首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
目的分析线粒体肌病患者线粒体DNA的突变情况,为疾病诊断提供依据。方法用常规HE、酶组化染色和电镜检查等病理形态学方法对3例线粒体肌病疑似患者进行诊断,并用聚合酶链反应-单链构象多态和DNA测序等方法对患者线粒体DNA中全部22个tRNA基因进行突变筛查。结果3例患者均被确诊为线粒体肌病,其中例1tRNA—VaI基因发生A1627G纯合突变,例2tRNA—Val基因发生A1627G/A杂合突变,例3tRNA—Trp基因发生T5554C突变、tRNA—Arg基因发生A10412C/A杂合突变。结论线粒体DNA中的tRNA基因突变是线粒体肌病的重要病因之一。  相似文献   

2.
Patients with mitochondrial disease usually manifest multisystemic dysfunction with a broad clinical spectrum. When the tests for common mitochondrial DNA (mtDNA) point mutations are negative and the mtDNA defects are still hypothesized, it is necessary to screen the entire mitochondrial genome for unknown mutations in order to confirm the diagnosis. We report an 8-year-old girl who had a long history of ragged-red fiber myopathy, short stature, and deafness, who ultimately developed renal failure and fatal cardiac dysfunction. Respiratory chain enzyme analysis on muscle biopsy revealed deficiency in complexes I, II/III, and IV. Whole mitochondrial genome sequencing analysis was performed. Three novel changes: homoplasmic 15458T > C and 15519T > C in cytochrome b, and a near homoplasmic 5783G > A in tRNA(cys), were found in the proband in various tissues. Her mother and asymptomatic sibling also carry the two homoplasmic mutations and the heteroplasmic 5783G > A mutation in blood, hair follicles, and buccal cells, at lower percentage. The 5783G > A mutation occurs at the T arm of tRNA(cys), resulting in the disruption of the stem structure, which may reduce the stability of the tRNA. 15458T > C changes an amino acid serine to proline at a conserved alpha-helix, which may force the helix to bend. These two mutations may have pathogenic significance. This case emphasizes the importance of pursuing more extensive mutational analysis of mtDNA in the absence of common mtDNA point mutations or large deletions, when there is a high suspicion of a mitochondrial disorder.  相似文献   

3.
Cystic fibrosis (CF) is the most common genetic disease among Caucasians. The CF gene, named cystic fibrosis transmembrane conductance regulator (CFTR), codifies a protein that acts as a channel through the epithelial membrane. The present work aimed (1) to detect sequence alterations in the nucleotide binding regions and at the membrane spanning domain of the CFTR gene and (2) to detect the following frequent mutations R347P, R347H, R334W, and Q359K (located in exon 7), DeltaF508 (located in exon 10), G542X, G551D, R553X, and S549N (located in exon 11), W1282X (located in exon 20), and N1303K (located in exon 21). Seventy-seven unrelated CF patients were analyzed, who were previously diagnosed and currently under treatment at the Pneumology Service of our hospital. Regions of interest were amplified by PCR using specific primers. Each sample was analyzed by a non-radioactive single-stranded conformational polymorphism (SSCP) analysis technique and restriction enzyme digestion. The DeltaF508 mutation was found in 48.7% of the alleles. Frequencies of G542X, R334W, R553X, and W1282X mutations in our population were 3.25, 1.3, 0.65, and 0.65%, respectively. No alleles were found to carry mutations G551D, R334W, R347P, R347H, Q359K, S549N, and N1303K, which were included in the screening protocol. This study allowed the characterization of 84 out of 154 CF mutant alleles (54.5%). The incidence of main CF mutations analyzed was similar to that of the south European population. Mutation data presented here will be useful for designing new DNA testing strategies for CF in South Brazil.  相似文献   

