首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dichlorvos is a synthetic insecticide that belongs to the family of chemically related organophosphate (OP) pesticides. It can be released into the environment as a major degradation product of other OPs, such as trichlorfon, naled, and metrifonate. Dichlorvos exerts its toxic effects in humans and animals by inhibiting neural acetylcholinesterase. Chronic low-level exposure to dichlorvos has been shown to result in inhibition of the mitochondrial complex I and cytochrome oxidase in rat brain, resulting in generation of reactive oxygen species (ROS). Enhanced ROS production leads to disruption of cellular antioxidant defense systems and release of cytochrome c (cyt c) from mitochondria to cytosol resulting in apoptotic cell death. MitoQ is an antioxidant, selectively targeted to mitochondria and protects it from oxidative damage and has been shown to decrease mitochondrial damage in various animal models of oxidative stress. We hypothesized that if oxidative damage to mitochondria does play a significant role in dichlorvos induced neurodegeneration, then MitoQ should ameliorate neuronal apoptosis. Administration of MitoQ (100 μmol/kg body wt/day) reduced dichlorvos (6 mg/kg body wt/day) induced oxidative stress (decreased ROS production, increased MnSOD activity and glutathione levels) with decreased lipid peroxidation, protein and DNA oxidation. In addition, MitoQ also suppressed DNA fragmentation, cyt c release and caspase-3 activity in dichlorvos treated rats compared to the control group. Further electron microscopic studies revealed that MitoQ attenuates dichlorvos induced mitochondrial swelling, loss of cristae and chromatin condensation. These results indicate that MitoQ may be beneficial against OP (dichlorvos) induced neurodegeneration.  相似文献   

2.
Several studies have shown that UV radiation on the skin results in the formation of reactive oxygen species (ROS) that interact with proteins, lipids and DNA, thus altering cellular functions. The epidermis is composed mainly of keratinocytes, rich in ROS detoxifying enzymes and in low-molecular-mass antioxidant molecules. However, the increased generation of ROS can overwhelm the natural defences against oxidative stress. Therefore treatment of the skin with products containing plant-derived antioxidant ingredients may be a useful strategy for the prevention of UV-mediated cutaneous damage. In the present study we have investigated the in vitro capability of a Jacquez grapes wine extract (containing a significant level of proanthocyanidins, together with lower amounts of anthocyanins and hydroxycinnamic acids; JW-E), to protect skin against UVB-induced oxidative damage by using a three-dimensional tissue culture model of human epidermis. The endpoints of our experiments were cell viability, release of interleukin-1 and prostaglandin E2 (well-known mediators of cutaneous inflammatory processes), accumulation in the epidermis of malondialdehyde/4-hydroxynonenal and protein carbonyl groups (derived by the oxidative damage respectively of lipids and proteins) and tissue redox balance (expressed by the levels of reduced glutathione, oxidized glutathione, glutathione peroxidase and glutathione reductase). Taken together, our findings demonstrate that the JW-E is an efficient botanical mixture able to prevent skin oxidative damage induced by UV-B exposure and may thus be a potential promising candidate as a skin photoprotective agent.  相似文献   

3.
Helicobacter pylori infection induces oxidative stress on gastric mucosa, thereby causing mucosal damage, retarding mucosal repair, and eventually inducing gastric cancer. Cells can survive against chronic oxidative stress by enhancing activities of antioxidant enzymes, thereby protecting cells from DNA damage. Recent studies have clearly shown that the genes encoding nrf2 (NF-E2 p45-related factor-2) and keap1 (Kelch-like ECH-associated protein 1) play an important role in the induction of antioxidant enzymes against oxidative stress. In this paper, we will first describe the cellular mechanisms by which the nrf2-keap1 system contributes to induction of a variety of antioxidant enzymes during exposure to oxidative stress. Secondly, we will also mention beneficial effects of a natural compound sulforaphane, an isothiocyanate family, rich in broccoli sprouts, on gastric mucosa. Sulforaphane stimulates nrf2 gene-dependent antioxidant enzyme activities, thereby protecting cells from oxidative injury. Finally, we will show our data on the effect of sulforaphane, a natural chemical compound rich in broccoli sprouts, on protection and repair of gastric mucosa against oxidative stress, and anti-inflammatory effects on gastric mucosa during H. pylori infection, which appears to be closely related to chemoprotection against gastric cancer induced by .H. pylori-infection.  相似文献   

