首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thalamic reticular nucleus (nRt) is an assembly of GABAergic projection neurons that participate in the generation of brain rhythms during synchronous sleep and absence epilepsy. NRt cells receive inhibitory and excitatory synaptic inputs, and are endowed with an intricate set of intrinsic conductances. However, little is known about how intrinsic and synaptic properties interact to generate rhythmic discharges in these neurons. In order to better understand this interaction, I studied the subthreshold responses of nRt cells to time‐varying inputs. Patch‐clamp recordings were performed in acute slices of rat thalamus (postnatal days 12–21). Sinusoidal current waveforms of linearly changing frequencies were injected into the soma, and the resulting voltage oscillations were recorded. At the resting membrane potential, the impedance profile showed a characteristic resonance at 1.7 Hz. The relative strength of the resonance was 1.2, and increased with membrane hyperpolarization. Small suprathreshold current injections led to preferred spike generation at the resonance frequency. Bath application of ZD7288 or Cs+, inhibitors of the hyperpolarization‐activated cation current (Ih), transformed the resonance into low‐pass behaviour, whereas the T‐channel blockers mibefradil and Ni2+ decreased the strength of the resonance. It is concluded that nRt cells have an Ih‐mediated intrinsic frequency preference in the subthreshold voltage range that favours action potential generation in the delta‐frequency band.  相似文献   

2.
Purpose: Hyperpolarization‐activated cation currents (IH) play a pivotal role in the control of neuronal excitability. In animal models of epilepsy both increases and decreases of IH have been reported. We, therefore, characterized properties of IH in human epileptogenic neocortex. Methods: Layer II/III neurons in slices from epilepsy surgery tissues and rat cortex were investigated with whole‐cell patch‐clamp recordings. Results: A total of 484 neurons from 96 temporal lobe epilepsy (TLE) tissues and 32 neurons from 8 frontal lobe epilepsy (FLE) tissues were recorded. Voltage‐clamp recordings revealed on hyperpolarizing command steps two time‐ and voltage‐dependent inward currents, namely a fast, Ba2+‐sensitive current (KIR) and a slowly activating current, namely consisting of two kinetically distinct components sensitive to the established IH blocker ZD7288. Only, the fast component (IH(fast)) of TLE neurons was on average smaller and activated more slowly (density 2.7 ± 1.6 pA/pF; tau 38.4 ± 34.0 ms) than in FLE neurons (4.7 ± 2.3 pA/pF; 16.6 ± 7.9 ms; p < 0.001 for both). Within the TLE tissues the IH(fast) density (averaged per patient) was smaller in cases with numerous annual grand mal seizures (GM; 2.2 ± 0.6 pA/pF) compared to those with few GM (2.8 ± 1.0 pA/pF; p = 0.0184). A similar difference was obtained in the case of complex partial seizures (CPS; many CPS 2.2 ± 0.6 pA/pF; few CPS 2.9 ± 1.0 pA/pF, p = 0.0037). Discussion: The biophysical properties of IH in cortices from TLE, FLE, and rat tissue suggest a deficit of HCN1 subunits in the human epileptogenic neocortex, which in turn may increase excitability and probability of seizure activity.  相似文献   