4.
The diagnosis of mitochondrial disorders is challenging because of the clinical variability and genetic heterogeneity. Conventional analysis of the mitochondrial genome often starts with a screening panel for common mitochondrial DNA (mtDNA) point mutations and large deletions (mtScreen). If negative, it has been traditionally followed by Sanger sequencing of the entire mitochondrial genome (mtWGS). The recently developed “Next‐Generation Sequencing” (NGS) technology offers a robust high‐throughput platform for comprehensive mtDNA analysis. Here, we summarize the results of the past 6 years of clinical practice using the mtScreen and mtWGS tests on 9,261 and 2,851 unrelated patients, respectively. A total of 344 patients (3.7%) had mutations identified by mtScreen and 99 (3.5%) had mtDNA mutations identified by mtWGS. The combinatorial analyses of mtDNA and POLG revealed a diagnostic yield of 6.7% in patients with suspected mitochondrial disorders but no recognizable syndromes. From the initial mtWGS–NGS cohort of 391 patients, 21 mutation‐positive cases (5.4%) have been identified. The mtWGS–NGS provides a one‐step approach to detect common and uncommon point mutations, as well as deletions. Additionally, NGS provides accurate, sensitive heteroplasmy measurement, and the ability to map deletion breakpoints. A new era of more efficient molecular diagnosis of mtDNA mutations has arrived.  相似文献   

5.
Mitochondrial diseases have been shown to result from mutations in mitochondrial genes located in either the nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). Mitochondrial OXPHOS complex I has 45 subunits encoded by 38 nuclear and 7 mitochondrial genes. Two male patients in a putative X-linked pedigree exhibiting a progressive neurodegenerative disorder and a severe muscle complex I enzyme defect were analyzed for mutations in the 38 nDNA and seven mtDNA encoded complex I subunits. The nDNA X-linked NDUFA1 gene (MWFE polypeptide) was discovered to harbor a novel missense mutation which changed a highly conserved glycine at position 32 to an arginine, shown to segregate with the disease. When this mutation was introduced into a NDUFA1 null hamster cell line, a substantial decrease in the complex I assembly and activity was observed. When the mtDNA of the patient was analyzed, potentially relevant missense mutations were observed in the complex I genes. Transmitochondrial cybrids containing the patient’s mtDNA resulted in a mild complex I deficiency. Interestingly enough, the nDNA encoded MWFE polypeptide has been shown to interact with various mtDNA encoded complex I subunits. Therefore, we hypothesize that the novel G32R mutation in NDUFA1 is causing complex I deficiency either by itself or in synergy with additional mtDNA variants.  相似文献   

6.
We report here on the clinical, genetic, and molecular characterization of three Han Chinese pedigrees with aminoglycoside-induced and nonsyndromic hearing loss. Clinical evaluation revealed the variable phenotype of hearing loss including severity, age-at-onset, audiometric configuration in these subjects. Penetrances of hearing loss in BJ107, BJ108, and BJ109 pedigrees are 35%, 63%, and 67%, respectively. Mutational analysis of the complete mitochondrial genomes in these pedigrees showed the identical homoplasmic A1555G mutation and distinct sets of mitochondrial DNA (mtDNA) variants belonging to haplogroups N, F, and M, respectively. Of these variants, the A14693G mutation in the tRNA(Glu), the T15908C mutation in the tRNA(Thr), and the T10454C mutation in the tRNA(Arg) are of special interest as these mutations occur at positions which are highly evolutionarily conserved nucleotides of corresponding tRNAs. These homoplasmic mtDNA mutations were absent among 156 unrelated Chinese controls. The A14693G and T10454C mutations occur at the highly conserved bases of the TpsiC-loop of tRNA(Glu) and tRNA(Arg), respectively. Furthermore, the T15908C mutation in the tRNA(Thr) disrupts a highly conserved A-U base-pairing at the D-stem of this tRNA. The alteration of structure of these tRNAs by these mtDNA mutations may lead to a failure in tRNA metabolism, thereby causing impairment of mitochondrial translation. Thus, mitochondrial dysfunctions, caused by the A1555G mutation, would be worsened by these mtDNA mutations. Therefore, these mtDNA mutations may have a potential modifier role in increasing the penetrance and expressivity of the deafness-associated 12S rRNA A1555G mutation in those Chinese pedigrees.  相似文献   

