首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chen X  Oppenheim JJ 《Immunology》2011,133(4):426-433
Cytokine receptors expressed by CD4(+) FoxP3(+) regulatory T cells (Treg cells) not only serve as a phenotypic marker for the identification of this important population of immunosuppressive cells, they also promote the function of Treg cells. CD25, the α-chain of interleukin-2 receptor, is a prototype of such a receptor, which enables Treg cells to be activated by interleukin-2. We and others have found that tumour necrosis factor receptor type 2 (TNFR2) is another important cytokine receptor preferentially expressed by Treg cells with important phenotypic and functional roles. TNFR2 is preferentially expressed by highly functional human and mouse Treg cells, and mediates the activating effect of TNF on Treg cells. We review here the studies of the regulation of expression of TNFR2 on functional Treg cells as well as on CD4(+) FoxP3(-) effector T cells (Teff cells). We document the critical role of this receptor in the activation, proliferative expansion and survival of Treg cells. The contribution of TNFR2 expression on Treg and Teff cells to the beneficial and detrimental effects of anti-TNF treatment in autoimmune disorders will also be discussed.  相似文献   

2.
CD25(+)CD4(+) regulatory T cells inhibit the activation of autoreactive T cells in vitro and in vivo, and suppress organ-specific autoimmune diseases. The mechanism of CD25(+)CD4(+) T cells in the regulation of experimental autoimmune encephalomyelitis (EAE) is poorly understood. To assess the role of CD25(+)CD4(+) T cells in EAE, SJL mice were immunized with myelin proteolipid protein (PLP)(139-151) to develop EAE and were treated with anti-CD25 mAb. Treatment with anti-CD25 antibody following immunization resulted in a significant enhancement of EAE disease severity and mortality. There was increased inflammation in the central nervous system (CNS) of anti-CD25 mAb-treated mice. Anti-CD25 antibody treatment caused a decrease in the percentage of CD25(+)CD4(+) T cells in blood, peripheral lymph node (LN) and spleen associated with increased production of IFN-gamma and a decrease in IL-10 production by LN cells stimulated with PLP(130-151) in vitro. In addition, transfer of CD25(+)CD4(+) regulatory T cells from naive SJL mice decreased the severity of active EAE. In vitro, anti-CD3-stimulated CD25(+)CD4(+) T cells from naive SJL mice secreted IL-10 and IL-10 soluble receptor (sR) partially reversed the in vitro suppressive activity of CD25(+)CD4(+) T cells. CD25(+)CD4(+) T cells from IL-10-deficient mice were unable to suppress active EAE. These findings demonstrate that CD25(+)CD4(+) T cells suppress pathogenic autoreactive T cells in actively induced EAE and suggest they may play an important natural regulatory function in controlling CNS autoimmune disease through a mechanism that involves IL-10.  相似文献   

3.
Hamza E  Gerber V  Steinbach F  Marti E 《Immunology》2011,134(3):292-304
Horses are particularly prone to allergic and autoimmune diseases, but little information about equine regulatory T cells (Treg) is currently available. The aim of this study therefore was to investigate the existence of CD4(+) Treg cells in horses, determine their suppressive function as well as their mechanism of action. Freshly isolated peripheral blood mononuclear cells (PBMC) from healthy horses were examined for CD4, CD25 and forkhead box P3 (FoxP3) expression. We show that equine FoxP3 is expressed constitutively by a population of CD4(+) CD25(+) T cells, mainly in the CD4(+) CD25(high) subpopulation. Proliferation of CD4(+) CD25(-) sorted cells stimulated with irradiated allogenic PBMC was significantly suppressed in co-culture with CD4(+) CD25(high) sorted cells in a dose-dependent manner. The mechanism of suppression by the CD4(+) CD25(high) cell population is mediated by close contact as well as interleukin (IL)-10 and transforming growth factor-β1 (TGF-β1) and probably other factors. In addition, we studied the in vitro induction of CD4(+) Treg and their characteristics compared to those of freshly isolated CD4(+) Treg cells. Upon stimulation with a combination of concanavalin A, TGF-β1 and IL-2, CD4(+) CD25(+) T cells which express FoxP3 and have suppressive capability were induced from CD4(+) CD25(-) cells. The induced CD4(+) CD25(high) express higher levels of IL-10 and TGF-β1 mRNA compared to the freshly isolated ones. Thus, in horses as in man, the circulating CD4(+) CD25(high) subpopulation contains natural Treg cells and functional Treg can be induced in vitro upon appropriate stimulation. Our study provides the first evidence of the regulatory function of CD4(+) CD25(+) cells in horses and offers insights into ex vivo manipulation of Treg cells.  相似文献   

