首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
ObjectiveDiabetic kidney disease (DKD) is the leading cause of death and disability of diabetes mellitus. However, there is still a lack of specific drugs for the treatment of DKD. The chief aim of this research is to investigate the role and mechanism of 2-Dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) for DKD.MethodsWild type and TLR4 knockout mice were induced to diabetes. After 4-week treatment with DMDD, blood sugar, renal function, blood lipid and pathological changes were assessed. Real-time PCR, western blotting, and immunohistochemistry were employed to detect the expressions of TLR4, TGFβ1 and Smad2/3 in the renal tissue.ResultsDMDD improved the serum lipid and decreased fasting blood glucose levels in diabetic mice. CysC and urinary albumin levels increased markedly in the diabetic group, and they were obviously decreased after 4 weeks of DMDD treatment. Compared with the WT diabetic mice, the urinary albumin and CysC in the TLR4-/- mice were expressed at lower levels. HE and Masson’s staining revealed that DMDD clearly ameliorated pathological changes and renal fibrosis. When TLR4 gene was knock out, the pathological was improved. Mechanistically, TLR4, TGF-β1 and Smad2/3 were obvious up-regulation in the renal tissues of diabetic mice. The expressions of these proteins were significantly down-regulated after DMDD treatment (p < 0.05). In the TLR4-/- mice, mRNA and protein levels of TGF-β1 and Smad2/3 were obviously lower than those in the WT mice. In addition, IHC revealed that a strong in situ expressions of TLR4, TGF-β1 and Smad2/3 were seen in the kidney tissues of diabetic mice, which were distinctly weakened in the DMDD-treated mice. In the TLR4-/- mice, however, expressions of TGF-β1 and Smad2/3 were not remarkable increase in the diabetic mice compared with normal mice.ConclusionsThese results strongly indicate that TLR4 is essential for DMDD protection against renal dysfunction in diabetic mice. Its hypoglycemic and anti-fibrosis effects were likely mediated by the TLR4/TGFβ signaling pathway.  相似文献   

2.
《Saudi Pharmaceutical Journal》2022,30(11):1665-1671
5-fluorouracil (5FU) is widely used to treat colorectal cancer (CC) and its main mechanisms of anticancer action are through generation of ROS which often result in inflammation. Here, we test the effect of Lycopene against 5FU in Caco2 cell line. Caco2 cells were exposed to 3 µg/ml of 5FU alone or with 60, 90, 120 µg/ml of lycopene. This was followed by assessment of cytotoxicity, oxidative stress, and gene expression of inflammatory genes. Our findings showed that Lycopene and 5FU co-exposure induced dose-dependent cytotoxic effect without compromising the membrane integrity based on the LDH assay. Lycopene also significantly enhanced 5FU-induced SOD activity and GSH level compared to control for all mixture concentrations (p < 0.01). Lycopene alone and combination with 5FU-induced expression of IL-1β, TNF-α, and IL-6. Furthermore, IFN-γ expression was significantly enhanced by only mixture of lycopene (90 µg/ml) and 5FU (p < 0.05). In conclusion, Lycopene supplementation with 5FU therapy resulted in improvement in antioxidant parameters such as catalase and GSH levels giving the cell capacity to cope with 5FU-mediated oxidative stress. Lycopene also enhanced IFN-γ expression in the presence of 5FU, which may activate antitumor effects further enhancing the cancer killing effect of 5FU.  相似文献   

3.
To overcome the drug toxicity and frequent resistance of parasites against the conventional drugs for the healing of human visceral leishmaniasis, innovative plant derived antileishmanial components are very imperative. Fuelled by the complications of clinically available antileishmanial drugs, a novel potato serine protease inhibitor was identified with its efficacy on experimental visceral leishmaniasis (VL). The serine protease inhibitors from potato tuber extract (PTEx) bearing molecular mass of 39 kDa (PTF1), 23 kDa (PTF2) and 17 kDa (PTF3) were purified and identified. Among them, PTF3 was selected as the most active inhibitor (IC50 143.5 ± 2.4 µg/ml) regarding its antileishmanial property. Again, intracellular amastigote load was reduced upto 83.1 ± 1.7% in pre-treated parasite and 88.5 ± 0.5% in in vivo model with effective dose of PTF3. Protective immune response by PTF3 was noted with increased production of antimicrobial substances and up-regulation of pro-inflammatory cytokines. Therapeutic potency of PTF3 is also followed by 80% survival in infected hamster. The peptide mass fingerprint (MALDI-TOF) results showed similarity of PTF3 with serine protease inhibitors database. Altogether, these results strongly propose the effectiveness of PTF3 as potent immunomodulatory therapeutics for controlling VL.  相似文献   

