首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhaled ultrafine particles show considerably stronger pulmonary inflammatory effects when tested at equal mass dose with their fine counterparts. However, the responsible mechanisms are not yet fully understood. We investigated the role of particle size and surface chemistry in initiating pro-inflammatory effects in vitro in A549 human lung epithelial cells on treatment with different model TiO(2) particles. Two samples of TiO(2), i.e. fine (40-300 nm) and ultrafine (20-80 nm) were tested in their native forms as well as upon surface methylation, as was confirmed by Fourier transformed infrared spectroscopy. Radical generation during cell treatment was determined by electron paramagnetic resonance with 5,5-dimethyl-1-pyrroline-N-oxide or 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl. Interleukin-8 mRNA expression/release was determined by RT-PCR and ELISA, whereas particle uptake was evaluated by transmission electron microscopy. TiO(2) particles were rapidly taken up by the cells, generally as membrane bound aggregates and large intracellular aggregates in vesicles, vacuoles and lamellar bodies. Aggregate size tended to be smaller for the ultrafine samples and was also smaller for methylated fine TiO(2) when compared to non-methylated fine TiO(2). No particles were observed inside nuclei or any other vital organelle. Both ultrafine TiO(2) samples but not their fine counterparts elicited significantly stronger oxidant generation and IL-8 release, despite their aggregation state and irrespective of their methylation. The present data indicate that ultrafine TiO(2), even as aggregates/agglomerates, can trigger inflammatory responses that appear to be driven by their large surface area. Furthermore, our results indicate that these effects result from oxidants generated during particle-cell interactions through a yet to be elucidated mechanism(s).  相似文献   

2.
Park EJ  Yi J  Chung KH  Ryu DY  Choi J  Park K 《Toxicology letters》2008,180(3):222-229
As the applications of industrial nanoparticles are being developed, the concerns on the environmental health are increasing. Cytotoxicities of titanium dioxide nanoparticles of different concentrations (5, 10, 20 and 40mug/ml) were evaluated in this study using a cultured human bronchial epithelial cell line, BEAS-2B. Exposure of the cultured cells to nanoparticles led to cell death, reactive oxygen species (ROS) increase, reduced glutathione (GSH) decrease, and the induction of oxidative stress-related genes such as heme oxygenase-1, thioredoxin reductase, glutathione-S-transferase, catalase, and a hypoxia inducible gene. The ROS increase by titanium dioxide nanoparticles triggered the activation of cytosolic caspase-3 and chromatin condensation, which means that titanium dioxide nanoparticles exert cytotoxicity by an apoptotic process. Furthermore, the expressions of inflammation-related genes such as interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8), TNF-a, and C-X-C motif ligand 2 (CXCL2) were also elevated. The induction of IL-8 by titanium dioxide nanoparticles was inhibited by the pre-treatment with SB203580 and PD98059, which means that the IL-8 was induced through p38 mitogen-acitvated protein kinase (MAPK) pathway and/or extracellular signal (ERK) pathway. Uptake of the nanoparticles into the cultured cells was observed and titanium dioxide nanoparticles seemed to penetrate into the cytoplasm and locate in the peri-region of the nucleus as aggregated particles, which may induce direct interactions between the particles and cellular molecules, to cause adverse biological responses.  相似文献   