4.
We observed a remarkable reduction in the frequency and immunosuppressive activity of splenic CD4+CD25+ T cells in C57BL/6 mice with MOG33-55-induced experimental autoimmune encephalomyelitis (EAE). Our study revealed that pertussis toxin (PTx), one component of the immunogen used to induce murine EAE, was responsible for down-regulating splenic CD4+CD25+ cells. Treatment of normal BALB/c mice with PTx in vivo reduced the frequency, suppressive activity and FoxP3 expression by splenic CD4+CD25+ T cells. However, PTx treatment did not alter the expression of characteristic phenotypic markers (CD45RB, CD103, GITR and CTLA-4) and did not increase the expression of CD44 and CD69 by the residual splenic and lymph node CD4+CD25+ T cells. This property of PTx was attributable to its ADP-ribosyltransferase activity. PTx did not inhibit suppressive activity of purified CD4+CD25+ T regulatory (Treg) cells in vitro, but did so in vivo, presumably due to an indirect effect. Although the exact molecular target of PTx that reduces Treg activity remains to be defined, our data suggests that alteration of both distribution and function of splenic immunocytes should play a role. This study concludes that an underlying cause for the immunological adjuvanticity of PTx is down-regulation of Treg cell number and function.  相似文献   

5.
Continuous antigen stimulation of CD4(+)CD25(-) T cells leads to generation of adaptive CD4(+)CD25(+)FOXP3(+) regulatory T (T(R)) cells. Here, we show that highly suppressive adaptive CD8(+)CD25(+)FOXP3(+) T cells can be generated in the same manner by continuous antigen stimulation in the presence of CD14(+) monocytes. During the course of stimulation, acquisition of immunosuppressive properties develops in parallel with up-regulation and expression of cytotoxic molecules. The CD8(+) T(R) cells inhibit CD4(+) and CD8(+) T cell proliferation and cytokine production, but do not alter the expression of granzyme A and granzyme B or perforin in CD8(+) effector T cells. Although, the CD8(+) T(R) cells express prostaglandin E(2), IL-10 and TGF-beta, the mechanism of suppression was independent of these soluble factors. In contrast to adaptive CD4(+) T(R) cells, the CD8(+) T(R) cells suppress mainly by a contact-dependent mechanism as evident from transwell experiments. However, neither blocking antibodies to CTLA-4, CD80 nor CD86 could reverse CD8(+) T(R)-mediated suppression, indicating that other mechanism(s) must be employed by these cells.  相似文献   

6.
7.
Anti-CD3 mAb can modulate graft rejection and attenuate autoimmune diseases but their mechanism(s) of action remain unclear. CD8(+) T cells with regulatory function are induced in vitro by Teplizumab, a humanized anti-CD3 antibody and inhibit responses of autologous and allogeneic T cells. They inhibit CD4(+) T-cell proliferation by mechanisms involving TNF and CCL4, and by blocking target cell entry into G2/M phase of cell cycle but neither kill them, nor compete for IL-2. CD8(+) Treg can be isolated from peripheral blood following treatment of patients with Type 1 diabetes with Teplizumab, but not from untreated patients. The induction of CD8(+) Treg by anti-CD3 mAb requires TNF and signaling through the NF-κB cascade. The CD8(+) Treg express CD25, glucocorticoid-induced TNF receptor family, CTLA-4, Foxp3, and TNFR2, and the combined expression of TNFR2 and CD25 identifies a potent subpopulation of CD8(+) Treg. These studies have identified a novel mechanism of immune regulation by anti-CD3 mAb and markers that may be used to track inducible CD8(+) Treg in settings such as chronic inflammation or immune therapy.  相似文献   