4.
The incidence of colorectal cancer (CRC) is increasing annually worldwide. However, traditional chemotherapy has obvious side effects. Low-dose naltrexone (LDN) has been reported to delay tumor progression, but the mechanism remains unclear. Therefore, the aim of this study was to explore the mechanisms underlying the inhibitory effect of LDN on CRC progression in vivo and in vitro. We found that expression of macrophage markers (F4/80, CD68) was increased in nude mice treated with LDN compared with the control group (p < 0.05). Additionally, levels of M1 macrophage phenotypic markers (CD80) and cytokines (tumor necrosis factor-α, TNF-α) were higher than in the control group (p < 0.05). LDN was able to upregulate expression of the opioid growth factor receptor (OGFr) and apoptosis-related factors Bax, caspase-9, caspase-3, and PARP and downregulate expression of Bcl-2, Survivin, and Ki67 to promote tumor cell apoptosis. Therefore, we speculate that LDN reduces tumor size by increasing levels of M1-like macrophages and activating the Bax/Bcl-2/caspase-3/PARP signaling pathway to induce apoptosis. We suggest that LDN has potential for the treatment of CRC.  相似文献   

5.
Thymoquinone is the most biologically active constituent of Nigella sativa (black seed). A monoterpene compound chemically known as 2-methyl-5-isopropyl-1, 4-quinone. In this study, the gender-dependent pharmacokinetic behavior of thymoquinone in rats was investigated. Thymoquinone was administered orally (20 mg/kg) and intravenously (5 mg/kg) to male and female rats and blood samples were collected at specific time points. Plasma concentration-time curves were plotted and pharmacokinetic parameters were determined using the non-compartmental analysis. In addition, simulations of steady state concentrations of thymoquinone in male and female rats were performed using GastroPlus PK software. After oral administration, the maximum plasma concentration (Cmax) of thymoquinone was 4.52 ± 0.092 μg/ml in male rats and 5.22 ± 0.154 μg/ml in female rats (p = 0.002). Similarly, after intravenous administration, the Cmax was 8.36 ± 0.132 μg/ml in males and 9.51 ± 0.158 μg/ml in females (p = 0.550). The area under the plasma concentration-time curve (AUC)0-∞ following oral dosing was 47.38 ± 0.821 μg/ml·h in females and 43.63 ± 0.953 μg/ml·h in males (p = 0.014). Pharmacokinetics and plasma concentration vs. time profiles for multiple oral doses of thymoquinone in rats were predicted using a simulation model to compare the simulation results with the experimental plasma pharmacokinetic data. The differences observed in thymoquinone pharmacokinetics between male and female rats after a single dose were not evident for the simulated steady-state parameters. The findings suggest that the gender difference does not seem to play a significant role in thymoquinone disposition at steady state.  相似文献   

6.
Amla (Phyllanthus emblica) has long been used in traditional folk medicine to prevent and cure a variety of inflammatory diseases. In this study, the antioxidant activity (DPPH scavenging and reducing power), anti-inflammatory activity (RBC Membrane Stabilization and 15-LOX inhibition), and anticoagulation activity (Serin protease inhibition and Prothrombin Time assays) of the methanolic extract of amla were conducted. Amla exhibited a substantial amount of phenolic content (TPC: 663.53 mg GAE/g) and flavonoid content (TFC: 418.89 mg GAE/g). A strong DPPH scavenging effect was observed with an IC50 of 311.31 µg/ml as compared to standard ascorbic acid with an IC50 of 130.53 µg/ml. In reducing power assay, the EC50 value of the extract was found to be 196.20 µg/ml compared to standard ascorbic acid (EC50 = 33.83 µg/ml). The IC50 value of the RBC membrane stabilization and 15-LOX assays was observed as 101.08 µg/ml (IC50 of 58.62 µg/ml for standard aspirin) and 195.98 µg/ml (IC50 of 19.62 µg/ml for standard quercetin), respectively. The extract also strongly inhibited serine protease (trypsin) activity with an IC50 of 505.81 µg/ml (IC50 of 295.44 µg/ml for standard quercetin). The blood coagulation time (PTT) was found to be 11.91 min for amla extract and 24.11 min for standard Warfarin. Thus, the findings of an in vitro study revealed that the methanolic extract of amla contains significant antioxidant, anti-inflammatory, and anticoagulation activity. Furthermore, in silico docking and simulation of reported phytochemicals of amla with human 15-LOXA and 15-LOXB were carried out to validate the anti-inflammatory activity of amla. In this analysis, epicatechin and catechin showed greater molecular interaction and were considerably stable throughout the 100 ns simulation with 15-lipoxygenase A (15-LOXA) and 15-lipoxygenase B (15-LOXB) respectively.  相似文献   

