首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a temperature-responsive culture dish grafted with a poly(N-isopropylacrylamide) (PIPAAm). Various types of cells adhere, spread, and proliferate on the grafted dishes in the presence of serum at 37 degrees C. By reducing only temperature, these cells can be harvested noninvasively from the dishes according to rapid hydration of the grafted polymer. Because the harvest does not need enzymatic digestion, differentiated cell phenotypes are retained. In the present study, a renal epithelial cell line, Madin-Darby canine kidney (MDCK) cell, was cultured on the dishes, and cell behavior was examined. MDCK cells showed differentiated phenotypes such as dome formation during long-term culture, similar to on ungrafted dishes. After 1-week culture at 37 degrees C, trypsin digestion disrupted cell-cell junctions but failed to liberate cells from both ungrafted and grafted dishes. However, short-term incubation at 20 degrees C released confluent MDCK cells as a single contiguous cell sheet only from the polymer-grafted dishes because of selective disruption of the cell-surface binding. Immunocytochemistry with anti-beta-catenin antibody revealed that functional cell-cell junctions were organized even in the recovered cell sheets. Intriguingly, incubation time at 20 degrees C required for cell sheet detachment gradually shortened during long-term culture before reducing temperature. The acceleration of cell detachment was correlated to the decrease of a single cell area by means of cell contractile force. These findings suggest that cell sheet detachment from PIPAAm-grafted dishes should be accomplished by both PIPAAm hydration and cellular metabolic activity such as cell contraction.  相似文献   

2.
Novel technologies to establish three-dimensional constructs are desired for tissue engineering. In the present study, magnetic force was used to construct multilayered keratinocyte sheets and harvest the sheets without enzymatic treatment. Our original magnetite cationic liposomes, which have a positive surface charge in order to improve adsorption, were taken up by human keratinocytes at a concentration of 33 pg of magnetite per cell. The magnetically labeled keratinocytes (2x10(6) cells, which corresponds to 5 times the confluent concentration against the culture area of 24-well plates, in order to produce 5-layered keratinocyte sheets) were seeded into a 24-well ultralow-attachment plate, the surface of which was composed of a covalently bound hydrogel layer that is hydrophilic and neutrally charged. A magnet (4000 G) was placed under the well, and the keratinocytes formed a five-layered construct in low-calcium medium (calcium concentration, 0.15 mM) after 24 h of culture. Subsequently, when the five-layered keratinocytes were cultured in high-calcium medium (calcium concentration, 1.0 mM), keratinocytes further stratified, resulting in the formation of 10-layered epidermal sheets. When the magnet was removed, the sheets were detached from the bottom of the plates, and the sheets could be harvested with a magnet. These results suggest that this novel methodology using magnetite nanoparticles and magnetic force, which we have termed "magnetic force-based tissue engineering" (Mag-TE), is a promising approach for tissue engineering.  相似文献   

3.
Augmentation cystoplasty using gastrointestinal flaps may induce severe complications such as lithiasis, urinary tract infection, and electrolyte imbalance. The use of viable, contiguous urothelial cell sheets cultured in vitro should enable us to avoid these complications. Transplantable urothelial cell sheets were obtained by utilizing a temperature-responsive cell culture method, and then examined by immunostaining and electron microscopy. Canine urothelium was produced on the surfaces of temperature-responsive culture dishes covalently bonded with the thermally sensitive polymer, poly(N-isopropylacrylamide). Stratified urothelial cell sheets were cultured and then harvested intact without enzymatic treatment from these dishes by reducing the temperature. Histological structure and cell-to-cell junctions were compared between these urothelial cell sheets and those harvested with dispase. All urothelial cell sheets were harvested from the bonded surfaces by reducing the culture temperature without the need for dispase. Electron microscopy revealed well-developed microridge, microvilli, and cell junction complexes. Conversely, these same cell features were destroyed by dispase treatment. Immunoblotting revealed that dispase fragmented occludin, whereas it remained unchanged in the intact urothelial cell sheets. Novel urothelial cell sheets obtained by culture on temperature-responsive culture surfaces were successfully harvested much less destructively than with dispase. This technology should prove useful in urinary tract tissue engineering in the near future.  相似文献   

