or bacillus Calmette-Guérin. Upon exposure to either extracellular or intracellular bacteria, DC underwent maturation as assessed by the increased levels of expression of CD80,CD86, and HLA molecules and the de novo expression of CD83 and CCR7. Significant amounts of TNF-alpha and IL-12 were released by DC upon infection, whereas IL-2 and IL-15 were barely detectable in culture supernatants. Both infected and uninfected DC were capable of inducing in fresh autologous NK cells the expression of CD69 and HLA-DR and of inducing cell proliferation. Remarkably, however, infected DC were much stronger inducers of NK cell activation and proliferation than uninfected DC. Thus, after just 24 h of NK/DC coculture, only those NK cells that had been exposed to bacteria-infected DC had acquired the ability to lyse autologous immature DC. In addition, infected DC were more resistant to NK-mediated lysis as a consequence of the up-regulation of HLA class I molecule expression on their surface. This study suggests a regulatory circuit involving NK cells and DC in which DC-induced NK cell activation is effectively enhanced by the presence of pathogens. Activated NK cells, by limiting the supply of immature DC, may then exert a control on subsequent innate and adaptive immune responses.  相似文献   

14.
Carriage of certain inhibitory natural killer (NK) cell receptor (iNKR)/HLA ligand pairs is associated with protection from infection and slow time to AIDS implicating NK cells in HIV control. NK cells acquire functional potential through education, which requires the engagement of iNKRs by their human leucocyte antigen (HLA) ligands. HIV infection down‐regulates cell surface HLA‐A/B, but not HLA‐C/E. We investigated how NK cell populations expressing combinations of the iNKRs NKG2A, KIR2DL3 (2DL3) and KIR3DL1 (3DL1) responded to autologous HIV infected CD4 (iCD4) cells. Purified NK cells from HIV‐uninfected individuals were stimulated with autologous HIV iCD4 or uninfected CD4 T cells. Using flow cytometry we gated on each of the 8 NKG2A+/–2DL3+/–3DL1+/‐ populations and analysed all possible combinations of interferon (IFN)‐γ, CCL4 and CD107a functional subsets responding to iCD4 cells. Infected CD4 cells induced differential frequencies of NKG2A+/–2DL3+/–3DL1+/– populations with total IFN‐γ+, CCL4+ and CD107a+ functional profiles. 2DL3+NKG2A+ NK cells had a higher frequency of responses to iCD4 than other populations studied. A higher frequency of 2DL3+ NK cells responded to iCD4 from individuals that were not HLA‐C1 homozygotes. These results show that 2DL3+ NK cells are mediators of HIV‐specific responses. Furthermore, responses of NK cell populations to iCD4 are influenced not only by NK cell education through specific KIR/HLA pairs, but also by differential HIV‐mediated changes in HLA expression.  相似文献   

15.
Epstein-Barr virus (EBV)-encoded latent membrane protein (LMP) 1 is a potential target for immunotherapy of some proportion of Hodgkin's disease cases, nasopharyngeal carcinomas, EBV-associated natural killer (NK)/T lymphomas, and chronic active EBV infection (CAEBV). Since it is unknown whether EBV-infected NK/T cells are susceptible to lysis by LMP1-specific cytotoxic T lymphohcytes (CTL), we here tested the ability of mRNA-transduced antigen-presenting cells (APC) to stimulate rare LMP1-specific CTL. A 43-amino acid N-terminal deletion mutant LMP1 (DeltaLMP1) could be efficiently expressed in dendritic cells and CD40-activated B cells upon mRNA electroporation. DeltaLMP1-expressing APC were found to stimulate LMP1-specific CTL from a healthy donor and a CTL clone recognized a peptide, IIIILIIFI, presented by HLA-A*0206 molecules. Processing and presentation of the antigenic peptide proved dependent on expression of an immunoproteasome subunit, low-molecular-weight protein-7, as confirmed by RNA interference gene silencing. Furthermore, an EBV-infected NK cell line derived from a patient with CAEBV, and another from an NK lymphoma with enforced HLA-A*0206 expression, were specifically lysed by the CTL. Overall, these data suggest that immunotherapy targeting LMP1 in EBV-associated NK lymphomas and CAEBV might serve as an alternative treatment modality.  相似文献   

16.
Interactions between natural killer (NK) and dendritic cells (DCs) are integral to immune response development, potentially leading to bidirectional NK/DC activation. We demonstrate that autologous NK/DC interactions induce CD4 expression on NK cells, influencing degranulation. Cell contact is required, with high NK:DC ratios and mature DCs most effectively inducing CD4 expression. CD4(+) NK cells, in turn, mediate DC maturation via contact-dependent and independent pathways, more effectively maturing DCs than CD4(-) NK cells. Bidirectional NK/DC interactions also impact HIV infection, as NK-matured DCs effectively deliver infectious HIV to T cells, via trans-infection. DC-induced CD4 expression also renders NK cells susceptible to HIV infection. Focusing on NK/DC interactions, DCs can transfer infectious virus and enhance HIV infection of CD4(+) NK cells, strongly suggesting that these interactions influence HIV pathogenesis. Findings provide new insight regarding NK/DC interactions, defining a mechanism by which cellular interactions in the absence of pathogens promote DC-mediated amplification of HIV infection.  相似文献   