8.
The injection of antigen into the ocular anterior chamber (AC) induces the generation of splenic CD4(+) and CD8(+) regulatory T (Treg) cells, specific for the antigen injected into the AC. These Treg cells inhibit the induction (CD4(+)) and also the expression (CD8(+)) of a delayed-type hypersensitivity response. The ability of AC-induced self-antigen-specific Treg cells in modulating autoimmunity is not well defined. Here we show that an injection of encephalitogenic myelin oligodendrocyte glycoprotein (MOG(35-55)) peptide into the anterior chamber of the eye (AC-MOG), before the induction of or during established experimental autoimmune encephalomyelitis (EAE) induced by MOG(35-55), suppresses the induction or progression of EAE, respectively. CD4(+) or CD8(+) splenic Treg cells induced by an injection of AC-MOG prevent EAE either at the inductive (priming) or at the progressive (effector) phase, respectively. This suppression of EAE by an AC-MOG injection or by intravenous transfer of splenic regulatory cells induced by an AC-MOG injection is specific for the antigen injected into the AC. Additionally, our data suggest that splenic CD8(+) Treg cells that suppress active EAE may use a transforming growth factor (TGF)-β-dependent suppression mechanism while the suppression of the induction of EAE by the AC-induced CD4(+) Treg cells is independent of TGF-β. Thus, we show for the first time that regulation of EAE at the priming or the chronic phase requires different phenotypes of Treg cells. Hence, it is important to consider the phenotype of Treg cells while designing effective cell-based therapies against autoimmune disorders.  相似文献   

9.
10.
Human CD4(+) CD39(+) regulatory T (Treg) cells hydrolyze exogenous adenosine triphosphate (ATP) and participate in immunosuppressive adenosine production. They contain two T-cell subsets whose role in mediating suppression is not understood. Frequencies of both CD4(+) CD39(+) subsets were evaluated in peripheral blood lymphocytes of 57 cancer patients and in tumor infiltrating lymphocytes (TILs) of 6 patients. CD4(+) CD39(+) and CD4(+) CD39(neg) T cells isolated using immunobeads and cell sorting were cultured under various conditions. Their conversion into CD39(+) FOXP3(+) CD25(+) or CD39(+) FOX(neg) CD25(neg) cells was monitored by multiparameter flow cytometry. Hydrolysis of exogenous ATP was measured in luminescence assays. Two CD4(+) CD39(+) cell subsets differing in expression of CD25, FOXP3, CTLA-4, CD121a, PD-1, latency associated peptide (LAP), glycoprotein A repetitions predominant (GARP), and the cytokine profile accumulated with equal frequencies in the blood and tumor tissues of cancer patients. The frequency of both subsets was significantly increased in cancer. CD39 expression levels correlated with the subsets' ability to hydrolyze ATP. Conventional CD4(+) CD39(neg) T cells incubated with IL-2 + TGF-β expanded to generate CD4(+) CD39(+) FOXP3(+) Treg cells, while CD4(+) CD39(+) FOXP3(neg) CD25(neg) subset cells stimulated via the TCR and IL-2 converted to FOXP3(+) CTLA4(+) CD25(+) TGF-β-expressing Treg cells. Among CD4(+) CD39(+) Treg cells, the CD4(+) CD39(+) FOXP3(neg) CD25(neg) subset serves as a reservoir of cells able to convert to Treg cells upon activation by environmental signals.  相似文献   