4.
Our previous studies showed that Aflatoxin G1 (AFG1) could induce lung adenocarcinoma, and that the cancer cells originated from alveolar type II cells (AT-II cells). Recently, we found AFG1 induced structural impairment in rat AT-II cells, which may account for an early event in lung tumorigenesis. However, the mechanism of AFG1-induced AT-II cell damage remains unclear. DNA damage and apoptosis induced by oxidative stress are well accepted causes of cell damage. Thus, we explore whether AFG1 activates the reactive oxygen species (ROS)/MAPK/apoptosis pathway to cause cell damage in human AT-II cells like the cell line (A549). We found AFG1 induced oxidative stress by increasing ROS generation and caused DNA double-strand breaks (DSBs) by up-regulating γH2AX expression. AFG1 also triggered apoptosis in A549 cells by regulating Fas/FasL, caspase-8, Bax, Bcl-2, and activating caspase-3. Pre-treatment with antioxidant n-acetyl-l-cysteine (NAC) reduced ROS generation and DNA DSBs, inhibited apoptosis, and increased cell viability in AFG1-treated cells. Furthermore, we found AFG1 activated ROS-mediated JNK and p38 pathways to induce cell apoptosis in A549 cells. In conclusion, our results indicate that AFG1 induces oxidative DNA damage and triggers apoptosis through ROS-mediated JNK and p38 signaling pathways in A549 cells, which may contribute to AFG1-induced AT-II cell damage.  相似文献   

5.
Montero AJ  Jassem J 《Drugs》2011,71(11):1385-1396
The vulnerability of some cancer cells to oxidative signals is a therapeutic target for the rational design of new anticancer agents. In addition to their well characterized effects on cell division, many cytotoxic anticancer agents can induce oxidative stress by modulating levels of reactive oxygen species (ROS) such as the superoxide anion radical, hydrogen peroxide and hydroxyl radicals. Tumour cells are particularly sensitive to oxidative stress as they typically have persistently higher levels of ROS than normal cells due to the dysregulation of redox balance that develops in cancer cells in response to increased intracellular production of ROS or depletion of antioxidant proteins. In addition, excess ROS levels potentially contribute to oncogenesis by the mediation of oxidative DNA damage. There are several anticancer agents in development that target cellular redox regulation. The overall cellular redox state is regulated by three systems that modulate cellular redox status by counteracting free radicals and ROS, or by reversing the formation of disulfides; two of these are dependent on glutathione and the third on thioredoxin. Drugs targeting S-glutathionylation have direct anticancer effects via cell signalling pathways and inhibition of DNA repair, and have an impact on a wide range of signalling pathways. Of these agents, NOV-002 and canfosfamide have been assessed in phase III trials, while a number of others are undergoing evaluation in early phase clinical trials. Alternatively, agents including PX-12, dimesna and motexafin gadolinium are being developed to target thioredoxin, which is overexpressed in many human tumours, and this overexpression is associated with aggressive tumour growth and poorer clinical outcomes. Finally, arsenic derivatives have demonstrated antitumour activity including antiproliferative and apoptogenic effects on cancer cells by pro-oxidant mechanisms, and the induction of high levels of oxidative stress and apoptosis by an as yet undefined mechanism. In this article we review anticancer drugs currently in development that target cellular redox activity to treat cancer.  相似文献   

6.
It has been suggested that Nickel is involved in oxidative damage and inhibition of DNA repair. We studied the effects of NiSO4 on oxidative stress and DNA repair in Jurkat cells to elucidate its mechanism of action. Cells were treated with H2O2 and ROS generation (by flow cytometry), and oxidative DNA damage (as tail moment by Fpg-enzyme comet test), were evaluated immediately and after 4 and 24 h of DNA damage recovery occurred in presence or absence of NiSO4 (0.017 and 0.17 μ ) to clarify possible interactions of Ni with DNA repair processes. Moreover, cells were exposed to the same doses of NiSO4 for 4 and 24 hours to evaluate its direct oxidative effect. The results of the comet test showed high tail moment immediately after oxidative burst with a decreasing after 4 h of DNA recovery, and a slight increase after 24 h of recovery. The decreases were more limited for cells treated with NiSO4 0.17 μ indicating an inhibition of oxidative DNA damage repair by this substance. An induction of ROS was observed after 4 h of incubation with higher dose of NiSO4. Cells treated with H2O2 showed the highest level of ROS after 4 h of recovery in presence of NiSO4 0.17 μ that remained at elevated levels also after 24 h of recovery suggesting a synergistic action of Ni with H2O2 in the reduction of cellular anti-oxidative defence activities.  相似文献   

7.
In previous reports, the antioxidant effects of eckol were shown to protect cells against hydrogen peroxide- and gamma ray-induced oxidative stress. In this study, the role of eckol in protecting human skin keratinocytes (HaCaT) against UVB-induced oxidative cell damage was investigated. Also, triphlorethol-A, one of the chemical components in Ecklonia cava, and quercetin a well known antioxidant, were compared with eckol in terms of antioxidant activity based on chemical structure. Eckol decreased UVB-induced intracellular reactive oxygen species (ROS), decreased injury to cellular components resulting from UVB-induced oxidative stress, and restored cell viability. In addition, eckol reduced UVB-induced apoptosis by inhibiting the disruption of mitochondrial membranes. These results suggest that eckol protects human keratinocytes against UVB-induced oxidative stress by scavenging ROS, thereby lessening injury to cellular components.  相似文献   