7.
Somatic mutations in mitochondrial DNA (mtDNA) have been identified in various tumors, including breast cancer. However, their clinicopathological impact on breast cancer still remains unclear. In this study, we re-sequenced the entire mtDNA from breast cancer samples together with paired non-tumorous breast tissues from 58 Taiwanese patients. We identified 19 somatic mutations in the mtDNA coding region of 16 breast cancers. Out of these mutations, 12 of the 19 mutations (63%) are missense or frame-shift mutations that have the potential to cause mitochondrial dysfunction. In combination with our previously study on the D-loop region of mtDNA, we found that 47% (27/58) of the breast cancers harbored somatic mtDNA mutations. Among a total of 40 somatic mutations, 53% (21/40) were located in the D-loop region of the mtDNA, 5% (2/40) were in the ribosomal RNA genes, 5% (2/40) were in the tRNA genes, and 38% (15/40) occurred in mRNA genes. The occurrence of these somatic mtDNA mutations is associated with an older onset age (≥ 50-year old, P = 0.039), a higher TNM stage (P = 0.027), and a higher histological grade (P = 0.012). Multiple logistic regression analysis revealed that an older onset age (P = 0.029) and a higher histological grade (P = 0.006) are significantly correlated with patients having somatic mutations in the mtDNA in their breast cancer sample. In conclusion, our results suggest that somatic mtDNA mutations may play a critical role in the progression of breast cancer.  相似文献   

8.
Cystic fibrosis (CF) is caused by mutations in the gene for the cystic fibrosis transmembrane conductance regulator (CFTR) that codes for a cAMP-regulated chloride channel. The R347P is a missensemutation located within the first membrane spanning domain (MSD1,) of the CFTR protein. This mutation occurs with an overall worldwide frequency of about 0.2%. The patients, originally described with this mutation were compound heterozygotes with the ΔF508 mutation and had a very mild course of CF, suggesting that R347P, similar to other missense mutations affecting the MSDl domain, causes a mild phenotype. We report here a group of 19 CF patients with the R347P mutation of German, Bulgarian, Czech, and Slovak origin, including two homozygotes. Most patients presented with early disease onset, pancreas insufficiency (PI), and early pulmonary involvement, suggesting that this mutation can lead to a severe course of CF. Most R347P alleles in the group studied share a common polymorphic haplotype. In addition, these analyses gave evidence for recurrence of the mutation in two CF patients of German and Czech origin. © 1995 Wiley-Liss, Inc.  相似文献   

9.
Type 2 (non‐insulin dependent) diabetes mellitus may be inherited along the maternal line and a variety of mitochondrial DNA (mtDNA) variants have been implicated in the pathogenesis. We have previously reported mutations in five regions of the mitochondrial genome which encompass 11 of the 22 tRNA genes. Now we employ the technique of single stranded conformational polymorphism (SSCP) analysis to investigate a further 6 regions of the mitochondrial genome, covering the remaining 11 tRNA genes in 40 patients with Type 2 diabetes and 30 racially‐matched normal controls. A variety of homoplasmic mutations were detected in patients with diabetes and these will be of value in further population association studies. Hum Mutat 13:412–413, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

10.
Over 170 known mutations of the mitochondrial genome are responsible for disease. Due to the unique features of mitochondrial genetics, such patients are clinically diverse and difficult to diagnose. As pathogenic mitochondrial DNA (mtDNA) mutations are mostly heteroplasmic, denaturing high-performance liquid chromatography (DHPLC) could be used to detect these heteroplasmic species and therefore act as a rapid screening test for mtDNA mutations. The entire mitochondrial genome was amplified by PCR in 40 overlapping regions. In addition, known mtDNA mutants were constructed for each of these regions using a PCR-based site-directed mutagenesis approach. These mutants were used as positive controls and showed a detection limit of 3-10% heteroplasmy by DHPLC (depending on the specific mutation) compared to 40% for conventional sequencing. To further validate the screening test, mtDNA from 17 patients with seven different pathogenic mutations was used to compare mutation detection by DHPLC and conventional sequencing. DHPLC had a sensitivity of 88% compared to 82% for sequencing. This increased to 100% sensitivity for DHPLC when excluding the m.8993T>G mutation. DHPLC analysis is therefore a sensitive, rapid and cost-effective method to screen for mutations in the mitochondrial genome. The role of pyrosequencing in the quantitation of mutant load for known mtDNA mutations was highlighted using the m.3243A>G mutation as an illustrative example. Pyrosequencing analysis was able to discriminate samples containing as little as 5% heteroplasmy and proved to be an accurate and reproducible method for estimation of mutant load.  相似文献   