7.
Accumulating evidence indicates that regulators of macrophages polarization may play a key role in the development of allergic asthma (AA). However, the exact role of long non-coding RNAs (lncRNAs) in regulating in macrophages polarization in the pathogenesis of dermatophagoides farinae protein 1(Der f1)-induced AA is not fully understood. The purpose of this study was to determine the function of lncRNA AK085865 in regulating macrophages in AA. Here we report that lncRNA AK085865 served as a critical regulator of macrophages polarization and reduced the pathological progress of asthmatic airway inflammation. In response to the challenge of Der f1, AK085865−/− mice displayed attenuated allergic airway inflammation, including decreased eosinophil in BALF and reduced production of IgE, which were associated with decreased mucous glands and goblet cell hyperplasia. In addition, Der f1-treated AK085865−/− mice show fewer M2 macrophages when compared with WT asthmatic mice. After adopting bone marrow-derived macrophages (BMDM, M0) from WT mice, Der f1-treated AK085865−/− mice also revealed a light inflammatory reactions. We further observed that the percentage of type II innate immune lymphoid cells (ILC2s) decreased in AK085865−/− asthmatic mice. Moreover, M2 macrophages helped promote the differentiation of ILC2s, probably through the exosomal pathway secreted by M2 macrophages. Taken together, these findings reveal that AK085865 depletion can ameliorate asthmatic airway inflammation by modulating macrophage polarization and M2 macrophages can promote the differentiation of innate lymphoid cells progenitor (ILCP) into ILC2s.  相似文献   

8.
GPR174 plays a crucial role in immune responses, but the role of GPR174 in the pathological progress of sepsis remains incompletely understood. In this study, we generated a sepsis model by cecal ligation and puncture (CLP) to investigate the role of GPR174 in regulating functions and underlying mechanism of marginal zone B (MZ B) cells in sepsis. We found that in Gpr174 deficient mice, the number of splenic MZ B cells was increased. Moreover, Gpr174−/− MZ B cells exhibited an enhanced response to LPS stimulation in vitro. By using the CLP-induced sepsis model, we demonstrated that the increased MZ B cells attenuated early inflammatory responses during sepsis. RNA sequencing results revealed that the expression of c-fos in splenic B lymphocytes was upregulated in Gpr174 deficient mice. However, the protective role of increased MZ B cells in Gpr174 deficient mice was weakened by a c-fos-specific inhibitor. Collectively, these findings suggested that GPR174 plays an immunomodulatory role in early immune responses during sepsis through the regulation of MZ B cells.  相似文献   

9.
10.
Neurotherapeutic potentials of Centella asiatica and its reputation to boost memory, prevent cognitive deficits and improve brain functions are widely acknowledged. The plant's bioactive compounds, i.e. asiaticoside, madecassoside and asiatic acid were reported to have central nervous system (CNS) actions, particularly in protecting the brain against neurodegenerative disorders. Hence, it is important for these compounds to cross the blood-brain barrier (BBB) to be clinically effective therapeutics. This study aimed to explore the capability of asiaticoside, madecassoside and asiatic acid to cross the BBB using in vitro BBB model from primary porcine brain endothelial cells (PBECs). Our findings showed that asiaticoside, madecassoside and asiatic acid are highly BBB permeable with apparent permeability (Papp) of 70.61 ± 6.60, 53.31 ± 12.55 and 50.94 ± 10.91 × 10?6 cm/s respectively. No evidence of cytotoxicity and tight junction disruption of the PBECs were observed in the presence of these compounds. Asiatic acid showed cytoprotective effect towards the PBECs against oxidative stress. This study reported for the first time that Centella asiatica compounds demonstrated high capability to cross the BBB, comparable to central nervous system drugs, and therefore warrant further development as therapeutics for the treatment of neurodegenerative diseases.  相似文献   