4.
Gentle harvesting of corneal endothelial cell sheets grown in culture is of interest for the development of cornea replacement strategies. Thin films of a fast responding copolymer of N-isopropylacrylamide (NiPAAm) and diethyleneglycol methacrylate (DEGMA) with a phase transition temperature of 32 degrees C were prepared and evaluated for that purpose. The polymer layers were immobilized onto fluorocarbon substrates using low pressure argon plasma treatment. Cell culture and detachment experiments were performed with L929 mouse fibroblasts and human corneal endothelial cells (HCEC) at standard conditions. The hydrogel-coated supports were found to permit adhesion, spreading, and proliferation of both cell types. Harvesting of cell sheets was achieved upon lowering the temperature to about 30 degrees C. The formation of a closed monolayer as a crucial prerequisite for maintaining ionic pump function in HCEC was proven by ZO-1 immunostainung. Labeling of fibronectin indicated that the vast majority of the extracellular matrix is detached from the hydrogel coatings together with the cell layer. Inspired by this result, the reuse of the hydrogel-coated culture carriers was investigated confirming the suitability of the substrates for repeated cell harvesting. Altogether, the introduced thermoresponsive coating was found advantageous for the efficient generation of HCEC sheets and will be further utilized in transplantation strategies.  相似文献   

5.
Although cardiac myocytes adherent to tissue culture polystyrene (TCPS) dishes retain the spontaneous beating, the pulsatile amplitude is highly limited compared to that in vivo. One of the main reasons for the limited pulsation may be the interface between the cells and the TCPS surfaces. Release of these cells from rigid TCPS surfaces may augment their pulsatile amplitude. With this perspective, we have developed a novel cell manipulation technique to detach cultured cardiac myocytes from rigid surfaces and to rescue higher pulsatile amplitude of the cells using temperature-responsive culture dishes and discuss the possibility of improving this heart tissue model. Primary cardiac myocytes were cultured on the slightly hydrophobic dish surfaces grafted with a temperature-responsive polymer, poly(N-isopropylacrylamide). Cells adhered and proliferated, forming confluent cardiac myocyte sheets in a fashion similar to those on ungrafted TCPS dishes. Decrease in culture temperature resulted in surface change of the polymer from slight hydrophobic to highly hydrophilic due to extensive hydration of the grafted polymer on the dishes. This results in release of cardiac myocyte sheets from the dishes without enzymatic or EDTA treatment. When no support was used, the detached cardiac myocyte sheets shrank to one-tenth size, which ceased their pulsation. When chitin membranes were used to support the confluent sheets to prevent cell shrinkage, the detached cell sheets could be transferred and readily adhered onto another virgin TCPS dishes. These transferred cell sheets preserved the similar cell morphology and pulsation to those before the detachment. When polyethylene meshes were used to support cell sheet transfer, detached cardiac myocyte sheets partially attached to the mesh threads. Then, the constructs were inverted and placed in another culture dish to prevent direct association to dish surfaces. Moreover, the cardiac myocyte sheets were reorganized to heart tissue-like structures by the unisotropic contraction orientated by the mesh threads, and the pulsatile amplitude increased more than 10 times higher. This technique would bring about new insight in tissue engineering as well as cultured heart model.  相似文献   

6.
A renal epithelial cell line, Madin-Darby canine kidney (MDCK) cells, adheres, spreads, and proliferates to confluency on our developed temperature-responsive culture dishes grafted with a poly(N-isopropylacrylamide) (PIPAAm) at 37 degrees C. In addition to other cell types, including hepatocytes and endothelial cells, MDCK cell sheets noninvasively were harvested from PIPAAm-grafted dishes merely by reducing the temperature. However, during the early stage of culture (up to 3 weeks), confluent MDCK cell detachment is greatly repressed. In the present study, we succeeded in the rapid harvest of confluent MDCK cell sheets and intact transfer to other culture dishes by utilizing hydrophilically modified poly(vinylidene difluoride) (PVDF) membranes as supporting materials. Immunocytochemistry with anti-beta-catenin antibody revealed that the functional cell-cell junctions were well organized in the transferred MDCK cell sheets. The viability assay showed that the transferred cells were not damaged during the two-dimensional cell-sheet manipulation. By transmission electron microscopy it was confirmed that the harvested MDCK cells retained differentiated phenotypes and had many microvilli and tight junctions at the apical and lateral plasma membranes, respectively. This two-dimensional cell-sheet manipulation technique promises to be useful in tissue engineering as well as in the investigation of epithelial cell sheets.  相似文献   

