首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Botulinum neurotoxins (BoNTs) are among the most potent biological toxins for humans. Of the seven known serotypes (A-G) of BoNT, serotypes A, B and E cause most of the foodborne intoxications in humans. BoNTs in nature are associated with non-toxic accessory proteins known as neurotoxin-associated proteins (NAPs), forming large complexes that have been shown to play important roles in oral toxicity. Using mouse intraperitoneal and oral models of botulism, we determined the dose response to both BoNT/B holotoxin and complex toxins, and compared the toxicities of BoNT/B and BoNT/A complexes. Although serotype A and B complexes have similar NAP composition, BoNT/B formed larger-sized complexes, and was approximately 90 times more lethal in mouse oral intoxications than BoNT/A complexes. When normalized by mean lethal dose, mice orally treated with high doses of BoNT/B complex showed a delayed time-to-death when compared with mice treated with BoNT/A complex. Furthermore, we determined the effect of various food matrices on oral toxicity of BoNT/A and BoNT/B complexes. BoNT/B complexes showed lower oral bioavailability in liquid egg matrices when compared to BoNT/A complexes. In summary, our studies revealed several factors that can either enhance or reduce the toxicity and oral bioavailability of BoNTs. Dissecting the complexities of the different BoNT serotypes and their roles in foodborne botulism will lead to a better understanding of toxin biology and aid future food risk assessments.  相似文献   

2.
Botulinum neurotoxins (BoNT) are some of nature’s most potent toxins. Due to potential food contamination, and bioterrorism concerns, the development of detection reagents, therapeutics and countermeasures are of urgent interest. Recently, we have developed a sensitive electrochemiluminescent (ECL) immunoassay for BoNT/B, using monoclonal antibodies (mAbs) MCS6-27 and anti-BoNT/B rabbit polyclonal antibodies as the capture and detector. The ECL assay detected as little as 1 pg/mL BoNT/B in the buffer matrix, surpassing the detection sensitivities of the gold standard mouse bioassays. The ECL assay also allowed detection of BoNT/B in sera matrices of up to 100% sera with negligible matrix effects. This highly-sensitive assay allowed the determination of the biological half-lives of BoNT/B holotoxin in vivo. We further tested the toxin neutralization potential of our monoclonal antibodies using the mouse systemic and oral intoxication models. A combination of mAbs protected mice in both pre- and post-exposure models to lethal doses of BoNT/B. MAbs were capable of increasing survival of animals when administered even 10 h post-intoxication in an oral model, suggesting a likely time for BoNT/B complexes to reach the blood stream. More sensitive detection assays and treatments against BoNT intoxication will greatly enhance efforts to combat botulism.  相似文献   

3.
Clostridium botulinum produces botulinum neurotoxin (BoNT), which is the most toxic known protein and the causative agent of human botulism. BoNTs have similar structures and functions, comprising three functional domains: catalytic domain (L), translocation domain (HN), and receptor-binding domain (Hc). In the present study, BoNT/E was selected as a model toxin to further explore the immunological significance of each domain. The EL-HN fragment (L and HN domains of BoNT/E) retained the enzymatic activity without in vivo neurotoxicity. Extensive investigations showed EL-HN functional fragment had the highest protective efficacy and contained some functional neutralizing epitopes. Further experiments demonstrated the EL-HN provided a superior protective effect compared with the EHc or EHc and EL-HN combination. Thus, the EL-HN played an important role in immune protection against BoNT/E and could provide an excellent platform for the design of botulinum vaccines and neutralizing antibodies. The EL-HN has the potential to replace EHc or toxoid as the optimal immunogen for the botulinum vaccine.  相似文献   