11.
CD4(+)CD25(+) regulatory T cells (Treg) play a central role in the prevention of autoimmunity and in the control of immune responses by down-regulating the function of effector CD4(+) or CD8(+) T cells. The role of Treg in Mycobacterium tuberculosis infection and persistence is inadequately documented. Therefore, the current study was designed to determine whether CD4(+)CD25(+)FoxP3(+) regulatory T cells may modulate immunity against human tuberculosis (TB). Our results indicate that the number of CD4(+)CD25(+)FoxP3(+) Treg increases in the blood or at the site of infection in active TB patients. The frequency of CD4(+)CD25(+)FoxP3(+) Treg in pleural fluid inversely correlates with local MTB-specific immunity (p<0.002). These CD4(+)CD25(+)FoxP3(+) T lymphocytes isolated from the blood and pleural fluid are capable of suppressing MTB-specific IFN-gamma and IL-10 production in TB patients. Therefore, CD4(+)CD25(+)FoxP3(+) Treg expanded in TB patients suppress M. tuberculosis immunity and may therefore contribute to the pathogenesis of human TB.  相似文献   

12.
BACKGROUND AND PURPOSE: Rheumatoid arthritis (RA) is a CD4(+)-dependent chronic systemic inflammatory disease with autoimmune features. Autoreactive CD4(+) T-cell activation can result in autoimmune diseases. One of the key regulators is the CD4(+)CD25(high) regulatory T (Treg) cell. In an animal arthritis model, CD11c(+)CD8(+) T cells were found to be elevated, and could suppress pathogenic CD4(+) T cells after cross-linking with CD137. The purpose of this study was to compare the expression of CD137, CD4(+)CD25(high) Treg cells, and CD11c(+)CD8(+) in the peripheral blood T lymphocytes of RA patients during active and remissive states, and evaluate the correlation with disease activity. METHODS: Thirty nine RA patients treated at the rheumatology outpatient clinic at the Changhua Christian Hospital were assessed clinically for disease activity and classified as either highly active or remissive by the Disease Activity Score 28. Peripheral blood mononuclear cells were isolated from these patients and compared against normal controls. RESULTS: The presence of CD11c(+)CD8(+) T cells or the expression of CD137 molecules in peripheral blood cells was not related to disease activity. In contrast, CD4(+)CD25(high) Treg cell levels were increased significantly in patients with active RA compared with patients with remissive RA or controls (p<0.05). These lymphocytes were intact, without evidence of apoptosis. CONCLUSIONS: Our results indicate that CD4(+)CD25(high) Treg cells play an important role in modulating RA disease activity and can serve as a parameter of disease activity.  相似文献   

13.
Th17 cells and CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells are thought to promote and suppress inflammatory responses, respectively. Here we explore why under Th17 cell polarizing conditions, Treg cells did not suppress, but rather upregulated, the expression of interleukin-17A (IL-17A), IL-17F, and IL-22 from responding CD4(+) T?cells (Tresp cells). Upregulation of IL-17 cytokines in Tresp cells was dependent on?consumption of IL-2 by Treg cells, especially at early time points both in?vitro and in?vivo. During an oral Candida albicans infection in mice, Treg cells induced IL-17 cytokines in Tresp cells, which markedly enhanced fungal clearance and recovery from infection. These findings show how Treg cells can promote acute Th17 cell responses to suppress mucosal fungus infections and reveal that Treg cells?have a powerful capability to fight infections besides their role in maintaining tolerance or immune homeostasis.  相似文献   