3.
Hippocampal theta rhythm has been associated with a number of behavioral processes, including learning and memory, spatial behavior, sensorimotor integration and affective responses. Suppression of hippocampal theta frequency has been shown to be a reliable neurophysiological signature of anxiolytic drug action in tests using known anxiolytic drugs (i.e., correlational evidence), but only one study to date (Yeung et al. ( 2012 ) Neuropharmacology 62:155–160) has shown that a drug with no known effect on either hippocampal theta or anxiety can in fact separately suppress hippocampal theta and anxiety in behavioral tests (i.e., prima facie evidence). Here, we attempt a further critical test of the hippocampal theta model by performing intrahippocampal administrations of the Ih blocker ZD7288, which is known to disrupt theta frequency subthreshold oscillations and resonance at the membrane level but is not known to have anxiolytic action. Intrahippocampal microinfusions of ZD7288 at high (15 µg), but not low (1 µg) doses slowed brainstem‐evoked hippocampal theta responses in the urethane anesthetized rat, and more importantly, promoted anxiolytic action in freely behaving rats in the elevated plus maze. Taken together with our previous demonstration, these data provide converging, prima facie evidence of the validity of the theta suppression model. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Renshaw cells in the spinal cord ventral horn regulate motoneuron output through recurrent inhibition. Renshaw cells can be identified in vitro using anatomical and cellular criteria; however, their functional role in locomotion remains poorly defined because of the difficulty of functionally isolating Renshaw cells from surrounding motor circuits. Here we aimed to investigate whether the cholinergic nicotinic receptor alpha2 (Chrna2) can be used to identify Renshaw cells (RCsα2) in the mouse spinal cord. Immunohistochemistry and electrophysiological characterization of passive and active RCsα2 properties confirmed that neurons genetically marked by the Chrna2‐Cre mouse line together with a fluorescent reporter mouse line are Renshaw cells. Whole‐cell patch‐clamp recordings revealed that RCsα2 constitute an electrophysiologically stereotyped population with a resting membrane potential of ?50.5 ± 0.4 mV and an input resistance of 233.1 ± 11 MΩ. We identified a ZD7288‐sensitive hyperpolarization‐activated cation current (Ih) in all RCsα2, contributing to membrane repolarization but not to the resting membrane potential in neonatal mice. Additionally, we found RCsα2 to express small calcium‐activated potassium currents (ISK) that, when blocked by apamin, resulted in a complete attenuation of the afterhyperpolarisation potential, increasing cellular firing frequency. We conclude that RCsα2 can be genetically targeted through their selective Chrna2 expression and that they display currents known to modulate rebound excitation and firing frequency. The genetic identification of Renshaw cells and their electrophysiological profile is required for genetic and pharmacological manipulation as well as computational simulations with the aim to understand their functional role.  相似文献   

5.
Background Colitis is associated with increased excitability of afterhyperpolarization neurons (AH neurons) and facilitated synaptic transmission in the myenteric plexus. These changes are accompanied by disrupted propulsive motility, particularly in ulcerated regions. This study examined the relationship between myenteric AH neuronal hyperexcitability and disrupted propulsive motility. Methods The voltage‐activated Na+ channel opener veratridine, the intermediate conductance Ca2+‐activated K+ channel inhibitor TRAM‐34 and the 5‐HT4 receptor agonist tegaserod were used to evaluate the effects of neuronal hyperexcitability and synaptic facilitation on propulsive motility in normal guinea pig distal colon. Because trinitrobenzene sulfonic acid (TNBS)‐colitis‐induced hyperexcitability of myenteric afferent neurons involves increases in hyperpolarization‐activated, cyclic nucleotide‐gated (HCN) channel activity, the HCN channel inhibitors Cs+ and ZD7288 were used to suppress AH neuronal activity in TNBS‐colitis. Key Results In non‐inflamed preparations, veratridine halted propulsive motility (P < 0.001). The rate of propulsive motor activity was significantly reduced following addition of TRAM‐34 and tegaserod (P < 0.001). In TNBS‐inflamed preparations, in which motility was temporarily halted or obstructed at sites of ulceration, both Cs+ and ZD7288 normalized motility through the inflamed regions. Immunohistochemistry studies demonstrated that the proportion of AH neurons in the myenteric plexus was unchanged in ulcerated regions, but there was a 10% reduction in total number of neurons per ganglion. Conclusions and Inferences These findings support the concept that inflammation‐induced neuroplasticity in myenteric neurons, involving changes in ion channel activity that lead to enhanced AH neuronal excitability, can contribute to impaired propulsive colonic motility.  相似文献   