8.
Oxidative stress resulting in excessive generation of ROS is a compelling initiator of DNA damage along with damage to various cellular proteins and other macromolecules. Poly(ADP-ribose) polymerase (PARP) activation in response to DNA damage, stirs an energy-consuming cellular metabolic cycle; culminating into cell death. The present study was designed to determine the effect of combining an antioxidant, Melatonin and a PARP inhibitor, Nicotinamide on the hallmark deficits developing in diabetic neuropathy (DN). Streptozotocin (STZ, 55 mg/kg, i.p.) was administered to induce diabetes. Six weeks post diabetes induction, two week treatment with Melatonin (3 and 10 mg/kg) and Nicotinamide (100 and 300 mg/kg) either alone or in combination was given. Effect of these interventions on the functional, behavioral and biochemical changes caused by hyperglycemia were studied in treated animals. Melatonin and Nicotinamide alone as well as in combination ameliorated the functional deficits along with improvement in pain parameters. The combination also demonstrated an essential reversal of biochemical alterations. Nitrotyrosine and Poly ADP Ribose (PAR) immunopositivity was significantly decreased in sciatic nerve micro-sections of treatment group. The results of this study advocate that simultaneous inhibition of oxidative stress-PARP activation cascade may prove useful for the pharmacotherapy of DN.  相似文献   

9.
Arsenicals are known to induce ROS, which can lead to DNA damage, oxidative stress, and carcinogenesis. A human urothelial cell line, UROtsa, was used to study the effects of arsenicals on the human bladder. Arsenite [As(III)] and monomethylarsonous acid [MMA(III)] induce oxidative stress in UROtsa cells after exposure to concentrations as low as 1 microM and 50 nM, respectively. Previous research has implicated ROS as signaling molecules in the MAPK signaling pathway. As(III) and MMA(III) have been shown to increase phosphorylation of key proteins in the MAPK signaling cascade downstream of ErbB2. Both Src phosphorylation (p-Src) and cyclooxygenase-2 (COX-2) are induced after exposure to 50 nM MMA(III) and 1 microM As(III). These data suggest that ROS production is a plausible mechanism for the signaling alterations seen in UROtsa cells after acute arsenical exposure. To determine importance of ROS in the MAPK cascade and its downstream induction of p-Src and COX-2, specific ROS antioxidants (both enzymatic and non-enzymatic) were used concomitantly with arsenicals. COX-2 protein and mRNA was shown to be much more influenced by altering the levels of ROS in cells, particularly after MMA(III) treatment. The antioxidant enzyme superoxide dismutase (SOD) effectively blocked both As(III)-and MMA(III)- associated COX-2 induction. The generation of ROS and subsequent altered signaling did lead to changes in protein levels of SOD, which were detected after treatment with either 1 microM As(III) or 50 nM MMA(III). These data suggest that the generation of ROS by arsenicals may be a mechanism leading to the altered cellular signaling seen after low-level arsenical exposure.  相似文献   

10.
The aim of this study was to investigate the effect of airborne particulate matter with a mean aerodynamic diameter of ≤10 μm (PM10) on oxidative stress markers and antioxidant enzymatic activity and its relevance in the face of acute oxidative challenge in a human lung epithelial cell line (A549). PM10-induced reactive oxygen species (ROS) generation and oxidative damage with no changes in cellular viability. In addition, PM10 decreased glutathione (GSH) levels (54.9%) and the activity of the antioxidant enzymes superoxide dismutase (65%), catalase (31.2%), glutathione reductase (61.5%) and glutathione-S-transferase (42.39%). Trolox, a scavenger of reactive species, prevented the increase of ROS generation and the decrease in GSH levels but partially prevented PM10-induced oxidative damage. Interestingly, it was unable to avoid the decrease in the activity of antioxidant enzymes. Finally, the survival of the cells previously exposed to PM10 and challenged with hydrogen peroxide was significantly lower. We conclude that the impairment in the antioxidant defense system induced by PM10 weaken ROS detoxification which exacerbates cell death when these cells are exposed to an acute oxidative challenge.  相似文献   

11.
Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53-p21-Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity.  相似文献   