3.
A number of studies have investigated the adverse toxic effects of titanium dioxide (TiO2) nanoparticles (NPs) or zinc oxide (ZnO) NPs. Information on the potential genotoxic effects of the interactions of TiO2 NPs and ZnO NPs in vivo is lacking. Therefore, this study was designed to investigate the cytogenotoxicity of TiO2 NPs or ZnO NPs alone or their mixtures using the bone marrow micronucleus assay, and mechanism of damage through the evaluation of oxidative stress parameters in the liver and kidney tissues of Swiss mice. Intraperitoneal administration of doses between 9.38 and 150.00 mg/kg of TiO2 NPs or ZnO NPs or TiO2 NPs + ZnO NPs was performed for 5 and 10 days, respectively. TiO2 NPs alone induced a significant (P < 0.05) increase in micronucleated (Mn) polychromatic erythrocytes (PCEs) at the applied doses compared with the negative controls, with a significant difference between 5 and 10 days for TiO2 NPs alone and TiO2 NPs + ZnO NPs. Concurrently, TiO2 NPs alone for 5 days and TiO2 NPs and TiO2 NPs + ZnO NPs for 10 days significantly (P < 0.05) decreased the percentage PCE: normochromatic erythrocyte (NCE) indicating cytotoxicity; with a significant difference between the two periods. Significant (P < 0.001) changes in the activities of superoxide dismutase (SOD) and catalase (CAT), and levels of reduced glutathione (GSH) and malondialdehyde (MDA) were observed in the liver and kidney of mice exposed to TiO2 NPs or ZnO NPs alone or their mixtures. These results suggest that TiO2 NPs alone was genotoxic; TiO2 NPs and TiO2 NPs + ZnO NPs were noticeably cytotoxic while ZnO NPs was not cytogenotoxic. The individual NPs or their mixtures induced oxidative stress.  相似文献   

4.
Due to their characteristic physical, chemical and optical properties, titanium dioxide and silver nanoparticles are attractive tools for use in a wide range of applications. The use of nanoparticles for biological applications is, however, dependent upon their biocompatibility with living cells. Because of the importance of inflammation as a modulator of human health, the safe and efficacious in vivo use of titanium dioxide and silver nanoparticles is inherently linked to a favorable interaction with immune system cells. However, both titanium dioxide and silver nanoparticles have demonstrated potential to exert immunomodulatory and immunotoxic effects. Titanium dioxide and silver nanoparticles are readily internalized by immune system cells, may accumulate in peripheral lymphoid organs, and can influence multiple manifestations of immune cell activity. Although the factors influencing the biocompatibility of titanium dioxide and silver nanoparticles with immune system cells have not been fully elucidated, nanoparticle core composition, size, concentration and the duration of cell exposure seem to be important. Because titanium dioxide and silver nanoparticles are widely utilized in pharmaceutical, commercial and industrial products, it is vital that their effects on human health and immune system function be more thoroughly evaluated.  相似文献   

5.
Despite that applications of titanium dioxide nanoparticles (TiO2-NPs) have been developed in the fields of paints, waste water treatment, sterilization, cosmetics, food additive, bio-medical ceramic and implant biomaterials and so on, relatively few studies have been conducted to determine the neurotoxicity of TiO2-NPs exposure. In the present study, we investigated the cytotoxicity of TiO2-NPs using PC12 cells and intended to clarify the molecular mechanisms underlying the biological effects of TiO2-NPs. PC12 cell is a type of cells, which have been used as an in vitro model of dopaminergic neurons for neurodegenerative diseases research. In addition, the roles of the particle size and crystal structure of TiO2-NPs to the neurotoxicity were also investigated. The anatase TiO2-NPs displayed a dose-dependent behavior on decreasing cell viability, increasing levels of lactate dehydrogenase (LDH), activating oxidative stress, inducing apoptosis, disturbing cell cycle, triggering JNK- and p53-mediated signaling pathway. In comparison to anatase TiO2-NPs, the rutile TiO2-NPs showed moderately toxic effect on neuron cells. The micron-sized TiO2 did not exhibit any toxic response. It is suggested from our results that reactive oxygen species (ROS) have a mediation effect to oxidative stress and up-regulation of JNK and P53 phosphorylation involved in mechanistic pathways of TiO2-NPs can induce apoptosis and cell cycle arrest in PC12 cells. In addition, both the size and crystal structure of TiO2-NPs exposure contributed to the neurotoxicity. Nanoparticles were more toxic than micrometer-sized particles and the anatase form were more toxic than the rutile.  相似文献   