11.
Two cytotoxic sesquiterpene lactones, 17-epichlorohyssopifolin A (1) and chlorjanerin (2), and a monoterpene lactone, loliolide (3) were isolated from Centaurea pseudosinaica. The cytotoxicity of the total extract and terpenoids 13 were evaluated against three human cancer cells (HepG2, PC-3, and HT-29), along with the human normal primary epidermal keratinocytes (HEKa) cells. With IC50 values ranging between 0.6 ± 0.04 and 5.0 ± 0.61 μg/mL against HepG2; 0.2 ± 0.01 and 11.9 ± 1.31 μg/mL against PC-3, and 0.04 ± 0.013 and 8.9 ± 0.97 μg/mL against HT-29, the total extract, and lactones 13 demonstrated cytotoxic effects. Compound 1 displayed the strongest impact on all cancer cells and a slightly safe effect on the normal cells HEKa. Compound 1 caused accumulation of HepG2 and HT-29 cells in G1 phase as displayed cell cycle analysis. On the other hand, the cell distributions were increased in the S phase in PC-3 cells. Furthermore, 1 caused apoptosis in PC-3 and HePG2 cells with 91.50%, and 79.72 %, respectively. A higher fraction of necrotic cells was observed in HT-29 cells amounting to 23.60%. These results suggested that the promising cytotoxicity exhibited by 1 is brought by the apoptosis induction in the cancer cells, which were evaluated. As the compounds showed antiproliferative effect against the HT-29 cells, the docking simulation was performed aiming at determining how they would interact with the EGFR enzyme, whose PDB: 4I23 is considered one of the two distinct wild types of EGFR enzymes. The antibacterial activity results revealed that 3 showed the most remarkable antibacterial effects, especially against the examined Gram-positive bacteria. The total extract exhibited potent activity against all examined bacteria. The total extract showed a potent antifungal effect against two Candida and two Aspergillus pathogens. The antioxidant activity revealed the potency of the total extract and 3 as antioxidant candidates. The obtained results refer to the importance of Centaurea pseudosinaica as a source of potent antiproliferative agents and the whole plant as an antipathogenic and antioxidant agent.  相似文献   

12.
The prostaglandin (PG) transporter SLCO2A1 regulates PGE2 signaling and interacts with many drugs, and SLCO2A1 defects is associated with PG metabolic disorders. This study aimed to characterize a non-metabolic phenolsulfonphthalein (PSP) transport mediated by SLCO2A1. PSP uptake by HEK293 cells expressing human SLCO2A1 (HEK/2A1 cells) was pH-independent and saturable with a Km value of 54.5 ± 9.5 μM PGE2 competitively inhibited PSP uptake with a Ki of 257.3 ± 22.8 nM. When PSP was intravenously (i.v.) injected, concentration-time curve showed a biphasic response. In Slco2a1-deficient (−/−) mice, AUCinf tented to decrease and the central distribution volume (V1) significantly increased, compared to wild-type (wt) counterparts. Intriguingly, Slco2a1-deficiency significantly reduced a ratio of tissue-to-plasma concentration in the lungs at 15 min after i.v. injection, suggesting that SLCO2A1 limits tissue distribution of PSP. In conclusion, these results prove that PSP is a potential surrogate for monitoring SLCO2A1 function, providing a new concept for diagnostics for the genetic diseases caused by defects in SLCO2A1 gene.  相似文献   

13.
Macrophages are recognized as one of the major cell types in tumor microenvironment, and macrophage infiltration has been predominantly associated with poor prognosis among patients with breast cancer. Using the murine models of triple-negative breast cancer in CD169-DTR mice, we found that CD169+ macrophages support tumor growth and metastasis. CD169+ macrophage depletion resulted in increased accumulation of CD8+ T cells within tumor, and produced significant expansion of CD8+ T cells in circulation and spleen. In addition, we observed that CD169+ macrophage depletion alleviated tumor-induced splenomegaly in mice, but had no improvement in bone loss and repression of bone marrow erythropoiesis in tumor-bearing mice. Cancer cells and tumor associated macrophages exploit the upregulation of the immunosuppressive protein PD-L1 to subvert T cell-mediated immune surveillance. Within the tumor microenvironment, our understanding of the regulation of PD-L1 protein expression is limited. We showed that there was a 5-fold higher relative expression of PD-L1 on macrophages as compared with 4T1 tumor cells; coculture of macrophages with 4T1 cells augmented PD-L1 levels on macrophages, but did not upregulate the expression of PD-L1 on 4T1 cells. JAK2/STAT3 signaling pathway was activated in macrophages after coculture, and we further identified the JAK2 as a critical regulator of PD-L1 expression in macrophages during coculture with 4T1 cells. Collectively, our data reveal that breast cancer cells and CD169+ macrophages exhibit bidirectional interactions that play a critical role in tumor progression, and inhibition of JAK2 signaling pathway in CD169+ macrophages may be potential strategy to block tumor microenvironment-derived immune escape.  相似文献   