14.
Total glucosides of paeony (TGP), an active compound extracted from Paeony root, has been used in therapy for autoimmune diseases. However the molecular mechanism of TGP in the prevention of autoimmune response remains unclear. In this study, we found that TGP treatment significantly increased the percentage and number of Treg cells in lupus CD4(+) T cells. Further investigation revealed that treatment with TGP increased the expression of Foxp3 in lupus CD4(+) T cells by down-regulating Foxp3 promoter methylation levels. However, we couldn't observe similar results in healthy control CD4(+) T cells treated by TGP. Moreover, our results also showed that IFN-γ and IL-2 expression was enhanced in TGP-treated lupus CD4(+) T cells. These findings indicate that TGP inhibits autoimmunity in SLE patients possibly by inducing Treg cell differentiation, which may in turn be due to its ability to regulate the methylation status of the Foxp3 promoter and activate IFN-γ and IL-2 signaling.  相似文献   

15.
Murine autoimmune gastritis, induced by neonatal thymectomy or the injection of CD25-depleted lymphocytes into nu/nu recipients, is characterized by an inflammatory infiltrate into the gastric mucosa, parietal cell destruction and circulating anti-parietal cell antibodies. Using RAG-2(-/-)mice as recipients, we determined that the induction of disease relies on CD4(+)CD25(-)effector cells and prevention relies on CD4(+)CD25(+)regulatory cells; neither requires participation of CD8 cells or B cells. The severity of gastritis was dependent on the cytokine repertoire of CD4(+)CD25(-)effector T cells. Recipients of IL-4(-/-)T cells developed more severe gastritis and recipients of INF-gamma(-/-)T cells developed milder disease than recipients of wildtype or IL-10(-/-)effector T cells. Gastritis did not develop in the absence of IL-12. Protection from gastritis does not require either IL-4 or IL-10 because CD4(+)CD25(+)cells from IL-4(-/-)or IL-10(-/-)mice completely abrogated the disease process. CD4(+)CD25(+)cells also protected RAG-2(-/-)recipients from colitis and inhibitory activity was partially dependent on IL-10 expression. These findings highlight the critical role of CD4(+)CD25(+)regulatory T cells in protection from several autoimmune syndromes and delineate the differential contribution of IL-10 to CD4(+)CD25(+)Treg activity in the settings of gastritis and colitis.  相似文献   

16.
Liu G  Zhao Y 《Immunology》2007,122(2):149-156
Regulatory CD4(+) CD25(+) T (Treg) cells with the ability to suppress host immune responses against self- or non-self antigens play important roles in the processes of autoimmunity, transplant rejection, infectious diseases and cancers. The proper regulation of CD4(+) CD25(+) Treg cells is thus critical for optimal immune responses. Toll-like receptor (TLR)-mediated recognition of specific structures of invading pathogens initiates innate as well as adaptive immune responses via antigen-presenting cells (APCs). Interestingly, new evidence suggests that TLR signalling may directly or indirectly regulate the immunosuppressive function of CD4(+) CD25(+) Treg cells in immune responses. TLR signalling may shift the balance between CD4(+) T-helper cells and Treg cells, and subsequently influence the outcome of the immune response. This immunomodulation pathway may therefore have potential applications in the treatment of graft rejection, autoimmune diseases, infection diseases and cancers.  相似文献   

17.
Naturally occurring CD4(+)CD25(+)FoxP3(+) regulatory T cells (CD25(+) Tregs) constitute a specialized population of T cells that is essential for the maintenance of peripheral self-tolerance. The immune regulatory function of CD25(+) Tregs depends upon their activation. We found that anti-CD4 antibodies activate the suppressive function of human CD25(+) Tregs in a dose-dependent manner. We demonstrate that CD4-activated CD25(+) Tregs suppress the proliferation of CD4(+) and CD8(+) T cells, their IL-2 and IFN-gamma production as well as the capacity of CD8(+) T cells to re-express CD25. By contrast, anti-CD4 stimulation did not induce suppressive activity in conventional CD4(+) T cells. These results identify CD4 as a trigger for the suppressive function of CD25(+) Tregs and suggest a possible CD4-mediated exploitation of these cells.  相似文献   