6.
目的探讨不同化学组成的纳米颗粒对人胃癌BGC-823细胞的毒性作用及其机制。方法分别以纳米活性炭(ACNP)、纳米二氧化硅(SiO2)和纳米二氧化钛(TiO2)100,200,400,800和1600mg·L-1悬液作用BGC-823细胞24,48和72h,MTT法检测细胞增殖,比色法检测乳酸脱氢酶(LDH)漏出量。ACNP100mg·L-1,纳米SiO2200mg·L-1,纳米TiO2200mg·L-1作用BGC-823细胞24h,透射电镜观察细胞形态及超微结构的影响。纳米SiO2和纳米TiO2100,200,400mg·L-1作用细胞24h后,AnnexinⅤ-FITC/PI双染法检测细胞凋亡。ACNP、纳米SiO2和纳米TiO2100,200mg·L-1作用细胞48h后,用PI染色法检测细胞周期。结果 ACNP,纳米SiO2和纳米TiO2均能明显抑制BGC-823细胞的增殖,作用72h后的IC50分别为874.2,676.2和883.5mg·L-1。与正常对照组相比,纳米SiO2100~800mg·L-1组LDH漏出量均显著升高,并呈浓度依赖性(r=0.9751,P<0.01),而纳米TiO2100mg·L-1作用细胞24h,LDH漏出量与对照组相比没有显著差异,但随着作用浓度增加和作用时间延长,各组LDH漏出量明显高于对照组(P<0.05)。ACNP100mg·L-1作用24h后,细胞出现细胞质浓缩、细胞核固缩和裂解。纳米SiO2200mg·L-1和纳米TiO2200mg·L-1作用24h后均出现细胞坏死。纳米颗粒ACNP,SiO2和TiO2作用组均可见纳米颗粒进入细胞及线粒体损伤。纳米SiO2100mg·L-1和纳米TiO2100mg·L-1作用24h,细胞坏死率与正常对照组(4.59±1.20)%相比显著升高(P<0.01),分别为(39.40±1.72)%和(14.12±0.90)%(P<0.05);细胞凋亡率与对照组相比没有显著差异。ACNP,纳米SiO2和纳米TiO2100和200mg·L-1作用细胞48h后,S期细胞增多,G0/G1期细胞减少,细胞碎片增多;ACNP组亚二倍体细胞增多。结论 ACNP、纳米SiO2和纳米TiO2能够抑制BGC-823细胞的增殖。ACNP可诱导细胞凋亡。纳米SiO2和纳米TiO2能损伤细胞膜,造成以细胞坏死为主的毒性损伤。  相似文献   

7.
TiO(2) is considered to be toxicologically inert, at least under nonoverload conditions. To study if there are differences in lung effects of surface treated or untreated TiO(2) we investigated the inflammatory and genotoxic lung effects of two types of commercially available TiO(2) at low doses relevant to the working environment. Rats were exposed by instillation to a single dose of 0.15, 0.3, 0.6, and 1.2 mg of TiO(2) P25 (untreated, hydrophilic surface) or TiO(2) T805 (silanized, hydrophobic surface) particles, suspended in 0.2 ml of physiological saline supplemented with 0.25% lecithin. As control, animals were instilled with the vehicle medium only or with a single dose of 0.6 mg quartz DQ12. At days 3, 21, and 90 after instillation bronchoalveolar lavage was performed and inflammatory signs such as cells, protein, tumor necrosis factor-alpha, fibronectin, and surfactant phospholipids were determined. Additionally, 8 microm frozen sections of the left lobe of the lung were cut and stored at -80 degrees C. The sections were used for immunohistochemical detection of 8-oxoguanine (8-oxoGua) by a polyclonal antibody in the DNA of individual lung cells. In the quartz-exposed animals a strong progression in the lung inflammatory response was observed. Ninety days after exposure a significant increase in the amount of 8-oxoGua in DNA of lung cells was detected. In contrast, animals exposed to TiO(2) P25 or TiO(2) T805 showed no signs of inflammation. The amount of 8-oxoGua as a marker of DNA damage was at the level of control. The results indicate that both types of TiO(2) are inert at applicated doses.  相似文献   