17.
NK cells are effectors in innate immunity and also participate in immunoregulation through the release of TGF‐β1 and lysis of activated/autoreactive T cells. Apoptotic cells (AC) have been shown to induce tolerogenic properties in innate immune cells, including macrophages and dendritic cells, but not NK cells. In this study, we demonstrated that after interaction with AC, NK cells released TGF‐β1, which in turn suppressed the production of IFN‐γ by NK cells upon IL‐12 and IgG activation. We further identified phosphatidylserine as a potential target on AC for the NK cells, as phosphatidylserine could stimulate NK cells to release TGF‐β1, which in turn suppressed CD4+ T‐cell proliferation and activation. Moreover, AC‐treated NK cells displayed cytotoxicity against autologous‐activated CD4+ T cells by upregulating NKp46. This lysis occurred in part through the NKp46‐vimentin pathway, as activated CD4+ T cells expressed vimentin on the cell surface and blocking of vimentin or NKp46, but not other NK‐cell receptors, significantly suppressed the NK‐cell cytotoxicity. We report here a novel interaction between NK cells and AC, resulting in the tolerogenic properties of NK cells required for immune contraction.  相似文献   

18.
X‐linked lymphoproliferative disease 1 (XLP1) is an inherited immunodeficiency, caused by mutations in SH2D1A encoding Signaling Lymphocyte Activation Molecule (SLAM)‐associated protein (SAP). In XLP1, 2B4, upon engagement with CD48, has inhibitory instead of activating function. This causes a selective inability of cytotoxic effectors to kill EBV‐infected cells, with dramatic clinical sequelae. Here, we investigated the NK cell education in XLP1, upon characterization of killer Ig‐like receptor (KIR)/KIR‐L genotype and phenotypic repertoire of self‐HLA class I specific inhibitory NK receptors (self‐iNKRs). We also analyzed NK‐cell cytotoxicity against CD48+ or CD48? KIR‐ligand matched or autologous hematopoietic cells in XLP1 patients and healthy controls. XLP1 NK cells may show a defective phenotypic repertoire with substantial proportion of cells lacking self‐iNKR. These NK cells are cytotoxic and the inhibitory 2B4/CD48 pathway plays a major role to prevent killing of CD48+ EBV‐transformed B cells and M1 macrophages. Importantly, self‐iNKR defective NK cells kill CD48? targets, such as mature DCs. Self‐iNKR? NK cells in XLP1 patients are functional even in resting conditions, suggesting a role of the inhibitory 2B4/CD48 pathway in the education process during NK‐cell maturation. Killing of autologous mature DC by self‐iNKR defective XLP1 NK cells may impair adaptive responses, further exacerbating the patients’ immune defect.  相似文献   

19.
Newland A  Russ G  Krishnan R 《Immunology》2006,118(2):216-223
Cytotoxic T-lymphocyte antigen 4 immunoglobulin (CTLA4-Ig) and interleukin (IL)-10 are immunomodulatory molecules which target CD28 costimulation by acting either directly or indirectly on the CD80/86 receptors on dendritic cells (DCs). This study examined the effect of combined treatment with CTLA4-Ig and IL-10 on T-cell responsiveness in a dendritic cell-mixed lymphocyte reaction (DC-MLR). T cells derived from nylon wool enrichment (NWT cells) demonstrated 15% (P = 0.006) and 10% (P = 0.0015) inhibition of proliferation with suboptimal doses of IL-10 (5 ng/ml) and CTLA4-Ig (20 ng/ml), respectively. Combined treatment with both agents resulted in 38% inhibition (P = 0.004) of the MLR response compared with untreated controls. In contrast to NWT cells, which consisted of CD4+, CD8+ and CD56+ (NK) cells, purified CD4+ T cells were less responsive to immunomodulation by CTLA4-Ig and IL-10. Repletion of the CD4+ T cells with NK cells restored IL-10 and CTLA4-Ig mediated immunomodulation, suggesting a role for NK cells in the regulation of DC-T-cell interactions. The specific effect of NK cells on DC activation was demonstrated by CD80 up-regulation on DCs in the absence of T cells. However, in the absence of DCs, NK cells augmented the proliferation of autologous CD4+ T cells stimulated by anti-CD3 monoclonal antibody (mAb), which was blocked by CTLA4-Ig. It is proposed that, in the MLR, immunomodulation by suboptimal CTLA4-Ig and IL-10 is influenced by cellular interactions of NK cells with DCs and T cells involving DC lysis and costimulation. Thus, NK cells prime both DCs and T cells to low doses of CTLA4-Ig and IL-10 during alloimmune responses, providing evidence for the potential interaction between innate and adaptive immunity.  相似文献   

20.
β‐Defensins comprise a family of cationic, antimicrobial and chemoattractant peptides. The six cysteine canonical motif is retained throughout evolution and the disulphide connectivities stabilise the conserved monomer structure. A murine β‐defensin gene (Defr1) present in the main defensin cluster of C57B1/6 mice, encodes a peptide with only five of the canonical six cysteine residues. In other inbred strains of mice, the allele encodes Defb8, which has the six cysteine motif. We show here that in common with six cysteine β‐defensins, defensin‐related peptide 1 (Defr1) displays chemoattractant activity for CD4+ T cells and immature DC (iDC), but not mature DC cells or neutrophils. Murine Defb2 replicates this pattern of attraction. Defb8 is also able to attract iDC but not mature DC. Synthetic analogues of Defr1 with the six cysteines restored (Defr1 Y5C) or with only a single cysteine (Defr1‐1cV) chemoattract CD4+ T cells with reduced activity, but do not chemoattract DC. β‐Defensins have previously been shown to attract iDC through CC receptor 6 (CCR6) but neither Defr1 or its related peptides nor Defb8, chemoattract cells overexpressing CCR6. Thus, we demonstrate that the canonical six cysteines of β‐defensins are not required for the chemoattractant activity of Defr1 and that neither Defr1 nor the six cysteine polymorphic variant allele Defb8, act through CCR6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号