11.
Prevalence of cystic fibrosis mutations in the East German population.   总被引:1,自引:0,他引:1  
A representative multicenter cystic fibrosis (CF) mutation analysis on about half of all known cystic fibrosis patients of the 5 East German L?nder is reported. Analyses for 17 mutations, among them Delta F508, R553X, G542X, S549R,N,I, G551D, S1255X, R347P,H, and Y122X, were performed. As expected, the delta F508 mutation in exon 10 of the CFTR gene is the major gene alteration causing CF in our patients. However, in comparison to studies from Western Germany, a significantly lower percentage of just over 60% is found in our patients, resembling data obtained from slavonic populations. The severe phenotype of cystic fibrosis is most frequently associated with homozygosity for the delta F508 mutation. No particular allele association could be found with the intermediate and mild phenotypes of this disease. The next most frequent of the investigated mutations is R553X (13.3% of non-delta F chromosomes) followed by R347P (9.2%) and G542X (4.4%).  相似文献   

12.
Mitochondrial DNA (mtDNA) mutations have been implicated in non-syndromic hearing loss either as primary or as predisposing factors. As only a part of the mitochondrial genome is usually explored in deafness, its prevalence is probably under-estimated. Among 1350 families with non-syndromic sensorineural hearing loss collected through a French collaborative network, we selected 29 large families with a clear maternal lineage and screened them for known mtDNA mutations in 12S rRNA, tRNASer(UCN) and tRNALeu(UUR) genes. When no mutation could be identified, a whole mitochondrial genome screening was performed, using a microarray resequencing chip: the MitoChip version 2.0 developed by Affymetrix Inc. Known mtDNA mutations was found in nine of the 29 families, which are described in the article: five with A1555G, two with the T7511C, one with 7472insC and one with A3243G mutation. In the remaining 20 families, the resequencing Mitochip detected 258 mitochondrial homoplasmic variants and 107 potentially heteroplasmic variants. Controls were made by direct sequencing on selected fragments and showed a high sensibility of the MitoChip but a low specificity, especially for heteroplasmic variations. An original analysis on the basis of species conservation, frequency and phylogenetic investigation was performed to select the more probably pathogenic variants. The entire genome analysis allowed us to identify five additional families with a putatively pathogenic mitochondrial variant: T669C, C1537T, G8078A, G12236A and G15077A. These results indicate that the new MitoChip platform is a rapid and valuable tool for identification of new mtDNA mutations in deafness.  相似文献   

13.
Defects of the mitochondrial respiratory chain are associated with a diverse spectrum of clinical phenotypes, and may be caused by mutations in either the nuclear or the mitochondrial genome (mitochondrial DNA (mtDNA)). Isolated complex I deficiency is the most common enzyme defect in mitochondrial disorders, particularly in children in whom family history is often consistent with sporadic or autosomal recessive inheritance, implicating a nuclear genetic cause. In contrast, although a number of recurrent, pathogenic mtDNA mutations have been described, historically, these have been perceived as rare causes of paediatric complex I deficiency. We reviewed the clinical and genetic findings in a large cohort of 109 paediatric patients with isolated complex I deficiency from 101 families. Pathogenic mtDNA mutations were found in 29 of 101 probands (29%), 21 in MTND subunit genes and 8 in mtDNA tRNA genes. Nuclear gene defects were inferred in 38 of 101 (38%) probands based on cell hybrid studies, mtDNA sequencing or mutation analysis (nuclear gene mutations were identified in 22 probands). Leigh or Leigh-like disease was the most common clinical presentation in both mtDNA and nuclear genetic defects. The median age at onset was higher in mtDNA patients (12 months) than in patients with a nuclear gene defect (3 months). However, considerable overlap existed, with onset varying from 0 to >60 months in both groups. Our findings confirm that pathogenic mtDNA mutations are a significant cause of complex I deficiency in children. In the absence of parental consanguinity, we recommend whole mitochondrial genome sequencing as a key approach to elucidate the underlying molecular genetic abnormality.  相似文献   