8.
Numerous consumer products, such as cosmetics, contain nanoparticles (NPs) of titanium dioxide (TiO2) or zinc oxide (ZnO); however, this raises questions concerning the safety of such additives. Most of these products do not indicate whether the product includes NPs. In this study, we characterized metal oxide NPs according to size, shape, and composition as well as their aggregation/agglomeration characteristics. In order to comprehend quickly the characterization of metal oxide NPs, we employed single particle inductively coupled plasma (SP-ICPMS) to help quantify the size of metal oxide NPs; then, we use transmission electron microscopy (TEM) to corroborate the results. The crystal size and structure was measured by X-ray diffraction (XRD), there are two crystal phase of TiO2 NPs in sunscreen powder showed in XRD. However, SP-ICPMS proved highly effective in determining the size of NPs, the results of which remarkably good agreement with the TEM measurements. Pre-treatment included a conventional copper grid (requiring sample dilution) to evaluate the size, shape and composition of primary particles or plastic embedding (without the need for sample dilution) to evaluate the aggregate/aggregation of native NOAAs. The proposed method is an effective and fast approach to the characterization of oxide NPs in cosmetic sunscreen powder. These findings outline an alternative approach to the analysis of NPs in powder-form matrix.  相似文献   

9.
The aim of the present study was to evaluate immunomodulator ginsan, a polysaccharide extracted from Panax ginseng, on carbon tetrachloride (CCl4)-induced liver injury. BALB/c mice were injected i.p. with ginsan 24 h prior to CCl4 administration. Serum liver enzyme levels, histology, expression of antioxidant enzymes, and several cytokines/chemokines were subsequently evaluated. Ginsan treatment markedly suppressed the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and hepatic histological necrosis increased by CCl4 treatment. Ginsan inhibited CCl4 induced lipid peroxidation through the cytochrome P450 2E1 (CYP2E1) downregulation. The hepatoprotective effect of ginsan was attributed to induction of anti-oxidant protein contents, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX) as well as restoration of the hepatic glutathione (GSH) concentration. The marked increase of proinflammatory cytokines (IL-1β, IFN-γ) and chemokines (MCP-1, MIP-2β, KC) in CCl4 treated mice was additionally attenuated by ginsan, thereby preventing leukocyte infiltration and local inflammation. Our results suggest that ginsan effectively prevent liver injury, mainly through downregulation of oxidative stress and inflammatory response.  相似文献   

10.
《Nanotoxicology》2013,7(3):211-226
TiO2 is a widely used manufactured nanomaterial and the opportunity for human exposure makes it necessary to study its health implications. Using murine models for inflammation, size effects of inflammatory response in instillation and acute inhalation exposures of TiO2 nanoparticles with manufacturers’ average particles sizes of 5 and 21 nm were investigated. The properties of the primary nanoparticles, nanoparticle agglomerates aerosol and instillation solution for both sized nanoparticles were evaluated. Mice were acutely exposed in a whole-body exposure chamber or through nasal instillation and toxicity was assessed by enumeration of total and differential cells, determination of total protein, LDH activity and inflammatory cytokines in BAL fluid. Lungs were also evaluated for histopathological changes. Results show the larger TiO2 nanoparticles were found to be moderately, but significantly, more toxic. The nanoparticles had different agglomeration states which may be a factor as important as the surface and physical characteristics of the primary nanoparticles in determining toxicity.  相似文献   

11.
《Inhalation toxicology》2013,25(9):557-569
A 3-week inhalation study with nano- and fine-sized titanium dioxide (TiO2) with 3, 28, and 90 days recovery time was performed in female Wistar rats. Lung volume measurements, histology, electron microscopy, hematology, and bronchoalveolar lavage (BAL) fluid analyses were conducted and the relative deposition index (RDI) was calculated. Minimal inflammatory changes in the lungs, leucopenia, and a decrease in β-glucuronidase were observed. Particles were mainly deposited in alveolar macrophages and, to a lesser extent, in type-I pneumocytes, and this was quantified using the RDI. Rarely, particle-laden cells were observed inside capillaries. Therefore, minimal translocation of particles into the bloodstream has to be considered. Significant changes, e.g. in elicited effects or translocation behavior, between nano- and fine-particle-treated groups were not observed.  相似文献   