18.
Sublingual (s.l.) immunotherapy has in the last decade emerged as an effective approach to desensitize patients with pollen, food and insect sting allergies. This treatment has recently also attracted interest as a potential modality to control self-reactive T-cell responses associated with autoimmune disorders. Here, we show that s.l. administration of ovalbumin (OVA) conjugated to cholera toxin B subunit (CTB) (OVA/CTB) can efficiently suppress peripheral effector T (Teff) cell responses to OVA in mice that had adoptively received OVA-specific T-cell receptor (TCR) transgenic CD4(+) T cells, and that the suppression was associated with the development of OVA-specific Foxp3(+)CD25(+)CD4(+) regulatory T (Treg) cells as well as with apoptosis (Annexin V(+)) and depletion of OVA-specific Teff cells in peripheral lymph nodes. The induction of Teff cell apoptosis by s.l. OVA/CTB administration was found to be critically dependent on CD25(+) Treg cells but independent of IL-10 production. Our results suggest that s.l administration of a CTB-conjugated antigen can efficiently induce peripheral Teff cell tolerance through the induction of antigen-specific Treg cells that both inhibit Teff cell proliferation and cytokine production and induce Teff cell apoptosis and depletion.  相似文献   

19.
CD4(+)CD25(+) regulatory T (Treg) cells play an essential role in the induction and maintenance of peripheral self-tolerance. Indirubin, a traditional Chinese medicine, was clinically used in the treatment of chronic myelocytic leukemia as well as some autoimmune diseases, including Alzheimer's disease, diabetes, and so on. The effects of indirubin on CD4(+)CD25(+)Treg cells, which play a critical role in controlling autoimmunity, have not been addressed. In the present study, we observed the cell levels, phenotypes, and immunoregulatory function of CD4(+)CD25(+)Treg cells in indirubin-treated mice. Treatment with indirubin significantly enhanced the ratios of CD4(+)CD25(+)Treg cells or CD4(+)CD25(+)Foxp3(+)Treg cells to CD4(+)T cells in peripheral blood, lymph nodes, and spleens (P < 0.01 compared with control mice). CD4(+)CD25(+)Foxp3(+)Treg cells to CD4 single positive cells in the thymi of indirubin-treated mice were significantly higher than those in control mice. Furthermore, splenic CD4(+)CD25(+)Treg cells in indirubin-treated mice showed immunosuppressive ability on the immune response of T effector cells to alloantigens or mitogen as efficiently as the control CD4(+)CD25(+)Treg cells in vitro. The present studies indicate that CD4(+)CD25(+)Treg cells are more resistant to indirubin than effector T cells in vivo. The selectively enhanced CD4(+)CD25(+)Treg cell levels by indirubin made host to be more favorable for immune tolerance induction, which opened one possibility for indirubin to treat autoimmune diseases.  相似文献   

20.
Immunization with purified antigens is a safe and practical vaccination strategy but is generally unable to induce sustained CD8(+) T cell-mediated protection against intracellular pathogens. Most efforts to improve the CD8(+) T cell immunogenicity of these vaccines have focused on co-administration of adjuvant to support cross-presentation and dendritic cell maturation. In addition, it has been shown that CD4(+) T cell help during the priming phase contributes to the generation of protective CD8(+) memory T cells. In this report we demonstrate that the depletion of CD4(+) T cells paradoxically enhances long-lasting CD8-mediated protective immunity upon protein vaccination. Functional and genetic in vivo inactivation experiments attribute this enhancement primarily to MHC class II-restricted CD4(+) regulatory T cells (Treg), which appear to physiologically suppress the differentiation process towards long-living effector memory T cells. Since, in functional terms, this suppression by Treg largely exceeds the positive effects of conventional CD4(+) T cell help, even the absence of all CD4(+) T cells or lack of MHC class II-mediated interactions on priming dendritic cells result in enhanced CD8(+) T cell immunogenicity. These findings have important implications for the improvement of vaccines against intracellular pathogens or tumors, especially in patients with highly active Treg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号