14.
It has been suggested that mutations in mitochondrial DNA (mtDNA) can produce an increase in reactive oxygen species (ROS) and that this can play a major role in the pathogenic mechanisms of mitochondrial encephalomyopathies. Many studies exist using electron transport chain (ETC) inhibitors, however there are only a few studies that examine ROS production associated with mutations in the mtDNA. To investigate this issue, we have studied ROS production, antioxidant defences and oxidative damage to lipids and proteins in transmitochondrial cybrids carrying different mtDNA mutations. Here, we report that two different mutant cell lines carrying mutations in their mitochondrial tRNA genes (A3243G in tRNA LeuUUR and A8344G in tRNA Lys) showed an increased ROS production with a parallel increase in the antioxidant enzyme activities, which may protect cells from oxidative damage in our experimental conditions (no overt oxidative damage to lipids and proteins has been observed). In contrast, cytochrome c oxidase (COX) mutant cybrids (carrying the stop-codon mutation G6930A in the COXI gene) showed neither an increase in ROS production nor elevation of antioxidant enzyme activities or oxidative damage. These results suggest that the specific location of mutations in mtDNA has a strong influence on the phenotype of the antioxidant response. Therefore, this issue should be carefully considered when antioxidant therapies are investigated in patients with mitochondrial disorders.  相似文献   

15.
The delta 508 mutation accounts for about 53% of the molecular defects causing cystic fibrosis (CF) in Italy. The numerous additional mutations detected so far are all relatively rare, and about 30% of CF chromosomes carries unknown mutations in our patients. In order to identify the non-delta F508 mutations causing CF in our population, we performed GC-clamped denaturing gradient gel electrophoresis (DGGE) on 9 exons of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in a sample of 86 Italian CF patients carrying unknown mutations on at least one chromosome. Direct sequencing of 17 samples showing an altered electrophoretic mobility allowed the identification of four new mutations (541delC, R347H, R352Q, and E585X), five mutations already known (G85E, I148T, G178R, 1078delT, and R347P), and one rare variant (1898 + 3A-->G). The strategy based on GC-clamped DGGE represents an efficient and rapid approach for mutation detection for those genetic diseases, such as CF, in which a large number of rare molecular defects has been described.  相似文献   

16.
We have analyzed 45 unrelated Northwestern Mexican patients with Cystic Fibrosis for 10 known CF mutations (DF508, G542X, G551D. R553X, W1282X, NI303K, R334W, R347H, S549R, and R1162X). Screening was performed on exons 7, 10, 11, 19, 20 and 21 using standard methods such as polymerase chain reactions, reverse dot blot hybridization (non-radioactive), and restriction enzyme digestion. The analysis for these ten mutations permitted the identification of only two mutations in 37.7% of CF chromosomes in this sample. The major mutation, delta F508, accounts for 34.4% of CF chromosomes. Of the 45 CF patients 9 (20.0%) were homozygous delta F508 deletion, 11 (24.4%) were heterozygous for the delta F508 mutation and an unknown mutation. One additional mutation G542X was also found in 3 chromosomes in our population (3.3%). Two patients were documented to be a compound heterozygote for DF508/G542X, and other one heterozygous for G542X and an unknown mutation. Therefore 62.2% of chromosomes remain uncharacterized.  相似文献   