14.
Concanavalin A (Con A) activates innate immunity and causes liver damage mediated by cytotoxic T lymphocytes (CTL) in mice. The Pancreatic lipase-related protein 2 (PLRP2) is induced by interleukin (IL)-4 in vitro in CTLs and associated with CTL functions. We examined the role of PLRP2 in a mouse model of Con A-induced T cell-mediated hepatitis. PLRP2-knockout and wild-type (WT) mice were inoculated with 20 mg/kg Con A. Mice lacking PLRP2 reduced Con A-induced hepatitis, which was manifested by a decrease in serum aminotransferase and histopathological assessment. The expression and secretion of cytokines including tumor necrosis factor-alpha (TNF-α), interferon (IFN)-γ, IL-6, and IL-1β were suppressed in Con A-treated PLRP2-knockout mice. In PLRP2 knockout mice, Con A-induced liver chemokines and adhesion molecules (such as MIP-1α, MIP-1β, ICAM-1 and MCP-1) were also down regulated. In the WT liver treated with Con A, the number of T cells (CD4+ and CD8+) and macrophages (CD11b+ F4/80+) increased significantly, while the lack of PLRP2 reduced the number of T cells in the liver, but had no effect on macrophages. The shift of the metabolic profiles was impaired in Con A-treated PLRP2-knockout mice compared to WT mice. In conclusion, these results indicate that PLRP2 deficiency reduces T-cell mediated Con A-induced hepatitis, and suggest PLRP2 is a potential target of anti-inflammatory and immunomodulatory drugs to treat immune-mediated hepatitis.  相似文献   

15.
The aldo-keto reductase (AKR) and short-chain dehydrogenase/reductase (SDR) superfamilies are responsible for the reduction in compounds containing the aldehyde, ketone, and quinone groups. In humans, 12 AKR isoforms (AKR1A1, AKR1B1, AKR1B10, AKR1B15, AKR1C1, AKR1C2, AKR1C3, AKR1C4, AKR1D1, AKR1E2, AKR7A2, and AKR7A3) and 6 SDR isoforms (CBR1, CBR3, CBR4, HSD11B1, DHRS4, and DCXR) have been found to catalyze the reduction in xenobiotics, but their hepatic expression levels are unclear. The purpose of this study is to determine the absolute mRNA expression levels of these 18 isoforms in the human liver. In 22 human livers, all isoforms, except for AKR1B15, are expressed, and AKR1C2 (on average 1.6 × 106 copy/μg total RNA), AKR1C3 (1.3 × 106), AKR1C1 (1.3 × 106), CBR1 (9.7 × 105), and HSD11B1 (1.1 × 106) are abundant, representing 67% of the total expression of reductases in the liver. The expression levels of AKR1C2, AKR1C3, AKR1C1, CBR1, and HSD11B1 are significantly correlated with each other, except between AKR1C2 and CBR1, suggesting that they might be regulated by common factor(s). In conclusion, this study comprehensively determined the absolute expression of mRNA expression of each AKR and SDR isoform in the human liver.  相似文献   