7.
For the purpose of corneal regenerative medicine, we fabricated human corneal endothelial cell sheets on temperature-responsive dishes, which could be non-invasively harvested as intact, transplantable sheets by simply reducing the culture temperature. Cells demonstrated hexagonal cell shape with numerous microvilli and cilia, and also exhibited abundant cytoplasmic organelles similar to these cells in vivo. Immunofluorescence for type IV collagen and fibronectin revealed that abundant extracellular matrix (ECM) was deposited on the basal surface throughout culture, and the deposited ECM was harvested along with the cell sheets by reducing culture temperature to 20 degrees C. Faint ECM remnants were observed on the dish surfaces after cell sheet detachment. Immunofluorescence for ZO-1 showed that tight junctions were established between cells, and immunoblotting indicated that intact ZO-1 was maintained during cell sheet harvest, while conventional proteolytic cell harvest methods resulted in the degradation of ZO-1. These results suggest that these transplantable corneal endothelial cell sheets can be applied to treat patients with damaged corneas.  相似文献   

8.
The oral mucosa is an attractive cell source for autologous transplantation in human patients who require regenerative therapies of various epithelia. However, the time-course of cellular changes in transplanted oral mucosal epithelia at ectopic sites remains poorly understood. By applying a rat model, we analyzed phenotypic changes in oral mucosal epithelial cell sheets after harvest from temperature-responsive culture dishes and subsequent autologous subcutaneous transplantation. We used monoclonal antibodies to identify epithelial-specific cytokeratins 4, 10, 13, and 14, the stem/progenitor cell marker p63, and proliferating cell nuclear antigen, within the regenerated tissues. Transplanted oral mucosal epithelial cell sheets proliferated during the first week after grafting in conjunction with host inflammation, but then began to degenerate afterward with complete disappearance after 3 weeks. Our findings suggest that host subcutaneous tissues support proliferation and differentiation of the oral mucosal epithelial cell sheets, but are unable to promote maintenance of stem and progenitor cells and therefore cannot produce long-term survivability.  相似文献   

9.
The dispase perfusion technique was used to isolate liver cells from adult rats. The optimum conditions for obtaining many isolated liver cells with high viability were an enzyme concentration of 2000 U/ml, a pH of 7.5 and a perfusion time of 20 min. The population of isolated liver cells prepared with dispase consisted of 43.6% cells with diameters less than 20 micron and 56.4% cells with diameters above 20 micron. The isolated liver cells were cultured in basal culture medium either supplemented with or without dexamethasone (1 X 10(-5)M) and insulin (10 micrograms/ml). The addition of hormones to the culture medium improved the attachment efficiency of the isolated liver cells and delayed the disappearance of mature hepatocytes. Epithelial-like clear cells proliferated early in primary culture even in the presence of hormones. Therefore, functioning mature hepatocytes and proliferating epithelial-like clear cells coexisted well in the hormone-containing medium. Furthermore, the number of cultured cells reached a maximal level earlier in the presence of hormones than in the absence of hormones. The level of TAT activity in primary cultured cells was higher up to 3 days after inoculation in the presence of hormones than in their absence. No difference between G6Pase activity in primary cultured cells in the presence of hormones and that in the absence of hormones was found.  相似文献   

10.
To exclude bacteria- or animal-derived factors from cultured fabrication of transplantable epithelial cell sheets, primary human oral mucosal epithelial cells were seeded on temperature-responsive culture inserts having submicron-scale pores. Supplying culture medium containing human autologous serum to both apical and basal sides of human epithelial cells allows these cells to grow to confluence. These proliferating cells created stratified epithelial layers even when 3T3 feeder layers and fetal bovine serum were eliminated from culture. Normal keratin expression profiles were obtained with these cells, and basal and midlayer cells expressed p63, a putative stem/progenitor marker. These results suggest that temperature-responsive culture inserts can be useful in clinical settings that require the exclusion of xenogeneic factors.  相似文献   