4.
Botulinum neurotoxins (BoNT) are some of the most toxic proteins known and can induce respiratory failure requiring long-term intensive care. Treatment of botulism includes the administration of antitoxins. Monoclonal antibodies (mAbs) hold considerable promise as BoNT therapeutics and prophylactics, due to their potency and safety. A three-mAb combination has been developed that specifically neutralizes BoNT serotype A (BoNT/A), and a separate three mAb combination has been developed that specifically neutralizes BoNT serotype B (BoNT/B). A six mAb cocktail, designated G03-52-01, has been developed that combines the anti-BoNT/A and anti-BoNT/B mAbs. The pharmacokinetics and neutralizing antibody concentration (NAC) of G03-52-01 has been determined in guinea pigs, and these parameters were correlated with protection against an inhalation challenge of BoNT/A1 or BoNT/B1. Previously, it was shown that each antibody demonstrated a dose-dependent mAb serum concentration and reached maximum circulating concentrations within 48 h after intramuscular (IM) or intraperitoneal (IP) injection and that a single IM injection of G03-52-01 administered 48 h pre-exposure protected guinea pigs against an inhalation challenge of up to 93 LD50s of BoNT/A1 and 116 LD50s of BoNT/B1. The data presented here advance our understanding of the relationship of the neutralizing NAC to the measured circulating antibody concentration and provide additional support that a single IM or intravenous (IV) administration of G03-52-01 will provide pre-exposure prophylaxis against botulism from an aerosol exposure of BoNT/A and BoNT/B.  相似文献   

5.
Botulinum neurotoxins (BoNTs) function by delivering a protease to neuronal cells that cleave SNARE proteins and inactivate neurotransmitter exocytosis. Small (14 kDa) binding domains specific for the protease of BoNT serotypes A or B were selected from libraries of heavy chain only antibody domains (VHHs or nanobodies) cloned from immunized alpacas. Several VHHs bind the BoNT proteases with high affinity (KD near 1 nM) and include potent inhibitors of BoNT/A protease activity (Ki near 1 nM). The VHHs retain their binding specificity and inhibitory functions when expressed within mammalian neuronal cells as intrabodies. A VHH inhibitor of BoNT/A protease was able to protect neuronal cell SNAP25 protein from cleavage following intoxication with BoNT/A holotoxin. These results demonstrate that VHH domains have potential as components of therapeutic agents for reversal of botulism intoxication.  相似文献   

6.
Existing antibodies (Abs) used to treat botulism cannot enter the cytosol of neurons and bind to botulinum neurotoxin (BoNT) at its site of action, and thus cannot reverse paralysis. However, Abs targeting the proteolytic domain of the toxin could inhibit the proteolytic activity of the toxin intracellularly and potentially reverse intoxication, if they could be delivered intracellularly. As such, antibodies that neutralize toxin activity could serve as potent inhibitory cargos for therapeutic antitoxins against botulism. BoNT serotype B (BoNT/B) contains a zinc endopeptidase light chain (LC) domain that cleaves synaoptobrevin-2, a SNARE protein responsible for vesicle fusion and acetylcholine vesicle release. To generate monoclonal Abs (mAbs) that could reverse paralysis, we targeted the protease domain for Ab generation. Single-chain variable fragment (scFv) libraries from immunized mice or humans were displayed on yeast, and 19 unique BoNT/B LC-specific mAbs isolated by fluorescence-activated cell sorting (FACS). The equilibrium dissociation constants (KD) of these mAbs for BoNT/B LC ranged from 0.24 nM to 14.3 nM (mean KD 3.27 nM). Eleven mAbs inhibited BoNT/B LC proteolytic activity. The fine epitopes of selected mAbs were identified by alanine-scanning mutagenesis, revealing that inhibitory mAbs bound near the active site, substrate-binding site or the extended substrate-binding site. The results provide mAbs that could prove useful for intracellular reversal of paralysis and identify epitopes that could be targeted by small molecules inhibitors.  相似文献   

7.
Human botulism can be caused by botulinum neurotoxin (BoNT) serotypes A to G. Here, we present an antibody-based antitoxin composed of four human monoclonal antibodies (mAbs) against BoNT/C, BoNT/D, and their mosaic toxins. This work built on our success in generating protective mAbs to BoNT /A, B and E serotypes. We generated mAbs from human immune single-chain Fv (scFv) yeast-display libraries and isolated scFvs with high affinity for BoNT/C, BoNT/CD, BoNT/DC and BoNT/D serotypes. We identified four mAbs that bound non-overlapping epitopes on multiple serotypes and mosaic BoNTs. Three of the mAbs underwent molecular evolution to increase affinity. A four-mAb combination provided high-affinity binding and BoNT neutralization of both serotypes and their mosaic toxins. The mAbs have potential utility as therapeutics and as diagnostics capable of recognizing and neutralizing BoNT/C and BoNT/D serotypes and their mosaic toxins. A derivative of the four-antibody combination (NTM-1634) completed a Phase 1 clinical trial (Snow et al., Antimicrobial Agents and Chemotherapy, 2019) with no drug-related serious adverse events.  相似文献   