12.
Abstract

TiO2 nanoparticles used as vectors for the delivery of drugs have shown greater effectiveness. However, TiO2 nanoparticles can cause oxidative stress in liver and kidney, so we analyzed if a previous or simultaneous quercetin treatment could counteract this in rats. Five groups of male Wistar rats (200–250?g) were included: (1) healthy controls, (2) TiO2 group, (3) quercetin group, (4) preventive group: quercetin for 5 days prior to exposure of TiO2, and (5) therapeutic group: TiO2 (5?mg/kg, i.v.) plus quercetin single dose for 5 days (5?mg/kg/day, i.p.). Hepatic and renal function tests were made. Five animals from each group were sacrificed (0, 14 and 28 days), and liver and kidney tissue were obtained. Malondialdehyde (MDA), reduced/oxidized glutathione, and activity of glutathione peroxidase/reductase were measured, as well as the level of gene expression by q-PCR. There were no significant changes in serum ALT and AST activities. More damage was observed at 14 versus 28 days, because TiO2 was excreted in urine. Quercetin indeed showed a renal protective effect by increasing glutathione reductase and peroxidase levels and reducing MDA levels. On the other hand, TiO2 liver damage was less pronounced with quercetin as therapeutic treatment. TiO2 induces significantly the glutathione reductase expression and it can be down-regulated by quercetin. Biochemical tests in serum and urine showed a better effect of quercetin administered in the therapeutic group. Care should be taken with the dose and time of administration of quercetin, because this antioxidant could also have a pro-oxidant effect.  相似文献   

13.
Nanoparticles (NPs) occurring in the environment rapidly agglomerate and form particles of larger diameters. The extent to which this abates the effects of NPs has not been clarified. The motivation of this study was to examine how the agglomeration/aggregation state of silver (20 nm and 200 nm) and titanium dioxide (21 nm) nanoparticles may affect the kinetics of cellular binding/uptake and ability to induce cytotoxic responses in THP1, HepG2 and A549 cells. Cellular binding/uptake, metabolic activation and cell death were assessed by the SSC flow cytometry measurements, the MTT-test and the propidium iodide assay. The three types of particles were efficiently taken up by the cells, decreasing metabolic activation and increasing cell death in all the cell lines. The magnitude of the studied endpoints depended on the agglomeration/aggregation state of particles, their size, time-point and cell type. Among the three cell lines tested, A549 cells were the most sensitive to these particles in relation to cellular binding/uptake. HepG2 cells showed a tendency to be more sensitive in relation to metabolic activation. THP-1 cells were the most resistant to all three types of particles in relation to all endpoints tested. Our findings suggest that particle features such as size and agglomeration status as well as the type of cells may contribute to nanoparticles biological impact.  相似文献   

14.
Carbon black in ambient air is believed to be the cause of many diseases; however, its potential neural toxicity and the underlying mechanisms remain poorly understood. The present study is to evaluate the toxic effects of carbon black nanoparticles, Printex 90, on the neural cell line PC‐12. The study revealed that Printex 90 treatment significantly decreased cell viability, accompanied by an enormous increase in reactive oxygen species generation and a decrease in ATP. Additionally, NOX2 and NOX4, 4‐hydroxynonenal, endoplasmic reticulum (ER) stress marker proteins (IRE‐1α, ATF‐6, GRP78, PERK and the downstream target protein CHOP) and antioxidative enzymes (glutathione and superoxide dismutase) were evaluated. It showed that Printex 90 significantly upregulated 4‐hydroxynonenal, NOX2 and NOX4 expression, and the levels, or activity, of glutathione and superoxide dismutase, were markedly reduced. For the ER stress‐associated proteins, Printex 90 induced a significant increase of IRE‐1α, ATF‐6, GRP78, p‐PERK and CHOP expression. Collectively, these results demonstrate that NOX and ER stress are involved in Printex 90‐mediated neural damage. Therefore, decreased ER stress and NOX‐derived reactive oxygen species generation may provide compensatory protective effects and attenuate Printex 90‐induced neural injury.  相似文献   