6.
Sodium channels play multiple roles in the formation of neural membrane properties in mesencephalic trigeminal (Mes V) neurons and in other neural systems. Mes V neurons exhibit conditional robust high‐frequency spike discharges. As previously reported, resurgent and persistent sodium currents (INaR and INaP, respectively) may carry small currents at subthreshold voltages that contribute to generation of spike firing. These currents play an important role in maintaining and allowing high‐frequency spike discharge during a burst. In the present study, we investigated the developmental changes in tetrodotoxin‐sensitive INaR and INaP underlying high‐frequency spike discharges in Mes V neurons. Whole‐cell patch‐clamp recordings showed that both current densities increased one and a half times from postnatal day (P) 0–6 neurons to P7–14 neurons. Although these neurons do not exhibit subthreshold oscillations or burst discharges with high‐frequency firing, INaR and INaP do exist in Mes V neurons at P0–6. When the spike frequency at rheobase was examined in firing Mes V neurons, the developmental change in firing frequency among P7–14 neurons was significant. INaR and INaP density at ?40 mV also increased significantly among P7–14 neurons. The change to an increase in excitability in the P7–14 group could result from this quantitative change in INaP. In neurons older than P7 that exhibit repetitive firing, quantitative increases in INaR and INaP density may be major factors that facilitate and promote high‐frequency firing as a function of age in Mes V neurons.  相似文献   

7.
The globus pallidus plays a significant role in motor control under both health and pathological states. Recent studies have revealed that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels occupy a critical position in globus pallidus pacemaking activity. Morphological studies have shown the expression of HCN channels in the globus pallidus. To investigate the in vivo effects of HCN channels in the globus pallidus, extracellular recordings and behavioral tests were performed in the present study. In normal rats, micro-pressure ejection of 0.05 mM ZD7288, the selective HCN channel blocker, decreased the frequency of spontaneous firing in 21 out of the 40 pallidal neurons. The average decrease was 50.4 ± 5.4%. Interestingly, in another 18 out of the 40 pallidal neurons, ZD7288 increased the firing rate by 137.1 ± 27.6%. Similar bidirectional modulation on the firing rate was observed by a higher concentration of ZD7288 (0.5 mM) as well as another HCN channel blocker, CsCl. Furthermore, activation of HCN channels by 8-Br-cAMP increased the firing rate by 63.0 ± 9.3% in 15 out of the 25 pallidal neurons and decreased the firing rate by 46.9 ± 9.4% in another 8 out of the 25 pallidal neurons. Further experiments revealed that modulation of glutamatergic but not GABAergic transmission may be involved in ZD7288-induced increase in firing rate. Consistent with electrophysiological results, further studies revealed that modulation of HCN channels also had bidirectional effects on behavior. Taken together, the present studies suggest that HCN channels may modulate the activity of pallidal neurons by different pathways in vivo.  相似文献   

8.
9.
Hyperpolarization-activated channels (Ih) are widely expressed in the nervous system and believed to play an important role in the regulation of membrane excitability and rhythmic activity. Recent evidence suggests that Ih may be involved in long-term potentiation (LTP) in the hippocampus; however, the results are controversial. To explore the possible causes of these differing results, the effects of Ih blockers on synaptic activity were evaluated in mouse hippocampal slices. ZD7288 (20 micro m), a selective Ih blocker, apparently prevented the induction of LTP, while Cs+ (1 mm), a commonly used Ih blocker, had no effect on LTP at hippocampal perforant path-dentate granule cell synapses. In addition, ZD7288 but not Cs+ abolished basal synaptic transmission. Results from voltage-clamp experiments showed that ZD7288 produced a very little inhibition on hyperpolarization-activated currents, indicating a weak expression of the Ih in granule neurons. Outside-out patch recordings revealed that ZD7288 inhibited glutamate receptor-mediated responses, while Cs+ had no effect on them. Meanwhile, ZD7288 reduced both alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate and N-methyl-d-aspartate receptor-mediated excitatory postsynaptic currents. The results suggest that ZD7288-induced reduction of synaptic transmission may result from its inhibition of the postsynaptic glutamate receptors on dentate granule neurons.  相似文献   