8.
Botulinum neurotoxins (BoNT) are extremely potent and can induce respiratory failure, requiring long-term intensive care to prevent death. Recombinant monoclonal antibodies (mAbs) hold considerable promise as BoNT therapeutics and prophylactics. In contrast, equine antitoxin cannot be used prophylactically and has a short half-life. Two three-mAb combinations are in development that specifically neutralize BoNT serotype A (BoNT/A) and B (BoNT/B). The three-mAb combinations addressing a single serotype provided pre-exposure prophylaxis in the guinea pig inhalation model. A lyophilized co-formulation of six mAbs, designated G03-52-01, that addresses both A and B serotypes is in development. Here, we investigated the efficacy of G03-52-01 to protect guinea pigs against an aerosol exposure challenge of BoNT/A1 or BoNT/B1. Previously, it was found that each antibody demonstrated a dose-dependent exposure and reached maximum circulating concentrations within 48 h after intramuscular (IM) or intravenous (IV) injection. Here we show that G03-52-01, in a single IM injection of G03-52-01 administered 48 h pre-exposure, protected guinea pigs against an aerosol challenge of up to 238 LD50s of BoNT/A1 and 191 LD50s of BoNT/B1. These data suggest that a single IM administration of G03-52-01 provides pre-exposure prophylaxis against botulism from an aerosol exposure of BoNT/A1 or BoNT/B1.  相似文献   

9.
Cure of experimental botulism and antibotulismic effect of toosendanin   总被引:13,自引:1,他引:12  
INTRODUCTION The botulinum neurotoxins (BoNTs) synthesizedby strains of the anaerobic bacteria, Clostridiumbotulinum, are the most lethal biotoxins known tomankind. BoNTs comprise a family of seven immuno-logically distinct neurotoxic proteins (BoNT/A-/G).These toxins act on nerve terminals to block neurotrans-mitter release[1]. BoNT poisoning results in inhibitionof synaptic transmission at the skeletal neuromuscularjunction and subsequent respiratory failure[2]. Althoughthe i…  相似文献   

10.
Specific treatment is not available for human botulism. Current remedial mainstay is the passive administration of polyclonal antibody to botulinum neurotoxin (BoNT) derived from heterologous species (immunized animal or mouse hybridoma) together with supportive and symptomatic management. The antibody works extracellularly, probably by blocking the binding of receptor binding (R) domain to the neuronal receptors; thus inhibiting cellular entry of the holo-BoNT. The antibody cannot neutralize the intracellular toxin. Moreover, a conventional antibody with relatively large molecular size (150 kDa) is not accessible to the enzymatic groove and, thus, cannot directly inhibit the BoNT zinc metalloprotease activity. Recently, a 15-20 kDa single domain antibody (V(H)H) that binds specifically to light chain of BoNT serotype A was produced from a humanized-camel VH/V(H)H phage display library. The V(H)H has high sequence homology (>80%) to the human VH and could block the enzymatic activity of the BoNT. Molecular docking revealed not only the interface binding between the V(H)H and the toxin but also an insertion of the V(H)H CDR3 into the toxin enzymatic pocket. It is envisaged that, by molecular linking the V(H)H to a cell penetrating peptide (CPP), the CPP-V(H)H fusion protein would be able to traverse the hydrophobic cell membrane into the cytoplasm and inhibit the intracellular BoNT. This presents a novel and safe immunotherapeutic strategy for botulism by using a cell penetrating, humanized-single domain antibody that inhibits the BoNT by means of a direct blockade of the groove of the menace enzyme.  相似文献   