15.
Obesity has been reported to induce oxidative stress, inflammation and apoptosis in the testis. The objective of this study was to determine the effects of the anti-obesity drug orlistat, on testicular oxidative stress, inflammation and apoptosis in high-fat diet (HFD)-fed rats. Twenty-four adult male Sprague Dawley rats weighing 250−300 g were randomized into four groups (n = 6/group), namely; normal control (NC), high-fat diet (HFD), HFD plus orlistat (10 mg/kg body weight/day administered concurrently for 12 weeks) (HFD + Opr) and HFD plus orlistat (10 mg/kg body weight/day administered 6 weeks after induction of obesity) (HFD + Ot) groups. Antioxidant enzymes activities were significantly decreased, while mRNA levels of pro-apoptotic markers (p53, Bax/BCl-2, caspase-9, caspase-8 and caspase-3) were significantly increased in the testis of HFD group relative to NC group. Furthermore, the mRNA levels of pro-inflammatory markers (nuclear factor kappa B, inducible nitric oxide synthase, tumor necrosis factor alpha and interleukin (IL)-1β increased significantly, while anti-inflammatory marker (IL-10) decreased significantly in the testis of the HFD group relative to NC group. However, in both models of orlistat intervention (protective and treatment models) up-regulated antioxidant enzymes, down-regulated inflammation and apoptosis were observed in the testis of HFD-fed rats. Orlistat ameliorated testicular dysfunction by attenuating oxidative stress, inflammation and apoptosis in HFD-fed rats, suggesting its potential protective and therapeutic effects in the testis compromised by obesity.  相似文献   

16.
Ulcerative colitis is associated with an alteration in gonadal hormones and affects testicular weight in rodents. However, association of ulcerative colitis with testicular damage is not clearly known. Ulcerative colitis was induced using 5% (w/v) dextran sulfate sodium in normal drinking water for 1, 7-day cycle in short-term study and 2.5% (w/v) dextran sulfate sodium in normal drinking water for 4 cycles with 2 weeks remission period between each cycle in long-term study. Ulcerative colitis was associated with a significant increase in inflammation, oxidative stress, DNA damage in testes and sperm DNA damage and a significant decrease in the epididymal sperm count and 3β-HSD expression. No difference was observed in the plasma testosterone levels between control and treatment groups. In the present study, ulcerative colitis was associated with testicular damage, and juvenile mice were found to be more sensitive than adult mice.  相似文献   

17.
Pulmonary toxicology studies in rats demonstrate that nanoparticles administered to the lung are more toxic than larger, fine-sized particles of similar chemistry at identical mass concentrations. The aim of this study was to evaluate the acute lung toxicity in rats of intratracheally instilled pigment-grade TiO2 particles (rutile-type particle size = approximately 300 nm) versus nanoscale TiO2 rods (anatase = 200 nm x 35 nm) or nanoscale TiO2 dots (anatase = approximately 10 nm) compared with a positive control particle type, quartz. Groups of rats were instilled with doses of 1 or 5 mg/kg of the various particle types in phosphate-buffered saline (PBS). Subsequently, the lungs of PBS- and particle-exposed rats were assessed using bronchoalveolar lavage fluid biomarkers, cell proliferation methods, and by the histopathological evaluation of lung tissue at 24 h, 1 week, 1 month, and 3 months postinstillation exposure. Exposures to nanoscale TiO2 rods or nanoscale TiO2 dots produced transient inflammatory and cell injury effects at 24 h postexposure (pe) and were not different from the pulmonary effects of larger sized TiO2 particle exposures. In contrast, pulmonary exposures to quartz particles in rats produced a dose-dependent lung inflammatory response characterized by neutrophils and foamy lipid-containing alveolar macrophage accumulation as well as evidence of early lung tissue thickening consistent with the development of pulmonary fibrosis. The results described herein provide the first example of nanoscale particle types which are not more cytotoxic or inflammogenic to the lung compared to larger sized particles of similar composition. Furthermore, these findings run counter to the postulation that surface area is a major factor associated with the pulmonary toxicity of nanoscale particle types.  相似文献   