10.
The selective hyperpolarization-activated cyclic nucleotide-gated(HCN) channel blocker 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyrimidinium chloride(ZD7288) blocks the induction of long-term potentiation in the perforant path–CA3 region in rat hippocampus in vivo. To explore the mechanisms underlying the action of ZD7288, we recorded excitatory postsynaptic potentials in perforant path–CA3 synapses in male Sprague-Dawley rats. We measured glutamate content in the hippocampus and in cultured hippocampal neurons using high performance liquid chromatography, and determined intracellular Ca~(2+) concentration([Ca~(2+)]i) using Fura-2. ZD7288 inhibited the induction and maintenance of long-term potentiation, and these effects were mirrored by the nonspecific HCN channel blocker cesium. ZD7288 also decreased glutamate release in hippocampal tissue and in cultured hippocampal neurons. Furthermore, ZD7288 attenuated glutamate-induced rises in [Ca~(2+)]i in a concentration-dependent manner and reversed 8-Br-c AMP-mediated facilitation of these glutamate-induced [Ca~(2+)]i rises. Our results suggest that ZD7288 inhibits hippocampal synaptic plasticity both glutamate release and resultant [Ca~(2+)]i increases in rat hippocampal neurons.  相似文献   

11.
Neuronal subthreshold excitability and firing behaviour are markedly influenced by the activation and deactivation of the somato-dendritic hyperpolarization-activated cation current (Ih). Here, we evaluated possible contributions of Ih to hyperexcitability in an animal model of absence seizures (WAG/Rij rats). We investigated pyramidal neurons of the somatosensory neocortex, the site of generation of spike-wave discharges. Ih-mediated functions in neurons from WAG/Rij rats, Wistar rats (sharing the same genetic background with WAG/Rij, but less epilepsy-prone) and ACI rats (an inbred strain, virtually free of seizures) were compared. We complemented whole-cell recordings from layer 2-3 pyramidal neurons with immunohistochemistry, Western blot and RT-PCR analysis of the h-channel subunits HCN1-4. The fast component of Ih activation in WAG/Rij neurons was significantly reduced (50% reduction in the h-current density) and four times slower than in neurons from nonepileptic Wistar or ACI rats. The results showing decreases in currents corresponded to a 34% reduction in HCN1 protein in the WAG/Rij compared to the Wistar neocortex, but HCN1 mRNA showed stable expression. The other three Ih subunit mRNAs and proteins (HCN2-4) were not affected. The alterations in Ih magnitude and kinetics of gating in WAG/Rij neurons may contribute to augmented excitatory postsynaptic potentials, the increase in their temporal summation and the facilitation of burst firing of these neurons because each of these effects could be mimicked by the selective Ih antagonist ZD 7288. We suggest that the deficit in Ih-mediated functions may contribute to the development and onset of spontaneously occurring hyperexcitability in a rat model of absence seizures.  相似文献   

12.
A multicompartmental biophysical model of entorhinal cortex layer II stellate cells was developed to analyze the ionic basis of physiological properties, such as subthreshold membrane potential oscillations, action potential clustering, and the medium afterhyperpolarization. In particular, the simulation illustrates the interaction of the persistent sodium current (I(Nap)) and the hyperpolarization activated inward current (Ih) in the generation of subthreshold membrane potential oscillations. The potential role of Ih in contributing to the medium hyperpolarization (mAHP) and rebound spiking was studied. The role of Ih and the slow calcium-activated potassium current Ikappa(AHP) in action potential clustering was also studied. Representations of Ih and I(Nap) were developed with parameters based on voltage-clamp data from whole-cell patch and single channel recordings of stellate cells (Dickson et al., J Neurophysiol 83:2562-2579, 2000; Magistretti and Alonso, J Gen Physiol 114:491-509, 1999; Magistretti et al., J Physiol 521:629-636, 1999a; J Neurosci 19:7334-7341, 1999b). These currents interacted to generate robust subthreshold membrane potentials with amplitude and frequency corresponding to data observed in the whole cell patch recordings. The model was also able to account for effects of pharmacological manipulations, including blockade of Ih with ZD7288, partial blockade with cesium, and the influence of barium on oscillations. In a model with a wider range of currents, the transition from oscillations to single spiking, to spike clustering, and finally tonic firing could be replicated. In agreement with experiment, blockade of calcium channels in the model strongly reduced clustering. In the voltage interval during which no data are available, the model predicts that the slow component of Ih does not follow the fast component down to very short time constants. The model also predicts that the fast component of Ih is responsible for the involvement in the generation of subthreshold oscillations, and the slow component dominates in the generation of spike clusters.  相似文献   