11.
Botulinum neurotoxins (BoNTs) cause the life-threatening neurological illness botulism in humans and animals and are divided into seven serotypes (BoNT/A–G), of which serotypes A, B, E, and F cause the disease in humans. BoNTs are classified as “category A” bioterrorism threat agents and are relevant in the context of the Biological Weapons Convention. An international proficiency test (PT) was conducted to evaluate detection, quantification and discrimination capabilities of 23 expert laboratories from the health, food and security areas. Here we describe three immunological strategies that proved to be successful for the detection and quantification of BoNT/A, B, and E considering the restricted sample volume (1 mL) distributed. To analyze the samples qualitatively and quantitatively, the first strategy was based on sensitive immunoenzymatic and immunochromatographic assays for fast qualitative and quantitative analyses. In the second approach, a bead-based suspension array was used for screening followed by conventional ELISA for quantification. In the third approach, an ELISA plate format assay was used for serotype specific immunodetection of BoNT-cleaved substrates, detecting the activity of the light chain, rather than the toxin protein. The results provide guidance for further steps in quality assurance and highlight problems to address in the future.  相似文献   

12.
Botulinum neurotoxins (BoNTs), produced by spore-forming anaerobic Clostridium botulinum, are the most toxic substances known. They cause the life-threatening disease botulism, characterized by flaccid muscle paralysis. While the natural cases of botulism are rare, due to their extreme toxicity and easy production, BoNTs have become potential biowarfare agents, and create maximum fear among populations concerned with bioterror agents. The only available antidote against BoNTs is equine antitoxin. Equine antitoxin can only target the toxins at extracellular level, and can not reverse the paralysis caused by botulism. In addition, equine antibody can cause severe hypersensitivity reactions, and is limited to be used for prophylaxis treatment. BoNTs are large proteins with three distinct domains, the binding domain, the translocation domain, and the enzymatic domain with highly specific endopeptidase activity to cleave the proteins involved the neurotransmitter release. Targeting any of these domains can inhibit the functions of BoNT. Humanized monoclonal antibodies, small peptides and peptide mimetics, receptor mimics, and small molecules targeting the endopeptidase activity have emerged as potential new inhibitors against BoNTs. With the structure of BoNT resolved, molecular modeling and rational design of potent antidotes against botulism is on the horizon. An area that has not been explored for designing the antidotes against botulism is aptamers, which have been successfully developed as therapeutics in several areas. This review will focus on some of these new strategies to design effective antidotes against botulism. The strategies reviewed in this article can be easily applied to design inhibitors for other bacterial toxins.  相似文献   

13.
Antitoxin, the only licensed drug therapy for botulism, neutralizes circulating botulinum neurotoxin (BoNT). However, antitoxin is no longer effective when a critical amount of BoNT has already entered its target nerve cells. The outcome is a chronic phase of botulism that is characterized by prolonged paralysis. In this stage, blocking toxin activity within cells by next-generation intraneuronal anti-botulinum drugs (INABDs) may shorten the chronic phase of the disease and accelerate recovery. However, there is a lack of adequate animal models that simulate the chronic phase of botulism for evaluating the efficacy of INABDs. Herein, we report the development of a rabbit model for the chronic phase of botulism, induced by intoxication with a sublethal dose of BoNT. Spirometry monitoring enabled us to detect deviations from normal respiration and to quantitatively define the time to symptom onset and disease duration. A 0.85 rabbit intramuscular median lethal dose of BoNT/A elicited the most consistent and prolonged disease duration (mean = 11.8 days, relative standard deviation = 27.9%) that still enabled spontaneous recovery. Post-exposure treatment with antitoxin at various time points significantly shortened the disease duration, providing a proof of concept that the new model is adequate for evaluating novel therapeutics for botulism.  相似文献   

14.
Human botulism is a severe disease characterized by flaccid paralysis and inhibition of certain gland secretions, notably salivary secretions, caused by inhibition of neurotransmitter release. Naturally acquired botulism occurs in three main forms: food-borne botulism by ingestion of preformed botulinum neurotoxin (BoNT) in food, botulism by intestinal colonization (infant botulism and intestinal toxemia botulism in infants above one year and adults), and wound botulism. A rapid laboratory confirmation of botulism is required for the appropriate management of patients. Detection of BoNT in the patient’s sera is the most direct way to address the diagnosis of botulism. Based on previous published reports, botulinum toxemia was identified in about 70% of food-borne and wound botulism cases, and only in about 28% of infant botulism cases, in which the diagnosis is mainly confirmed from stool sample investigation. The presence of BoNT in serum depends on the BoNT amount ingested with contaminated food or produced locally in the intestine or wound, and the timeframe between serum sampling and disease onset. BoNT levels in patient’s sera are most frequently low, requiring a highly sensitive method of detection. Mouse bioassay is still the most used method of botulism identification from serum samples. However, in vitro methods based on BoNT endopeptidase activity with detection by mass spectrometry or immunoassay have been developed and depending on BoNT type, are more sensitive than the mouse bioassay. These new assays show high specificity for individual BoNT types and allow more accurate differentiation between positive toxin sera from botulism and autoimmune neuropathy patients.  相似文献   