11.
12.
13.
Human gingival keratinocytes in culture stop proliferating after a limited number of passages. This limitation is associated with a gradual depletion of the stem cell compartment of the cell population. Human skin keratinocytes have a three- to five-fold higher proliferation capacity under similar culture conditions, and previous studies indicated that stable down-regulation of the 14-3-3 sigma protein in these cultures prevents stem cell differentiation and generates immortal cell lines without the effects of tumorigenic transformation, e.g., genotypic alterations. In this report, we demonstrate the creation of an immortalized human gingival keratinocyte stem cell line by stable down-regulation of the 14-3-3 sigma protein. Keratinocyte cultures were generated from human subjects ranging from 17 to 92 years of age and retrovirally transduced with a 14-3-3 sigma antisense RNA expression construct. In contrast to the control cultures, which propagated for only 2-5 passages and 25-35 cell doublings, the 14-3-3 sigma-transduced cultures propagated for 11 passages and 110 cell doublings so far. The percentage of stem cells measured by clonal analysis, which gradually decreased in the control cultures, increased to a steady level of over 90% in the 14-3-3 sigma down-regulated culture. This gingival keratinocyte stem cell line and others, which can be generated using the same procedure, have the potential to be useful for studies on stem cell differentiation, for developing gene therapy procedures that target the gingival epithelium, as well as a stable platform for testing oral hygiene products and as potential material for preprosthetic surgery.  相似文献   

14.
15.
Small numbers of seven species of bacteria commonly causing bacteraemia in man were inoculated into fresh human blood, and then cultured by a standard method used for diagnostic blood culture. Prior warming of the medium did not improve the recovery of the inoculated bacteria and it is suggested that such warming is not required when performing diagnostic blood culture.  相似文献   

16.
A previously reported procedure which manipulated the systemic virus infection of intact plants using differential temperatures was developed into a model system that may provide synchronous virus replication in whole leaves. Cells of young leaves maintained at 5° (DTI-5° leaves) or 12° (DTI-12° leaves) became infected with tobacco mosaic virus (TMV) from mechanically inoculated lower leaves that were maintained at an optimum temperature for virus multiplication (DTI, differential-temperature inoculated.) The DTI leaves were then moved to a permissive temperature that allowed replication to begin in all infected cells simultaneously.The different, nonpermissive low temperatures inhibited early steps of TMV replication differently. The lag periods between the shift to the permissive temperature and the logarithmic and linear infectivity increases were shorter in DTI-12° leaves than DTI-5° leaves. In DTI-5° leaves, TMV infectivity began increasing logarithmically at 8 hr after the transfer to 25°, and a rapid linear increase began at 24 hr. In DTI-12° leaves, the logarithmic increase of TMV infectivity began between 0 and 6 hr, and the linear increase began 14 hr after transfer to 25°. No infectivity could be detected in DTI-5° leaves at the time of the shift from the low temperature, and only minute amounts could be detected in DTI-12° leaves. Infectivity increased at the same rate in DTI leaves detached before the transfer from the low temperature as in DTI leaves left on the intact plant. TMV synthesis in the DTI leaves was similar to that in other synchronous systems of virus replication and almost identical to those reported for TMV in synchronously infected tobacco protoplasts.  相似文献   

17.
We have performed clinical applications of cell sheet-based regenerative medicine with human patients in several fields. In order to achieve the mass production of transplantable cell sheets, we have developed automated cell culture systems. Here, we report an automated robotic system utilizing a cell culture vessel, cell cartridge. The cell cartridge had two rooms for epithelial cells and feeder layer cells separating by porous membrane on which a temperature-responsive polymer was covalently immobilized. After pouring cells into this robotic system, cell seeding, medium change, and microscopic examination during culture were automatically performed according to the computer program. Transplantable corneal epithelial cell sheets were successfully fabricated in cell cartridges with this robotic system. Then, fabricated cell sheets were transplanted onto ocular surfaces of rabbit limbal epithelial stem cell deficiency model after 6-h transportation using a portable homothermal container to keep inner temperature at 36 °C. Within one week after transplantation, normal corneal epithelium was successfully regenerated. This automatic cell culture system would be useful for industrialization of tissue-engineered products for regenerative medicine.  相似文献   

18.
A technique for the preparation of entire intestinal mucosal sheets is described that renders the population of crypts accessible for two-dimensional study. We have applied the technique to demonstrate the mosaic crypt populations in the intestinal epithelium of mouse aggregation chimeras, using the lectin Dolichos biflorus agglutinin (DBA) as a strain-specific histochemical marker.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号