18.
Either developmental lead or ethanol exposure can impair learning and memory via induction of oxidative stress, which results in neuronal damage. we examined the effect of combined exposure with lead and ethanol on spatial learning and memory in offspring and oxidative stress in hippocampus. Rats were exposed to lead (0.2% in drinking water) or ethanol (4 g/kg) either individually or in combination in 5th day gestation through weaning. On postnatal days (PD) 30, rats were trained with six trials per day for 6 consecutive days in the water maze. On day 37, a probe test was done. Also, oxidative stress markers in the hippocampus were also evaluated. Results demonstrated that lead + ethanol co-exposed rats exhibited higher escape latency during training trials and reduced time spent in target quadrant, higher escape location latency and average proximity in probe trial test. There was significant decrease in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities and increase of malondialdehyde (MDA) levels in hippocampus of animals co-exposed to lead and ethanol compared with their individual exposures. We suggest that maternal consumption of ethanol during lead exposure has pronounced detrimental effects on memory, which may be mediated by oxidative stress.  相似文献   

19.
《Inhalation toxicology》2013,25(2):83-99
Abstract

The inhalation toxicity of submarine contaminants is of concern to ensure the health of men and women aboard submarines during operational deployments. Due to a lack of adequate prior studies, potential general, neurobehavioral, reproductive and developmental toxicity was evaluated in male and female rats exposed to mixtures of three critical submarine atmospheric components: carbon monoxide (CO) and carbon dioxide (CO2; levels elevated above ambient), and oxygen (O2; levels decreased below ambient). In a 14-day, 23?h/day, whole-body inhalation study of exposure to clean air (0.4?ppm CO, 0.1% CO2 and 20.6% O2), low-dose, mid-dose and high-dose gas mixtures (high dose of 88.4?ppm CO, 2.5% CO2 and 15.0% O2), no adverse effects on survival, body weight or histopathology were observed. Reproductive, developmental and neurobehavioral performance were evaluated after a 28-day exposure in similar atmospheres. No adverse effects on estrus phase, mating, gestation or parturition were observed. No developmental or functional deficits were observed in either exposed parents or offspring related to motor activity, exploratory behavior or higher-level cognitive functions (learning and memory). Only minimal effects were discovered in parent-offspring emotionality tests. While statistically significant increases in hematological parameters were observed in the offspring of exposed parents compared to controls, these parameters remained within normal clinical ranges for blood cells and components and were not considered adverse. In summary, subacute exposures to elevated concentrations of the submarine atmosphere gases did not affect the ability of rats to reproduce and did not appear to have any significant adverse health effects.  相似文献   

20.
《Toxicology in vitro》2014,28(2):146-155
The present study compared non-crystalline silica particles of nano (50 nm)- and submicro (500 nm)-size (Si50 and Si500) for the potential to induce cytokine responses in bronchial epithelial lung cells (BEAS-2B). The cell cultures were exposed to equal mass and surface area concentrations of the two particles in different exposure media; LHC-9 and DMEM:F12. The state of agglomeration was different in the two media; with marked agglomeration in LHC-9 and nearly no agglomeration in DMEM:F12. On a mass basis, Si50 was more potent than Si500 in inducing cytokine responses in both exposure media. In contrast, upon exposure to similar surface area concentrations, Si500 was more potent than Si50 in DMEM:F12. This might be due to different agglomeration/sedimentation properties of Si50 versus Si500 in the two media. However, influence of differences in particle reactivity or particle uptake cannot be excluded. The data indicated no qualitative changes in the cytokine gene-expression patterns induced by the two particles, suggesting effects through similar mechanisms. These aspects might be of importance for interpretation of in vitro studies of nanomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号