15.
Botulinum neurotoxin (BoNT) is responsible for causing botulism, a potentially fatal disease characterized by paralysis of skeletal muscle. Existing specific treatments include polyclonal antisera derived from immunized humans or horses. Both preparations have similar drawbacks, including limited supply, risk of adverse effects and batch to batch variation. Here, we describe a panel of six highly protective sheep monoclonal antibodies (SMAbs) derived from sheep immunized with BoNT/A1 toxoid (SMAbs 2G11, 4F7) or BoNT/A1 heavy chain C-terminus (HcC) (SMAbs 1G4, 5E2, 5F7, 16F9) with or without subsequent challenge immunization with BoNT/A1 toxin. Although each SMAb bound BoNT/A1 toxin, differences in specificity for native and recombinant constituents of BoNT/A1 were observed. Structural differences were suggested by pI (5E2 = 8.2; 2G11 = 7.1; 4F7 = 8.8; 1G4 = 7.4; 5F7 = 8.0; 16F9 = 5.1). SMAb protective efficacy vs. 10,000 LD50 BoNT/A1 was evaluated using the mouse lethality assay. Although not protective alone, divalent and trivalent combinations of SMabs, IG4, 5F7 and/or 16F9 were highly protective. Divalent combinations containing 0.5–4 μg/SMAb (1–8 μg total SMAb) were 100% protective against death with only mild signs of botulism observed; relative efficacy of each combination was 1G4 + 5F7 > 1G4 + 16F9 >> 5F7 + 16F9. The trivalent combination of 1G4 + 5F7 + 16F9 at 0.25 μg/SMAb (0.75 μg total SMAb) was 100% protective against clinical signs and death. These results reflect levels of protective potency not reported previously.  相似文献   

16.
To determine the efficacy of 3,4-diaminopyridine (3,4-DAP) as a potential treatment for botulism, its effect on the survival times of mice injected with type A, B, E, or F botulinum toxin (Bo Tx) was examined. Mice were injected ip with 10, 20, or 40 LD50 of Bo Tx. Three hours later, when the mice displayed signs of botulism, half of each group of mice was treated with 3,4-DAP, an agent which increases nerve-evoked transmitter release. At each dose of type A Bo Tx tested, 3,4-DAP definitely prolonged survival. In contrast, treatment with the drug did not significantly increase the survival time of mice injected with type B, E, or F Bo Tx. The differences in efficacy of 3,4-DAP against the four serotypes of Bo Tx together with previously reported variations in specific toxicity and duration of paralysis may reflect differences in the pharmacological activity of these neurotoxins.  相似文献   

17.
To search for small molecular size inhibitors of botulinum neurotoxin A (BoNT/A) endopeptidase activity, we have screened the NCI library containing about 1 million structures against the substrate binding pocket of BoNT/A. Virtual screening (VS) was performed with the software Glide (Grid-based ligand docking energetics) and the findings were confirmed by AutoDock. Ten compounds were found that had favorable energetic and glide criteria and 5 of these compounds were selected for their ability to protect mice in vivo against a lethal dose of BoNT/A. Each compound was incubated at different molar excesses with a lethal dose of the toxin and then the mixture injected intravenously into mice. At 4690 M excess, compounds NSC94520 and NSC99639 protected all (100%) the mice from lethal toxicity. Compounds NSC48461 and NSC627733 gave 75% protection. Compound NSC348884 showed the least inhibition of toxicity allowing only a fraction (25%) of the mice to survive challenge with a lethal dose; and in the case of the mice that did not survive there was a considerable delay of mortality. At 2400 M excess compounds NSC94520 remained fully protective while and NSC99639 afforded 75% protection and at 1200 M excess each of these two compounds gave 50% protection. The two compounds gave no protection at 600 or less molar excess. When each compound was administered intravenously at 4690 M excess at different times (from 1 h to 6 h) after the intravenous injection of the active toxin, none of the compounds was able to protect the animals from toxicity. The findings show the value of VS in identifying potential inhibitors of the toxin for further development and improvement.  相似文献   