13.
PURPOSE: The h current (Ih) is an inwardly mixed cationic conductance activated by membrane hyperpolarization and distributed predominantly in the apical dendrites of hippocampal pyramidal neurons. To verify a hypothesis that an anomalous hyperpolarization generates an abnormal excitation by way of Ih channels, we examined the effects of Ih blockers (CsCl and ZD7288) on electrically induced paroxysmal discharges (PADs). METHODS: Fifty-three adult male rabbits were used. We measured the PAD threshold elicited by stimulation to the apical dendritic layer of the hippocampal CA1 region before and after injecting 50 microl of each Ih blocker or saline extracellularly into the same region. RESULTS: In Ih blocker injection groups (n = 26), we obtained a significant increase in PAD threshold (1 mM CsCl: 163%, p < 0.01; 10 mM CsCl: 265%, p < 0.01; 100 mM CsCl: 199%, p < 0.01; 100 microM ZD7288: 192%, p < 0.05; 1 mM ZD7288: 246%, p < 0.05). Conversely, we did not obtain the increase in PAD threshold in a saline injection group (n = 10, 107%). The magnitude as well as duration of the effect had a tendency to depend on concentration of Ih blockers, although a saturated or declining tendency was observed with the 100 mM CsCl injection. CONCLUSIONS: We concluded that Ih channels might contribute to hippocampal epileptiform discharges in vivo. Our hypothesis for epileptogenesis demonstrated in the present experiment offers an idea to develop a new type of antiepileptic drug based on Ih blockers for the treatment of epileptic disorders refractory to current medications.  相似文献   

14.
Giant cells of the cochlear nucleus are thought to integrate multimodal sensory inputs and participate in monaural sound source localization. Our aim was to explore the significance of a hyperpolarization‐activated current in determining the activity of giant neurones in slices prepared from 10 to 14‐day‐old rats. When subjected to hyperpolarizing stimuli, giant cells produced a 4‐(N‐ethyl‐N‐phenylamino)‐1,2‐dimethyl‐6‐(methylamino) pyridinium chloride (ZD7288)‐sensitive inward current with a reversal potential and half‐activation voltage of –36 and –88 mV, respectively. Consequently, the current was identified as the hyperpolarization‐activated non‐specific cationic current (Ih). At the resting membrane potential, 3.5% of the maximum Ih conductance was available. Immunohistochemistry experiments suggested that hyperpolarization‐activated, cyclic nucleotide‐gated, cation non‐selective (HCN)1, HCN2, and HCN4 subunits contribute to the assembly of the functional channels. Inhibition of Ih hyperpolarized the membrane by 6 mV and impeded spontaneous firing. The frequencies of spontaneous inhibitory and excitatory postsynaptic currents reaching the giant cell bodies were reduced but no significant change was observed when evoked postsynaptic currents were recorded. Giant cells are affected by biphasic postsynaptic currents consisting of an excitatory and a subsequent inhibitory component. Inhibition of Ih reduced the frequency of these biphasic events by 65% and increased the decay time constants of the inhibitory component. We conclude that Ih adjusts the resting membrane potential, contributes to spontaneous action potential firing, and may participate in the dendritic integration of the synaptic inputs of the giant neurones. Because its amplitude was higher in young than in adult rats, Ih of the giant cells may be especially important during the postnatal maturation of the auditory system.  相似文献   