17.
18.
Defects in mitochondrial DNA (mtDNA) maintenance comprise an expanding repertoire of polymorphic diseases caused, in part, by mutations in the genes encoding the p140 mtDNA polymerase (POLG), its p55 accessory subunit (POLG2) or the mtDNA helicase (C10orf2). In an exploration of nuclear genes for mtDNA maintenance linked to mitochondrial disease, eight heterozygous mutations (six novel) in POLG2 were identified in one control and eight patients with POLG-related mitochondrial disease that lacked POLG mutations. Of these eight mutations, we biochemically characterized seven variants [c.307G>A (G103S); c.457C>G (L153V); c.614C>G (P205R); c.1105A>G (R369G); c.1158T>G (D386E); c.1268C>A (S423Y); c.1423_1424delTT (L475DfsX2)] that were previously uncharacterized along with the wild-type protein and the G451E pathogenic variant. These seven mutations encode amino acid substitutions that map throughout the protein, including the p55 dimer interface and the C-terminal domain that interacts with the catalytic subunit. Recombinant proteins harboring these alterations were assessed for stimulation of processive DNA synthesis, binding to the p140 catalytic subunit, binding to dsDNA and self-dimerization. Whereas the G103S, L153V, D386E and S423Y proteins displayed wild-type behavior, the P205R and R369G p55 variants had reduced stimulation of processivity and decreased affinity for the catalytic subunit. Additionally, the L475DfsX2 variant, which possesses a C-terminal truncation, was unable to bind the p140 catalytic subunit, unable to bind dsDNA and formed aberrant oligomeric complexes. Our biochemical analysis helps explain the pathogenesis of POLG2 mutations in mitochondrial disease and emphasizes the need to quantitatively characterize the biochemical consequences of newly discovered mutations before classifying them as pathogenic.  相似文献   

19.
Mitochondrial respiratory chain disease represents one of the most common inborn errors of metabolism and is genetically heterogeneous, with biochemical defects arising from mutations in the mitochondrial genome (mtDNA) or the nuclear genome. As such, inheritance of mitochondrial respiratory chain disease can either follow dominant or recessive autosomal (Mendelian) inheritance patterns, the strictly matrilineal inheritance observed with mtDNA point mutations or X-linked inheritance. Parental consanguinity in respiratory chain disease is often assumed to infer an autosomal recessive inheritance pattern, and the analysis of mtDNA may be overlooked in the pursuit of a presumed nuclear genetic defect. We report the histochemical, biochemical and molecular genetic investigations of two patients with suspected mitochondrial disease who, despite being born to consanguineous first-cousin parents, were found to harbour well-characterised pathogenic mtDNA mutations, both of which were maternally transmitted. Our findings highlight that any diagnostic algorithm for the investigation of mitochondrial respiratory chain disease must include a full and complete analysis of the entire coding sequence of the mitochondrial genome in a clinically relevant tissue. An autosomal basis for respiratory chain disease should not be assumed in consanguineous families and that 'maternally inherited consanguineous' mitochondrial disease may thus be going undiagnosed.  相似文献   

20.
Mitochondrial DNA (mtDNA) has been proposed to be involved in carcinogenesis because of its high susceptibility to oxidative DNA damage and limited repair mechanisms. For investigation of the potential role of somatic mtDNA mutations in the tumorigenesis of oral cancer, we screened the occurrence of mtDNA mutations by the temporal temperature gradient gel electrophoresis method. We amplified the entire mitochondrial genome by use of 32 pairs of overlapping primers, and to identify the mutations, we sequenced DNA fragments showing different banding patterns between normal and tumor mtDNA. Fourteen of eighteen (77.8%) oral carcinomas displayed somatic mtDNA mutations, with a total of 26 mutations. Among them, six were in the mRNA coding region. Three were missense mutations (C14F, H186R, T173P) in NADH dehydrogenase subunit 2, and one was a frameshift mutation, 9485delC, in cytochrome c oxidase subunit III. Eight (44%) tumors had insertion or deletion mutations in the nucleotide position 303-309 poly C region of the D-loop. Multiple large deletions were also observed. Our results demonstrate that somatic mtDNA mutations occur in oral cancer. Some missense and frameshift mutations may play an important role in the tumorigenesis of this carcinoma. More extensive biochemical and molecular studies will be necessary for determining the pathologic effect of these somatic mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号