18.
Botulism is a serious foodborne neuroparalytic disease, caused by botulinum neurotoxin (BoNT), produced by the anaerobic bacterium Clostridium botulinum. Seven toxin serotypes (A – H) have been described. The majority of human cases of botulism are caused by serotypes A and B followed by E and F. We report here a group of serotype B specific monoclonal antibodies (mAbs) capable of binding toxin under physiological conditions. Thus, they serve as capture antibodies for a sandwich (capture) ELISA. The antibodies were generated using recombinant peptide fragments corresponding to the receptor-binding domain of the toxin heavy chain as immunogen. Their binding properties suggest that they bind a complex epitope with dissociation constants (KD’s) for individual antibodies ranging from 10 to 48 × 10−11 M. Assay performance for all possible combinations of capture-detector antibody pairs was evaluated and the antibody pair resulting in the lowest level of detection (L.O.D.), ~20 pg/mL was determined. Toxin was detected in spiked dairy samples with good recoveries at concentrations as low as 0.5 pg/mL and in ground beef samples at levels as low as 2 ng/g. Thus, the sandwich ELISA described here uses mAb for both the capture and detector antibodies (binding different epitopes on the toxin molecule) and readily detects toxin in those food samples tested.  相似文献   

19.
Botulinum neurotoxin A (BoNT/A) is a toxin produced by the naturally-occurring Clostridium botulinum that causes botulism. The potential of BoNT/A as a useful medical intervention was discovered by scientists developing a vaccine to protect against botulism. They found that, when injected into a muscle, BoNT/A causes a flaccid paralysis. Following this discovery, BoNT/A has been used for many years in the treatment of conditions of pathological muscle hyperactivity, like dystonias and spasticities. In parallel, the toxin has become a “glamour” drug due to its power to ward off facial wrinkles, particularly frontal, due to the activity of the mimic muscles. After the discovery that the drug also appeared to have a preventive effect on headache, scientists spent many efforts to study the potentially-therapeutic action of BoNT/A against pain. BoNT/A is effective at reducing pain in a number of disease states, including cervical dystonia, neuropathic pain, lower back pain, spasticity, myofascial pain and bladder pain. In 2010, regulatory approval for the treatment of chronic migraine with BoNT/A was given, notwithstanding the fact that the mechanism of action is still not completely elucidated. In the present review, we summarize experimental evidence that may help to clarify the mechanisms of action of BoNT/A in relation to the alleviation of headache pain, with particular emphasis on preclinical studies, both in animals and humans. Moreover, we summarize the latest clinical trials that show evidence on headache conditions that may obtain benefits from therapy with BoNT/A.  相似文献   

20.
Botulinum neurotoxin B (BoNTB) is a distinct protein subtype of a family of neurotoxins with the potential for use in biological warfare or terrorist attacks. This study is one in a series evaluating the immunogenicity and protective effects of recombinant vaccines against the different subtypes of botulinum toxin. The recombinant subunit vaccines encoding the C fragment portion (50 kDa) of the toxins are produced in the yeast, Pichia pastoris. In this study, groups of rhesus monkeys were vaccinated with three doses (1 and 5 μg per dose) of rBoNTB(Hc) vaccine. Total and neutralizing antibody titers were determined at various times during and postvaccination. Two groups of vaccinated monkeys plus non-vaccinated controls were actively challenged with B toxin by aerosol exposure. All monkeys receiving vaccine were protected from the toxin and no clinical signs of disease were observed, while controls displaying classic signs of botulism succumbed to the toxin challenge. Two additional groups of monkeys receiving the same vaccine regiment as the first two groups had significant levels of circulating neutralizing antibody titers up to 24 months postvaccination. This non-human primate study demonstrated the short- and long-term immunity afforded by the rBoNTB(Hc) vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号