15.
The presence of a hyperpolarization-activated inward current (Ih) was investigated in mouse vestibular primary neurons using the whole-cell patch-clamp technique. In current-clamp configuration, injection of hyperpolarizing currents induced variations of membrane voltage with prominent time-dependent rectification increasing with current amplitudes. This effect was abolished by 2 mM Cs+ or 100 microM ZD7288. In voltage-clamp configuration, hyperpolarization pulses from -60 mV to -140 mV triggered a slow activating and non inactivating inward current that was sensitive to the two blockers, but insensitive to 5 mM Ba2+. Changing Na+ and K+ concentrations demonstrated that Ih current is carried by both these monovalent cations. This is the first demonstration of a Ih current in vestibular primary neurons.  相似文献   

16.
Rebound depolarization (RD) is a response to the offset from hyperpolarization of the neuronal membrane potential and is an important mechanism for the synaptic processing of inhibitory signals. In the present study, we characterized RD in neurons of the rat medial geniculate body (MGB), a nucleus of the auditory thalamus, using whole-cell patch-clamp and brain slices. RD was proportional in strength to the duration and magnitude of the hyperpolarization; was effectively blocked by Ni2+ or Mibefradil; and was depressed when the resting membrane potential was hyperpolarized by blocking hyperpolarization-activated cyclic nucleotide-gated (HCN) channels with ZD7288 or by activating G-protein-gated inwardly-rectifying K+ (GIRK) channels with baclofen. Our results demonstrated that RD in MGB neurons, which is carried by T-type Ca2+ channels, is critically regulated by HCN channels and likely by GIRK channels.  相似文献   

17.
The basal forebrain (BF) strongly regulates cortical activation, sleep homeostasis, and attention. Many BF neurons involved in these processes are GABAergic, including a subpopulation of projection neurons containing the calcium‐binding protein, parvalbumin (PV). However, technical difficulties in identification have prevented a precise mapping of the distribution of GABAergic and GABA/PV+ neurons in the mouse or a determination of their intrinsic membrane properties. Here we used mice expressing fluorescent proteins in GABAergic (GAD67‐GFP knock‐in mice) or PV+ neurons (PV‐Tomato mice) to study these neurons. Immunohistochemical staining for GABA in GAD67‐GFP mice confirmed that GFP selectively labeled BF GABAergic neurons. GFP+ neurons and fibers were distributed throughout the BF, with the highest density in the magnocellular preoptic area (MCPO). Immunohistochemistry for PV indicated that the majority of PV+ neurons in the BF were large (>20 μm) or medium‐sized (15–20 μm) GFP+ neurons. Most medium and large‐sized BF GFP+ neurons, including those retrogradely labeled from the neocortex, were fast‐firing and spontaneously active in vitro. They exhibited prominent hyperpolarization‐activated inward currents and subthreshold “spikelets,” suggestive of electrical coupling. PV+ neurons recorded in PV‐Tomato mice had similar properties but had significantly narrower action potentials and a higher maximal firing frequency. Another population of smaller GFP+ neurons had properties similar to striatal projection neurons. The fast firing and electrical coupling of BF GABA/PV+ neurons, together with their projections to cortical interneurons and the thalamic reticular nucleus, suggest a strong and synchronous control of the neocortical fast rhythms typical of wakefulness and REM sleep. J. Comp. Neurol., 521:1225–1250, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Purpose: Activation of ionotropic γ‐aminobutyric acid type A (GABAA) receptors induces in immature neocortical neurons a membrane depolarization that may contribute to the higher epilepsy susceptibility in newborns. To elucidate whether depolarizing GABAergic responses enhance or attenuate epileptiform activity in the immature neocortex, we investigated the effect of agonists, antagonists, and positive modulators of GABAA receptors on epileptiform activity. Methods: We performed in vitro field potential recordings on isolated whole neocortex preparations and whole cell recordings of identified pyramidal neurons in 400‐μm slices of immature (postnatal day 1–7) mice. Epileptiform activity was induced by low Mg2+ solutions with or without 50–100 μm 4‐aminopyridine. Results: Bath application of GABA (3–100 μm , in the presence of tiagabine) attenuated epileptiform activity. The GABA transporter isoform 1 (GAT‐1) inhibitor tiagabine (30 μm ) and the GAT‐2/3 specific inhibitor SNAP 5114 (40 μm ) reduced the frequency of epileptiform activity. The benzodiazepines midazolam (0.2 μm ) and zolpidem (0.5 μm ) as well as the barbiturate phenobarbital (30 μm ) slightly attenuated epileptiform activity. Continuous bath application of the GABAergic antagonist gabazine (SR‐95531, 2–3 μm ) or picrotoxin (15 μm ) induced epileptiform discharges. Discussion: These results demonstrate, that (1) the activation or positive modulation of GABAA receptors attenuates epileptiform activity, (2) GABAA antagonists mediate a disinhibition, and (3) GABA uptake contributes to the regulation of extracellular GABA in immature neocortex. We conclude from these findings that a constant inhibition via GABAA receptors is required to suppress epileptiform activity already in the immature neocortex.  相似文献   