16.
BackgroundAutologous hematopoietic stem cell transplantation is an effective therapeutic strategy for lymphoma patients. However, some patients have to give up receiving transplantation because of failing to obtain sufficient CD34+ cells yields. Therefore, we ex vivo expanded HSCs of lymphoma patients using UM171 to solve the problem of HSCs deficiency.MethodsMobilized peripheral blood-derived CD34+ cells from lymphoma patients were cultured for 10 days with or without UM171. The fold of cell expansion and the immunophenotype of expanded cells were assessed by flow cytometry. RNA-seq experiment was performed to identify the mechanism by which UM171 promoted HSCs expansion.ResultsUM171 treatment increased the proportion of CD34+ (68.97 ± 6.91%), CD34+ CD38 cells (44.10 ± 9.20%) and CD34+CD38CD45RACD90+ LT-HSCs (3.05 ± 2.08%) compared to vehicle treatment (36.08 ± 11.14%, 18.30 ± 9.49% and 0.56 ± 0.45%, respectively). UM171 treatment led to an 85.08-fold increase in LT-HSC numbers relative to initial cells. Importantly, UM171 promoted expansion of LT-HSCs achieved 138.57-fold in patients with poor mobilization. RNA-seq data showed that UM171 upregulated expression of HSC-, mast cell-specific genes and non-canonical Wnt signaling related genes, and inhibited genes expression of erythroid, megakaryocyte and inflammatory mediated chemokine.ConclusionsOur study shows that UM171 can efficiently promote ex vivo expansion of HSCs from lymphoma patients, especially for poorly mobilizing patients. In terms of mechanism, UM171 upregulate HSC-specific genes expression and suppress erythroid and megakaryocytic differentiation, as well as activate non-classical Wnt signaling.  相似文献   

17.
《Saudi Pharmaceutical Journal》2021,29(11):1314-1322
IntroductionPreterm neonates have under-developed immune-regulatory system; consequently, there is a risk for developing chronic inflammation. Necrotizing enterocolitis (NEC) is an acute devastating neonatal intestinal inflammatory disorder. Due to the obscure multifactorial etiology, early diagnosis and effective treatment of NEC are limited. Consequently, effective strategies in the prevention of NEC, including nutritional approaches, are critically needed. The current study was conducted to assess the potential immunomodulatory effect of Docosahexaenoic Acid (DHA) supplementation in preterm neonates at neonatal intensive care unit (NICU) and subsequently its effect on preventing or reducing NEC incidence.MethodsThis was a prospective randomized controlled study. A total of 67 neonates, with gestational age equal or less than 32 weeks at birth and weight less than or equal 1500 g, were randomly assigned to either DHA group or the control group. Modified Bell’s staging criteria for NEC was used as an objective tool for diagnosis and staging of NEC. Levels of Interleukin 1 beta (IL-1β) were measured at baseline and after 10 days. Mortality and NICU length of stay (LOS) were also monitored.ResultsThirty neonates of each group completed the study. A statistically significant difference was observed between the two groups regarding diagnosis and staging of NEC (p = 0.0001). There was also a statistically significant difference between DHA group 22(73.3), 95% CI [55.9, 86.5] and the control group 8 (26.7), 95% CI [13.5, 44.1] in the percentage change in IL-1β levels (p = 0.0001).A statistically significant association was found between IL and 1 β change and NEC diagnosis (p = 0.001). NICU LOS was significantly lower among DHA group 21.63 ± 6.67 compared to the control group 25.07 ± 4.67 (p = 0.025). Mortality n (%) among the control group 4 (11.8) was higher than DHA group 3 (9.1), however, no significant difference was detected (p = 1.0).ConclusionFindings of this study suggest that enteral DHA supplementation can reduce NEC incidence in preterm neonates through its immunoregulatory effect that modulates production of regulatory cytokines.Trial registration: Registered at clinical trials.gov (NCT03700957), 6 October 2018.  相似文献   

18.
19.
20.
Millettia peguensis, popular for its ethnopharmacological uses, was employed to evaluate its different pharmacological properties in this study. The analgesic studies of the plant have been performed by acetic acid-induced writhing and formalin-induced licking tests respectively, whereas the antidiarrheal experiment was done by castor oil-induced diarrheal test. Besides, antioxidant, cytotoxic, antimicrobial, thrombolytic evaluations were performed by DPPH scavenging with phenol content determination, brine shrimp lethality, disc diffusion and clot lysis methods respectively. Moreover, in silico study of the phytoconstituents was carried out by molecular docking and ADME/T analysis.The methanol extract of Millettia peguensis (MEMP) revealed significant biological activity in the analgesic and antidiarrheal test (p < 0.001) compared to the standards. Antioxidant assay displayed promising IC50 values (15.96 μg/mL) with the total phenol content (65.27 ± 1.24 mg GAE/g). In the cytotoxicity study, the LC50 value was found to be 1.094 μg/mL. Besides, MEMP was highly sensitive to the bacteria but less liable to clot lysis. Furthermore, phytoconstituents exposed potential binding affinity towards the selected receptors, whereas the ADME/T properties indicated the drug likeliness of the plant. The outcomes of these findings suggest the therapeutic potential of this plant against pain, diarrhea, inflammation, and tissue toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号