19.
Accumulation of beta‐amyloid (Aβ) peptides in the human brain is a canonical pathological hallmark of Alzheimer's disease (AD). Recent work in Aβ‐overexpressing transgenic mice indicates that increased brain Aβ levels can be associated with aberrant epileptiform activity. In line with this, such mice can also exhibit altered intrinsic excitability (IE) of cortical and hippocampal neurons: these observations may relate to the increased prevalence of seizures in AD patients. In this study, we examined what changes in IE are produced in hippocampal CA1 pyramidal cells after 2–5 h treatment with an oligomeric preparation of synthetic human Aβ 1–42 peptide. Whole cell current clamp recordings were compared between Aβ‐(500 nM) and vehicle‐(DMSO 0.05%) treated hippocampal slices obtained from mice. The soluble Aβ treatment did not produce alterations in sub‐threshold intrinsic properties, including membrane potential, input resistance, and hyperpolarization activated “sag”. Similarly, no changes were noted in the firing profile evoked by 500 ms square current supra‐threshold stimuli. However, Aβ 500 nM treatment resulted in the hyperpolarization of the action potential (AP) threshold. In addition, treatment with Aβ at 500 nM depressed the after‐hyperpolarization that followed both a single AP or 50 Hz trains of a number of APs between 5 and 25. These data suggest that acute exposure to soluble Aβ oligomers affects IE properties of CA1 pyramidal neurons differently from outcomes seen in transgenic models of amyloidopathy. However, in both chronic and acute models, the IE changes are toward hyperexcitability, reinforcing the idea that amyloidopathy and increased incidence in seizures might be causally related in AD patients. © 2014 The Authors Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

20.
Introduction: A flat interface nerve electrode (FINE) has been shown to improve fascicular and subfascicular selectivity. A recently developed novel control algorithm for FINE was applied to motion control of the rabbit ankle. Methods: A 14‐contact FINE was placed on the rabbit sciatic nerve (n = 8), and ankle joint motion was controlled for sinusoidal trajectories and filtered random trajectories. To this end, a real‐time controller was implemented with a multiple‐channel current stimulus isolator. Results: The performance test results showed good tracking performance of rabbit ankle joint motion for filtered random trajectories and sinusoidal trajectories (0.5 Hz and 1.0 Hz ) with <10% average root‐mean‐square (RMS) tracking error, whereas the average range of ankle joint motion was between ?20.0 ± 9.3° and 18.1 ± 8.8°. Conclusions: The proposed control algorithm enables the use of a multiple‐contact nerve electrode for motion trajectory tracking control of musculoskeletal systems. Muscle Nerve 52 : 1088–1095, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号