12.
Szeto HH 《The AAPS journal》2006,8(3):E521-E531
Increasing evidence suggests that mitochondrial dysfunction and oxidative stress play a crucial role in the majority of neurodegenerative diseases. Mitochondria are a major source of intracellular reactive oxygen species (ROS) and are particularly vulnerable to oxidative stress. Oxidative damage to mitochondria has been shown to impair mitochondrial function and lead to cell death via apoptosis and necrosis. Because dysfunctional mitochondria will produce more ROS, a feed-forward loop is set up whereby ROS-mediated oxidative damage to mitochondria favors more ROS generation, resulting in a vicious cycle. It is now appreciated that reduction of mitochondrial oxidative stress may prevent or slow down the progression of these neurodegenerative disorders. However, if mitochondria are the major source of intracellular ROS and mitochondria are most vulnerable to oxidative damage, then it would be ideal to deliver the antioxidant therapy to mitochondria. This review will summarize the development of a novel class of mitochondria-targeted antioxidants that can protect mitochondria against oxidative stress and prevent neuronal cell death in animal models of stroke, Parkinson's disease, and amyotrophic lateral sclerosis.  相似文献   

13.
14.
Acrylamide (AA) is a toxic chemical compound found in cooked foods. Considerable evidences suggest that oxidative stress and mitochondrial dysfunction are contributed to AA toxicity. Ceric oxide (CeO2) nanoparticles (nano-ceria) have the potential to be developed as a therapeutic for oxidative stress insults due to their catalytic antioxidant properties. In this study we investigated, whether nano-ceria exerted a protective effect against AA-induced cytotoxicity and oxidative damage. HepG2 human cancer cell lines were exposed to nano-ceria (50, 100, and 200?µM) and after 30?min, AA in the half maximal inhibitory concentration (IC50) concentration (200?µM) was added to the cells. Twenty four hours later, cellular viability, reactive oxygen species (ROS) generation, lipid peroxidation (LPO), and cellular levels of glutathione (GSH) were assayed. AA decreased cell viability and pretreatment with nano-ceria significantly decreased AA-induced cytotoxicity. In addition, nano-ceria alleviated AA-induced ROS generation and LPO and depressed GSH level. Our results suggested that nano-ceria prevented cellular and oxidative damage induced by AA.  相似文献   

15.
PURPOSE: To investigate the mechanism of human prostate cancer cell growth inhibition by plumbagin, a constituent of the widely used medicinal herb Plumbago zeylanica L. MATERIALS AND METHODS: Cell viability was determined by trypan blue dye exclusion assay. Apoptosis induction was assessed by analysis of cytoplasmic histone-associated DNA fragmentation. Cell cycle distribution and generation of reactive oxygen species (ROS) were determined by flow cytometry. The effect of plumbagin treatment on cellular redox status was determined by analysis of intracellular glutathione (GSH) levels and expression of genes involved in ROS metabolism. RESULTS: Plumbagin treatment decreased viability of human prostate cancer cells (PC-3, LNCaP, and C4-2) irrespective of their androgen responsiveness or p53 status. Plumbagin-mediated decrease in cell viability correlated with apoptosis induction, which was accompanied by ROS generation and depletion of intracellular GSH levels. Pretreatment of cells with the antioxidant N-acetylcysteine inhibited plumbagin-mediated ROS generation and apoptosis. Plumbagin treatment also resulted in altered expression of genes responsible for ROS metabolism, including superoxide dismutase 2 (Mn-SOD). CONCLUSION: The present study points towards an important role of ROS in plumbagin-induced apoptosis in human prostate cancer cells.  相似文献   

16.
摘要:抗菌药物的滥用加速了细菌耐药的产生与传播,每年因耐药细菌导致的人口死亡和医疗成本耗费都极为惊人。针对 耐药细菌的新型抗生素研制十分缓慢,自1987年以来没有一类新型抗生素上市。研究抗生素杀菌机制以开发新药或抗生素佐剂 是一种应对耐药细菌的良好策略。目前普遍认同活性氧(ROS)介导细胞死亡是抗生素杀菌的共享途径,抗生素作用于靶标介导 产生原发初级损伤,诱使ROS生成,ROS造成次级细胞损伤并刺激更多ROS生成,形成一种恶性循环,最终ROS累积超过细胞 氧化应激极限、致使细菌死亡。细菌胞内具有用以消除氧化应激压力的专能系统,针对性抑制这些系统可能是快速杀伤细菌的 一个好策略。然而,设计靶向细菌某些代谢节点的新型抗生素或相关佐剂很可能更为简单、有效,生物体代谢是一个巨大的相 互协作网络,关键节点的扰动很容易引起代谢通路的剧烈波动,能引发细菌整体氧化应激状态改变的代谢节点有望成为潜在新 抗生素或抗生素增效剂的靶标。  相似文献   

17.
The health risks of nanoparticles remain a serious concern given their prevalence from industrial and domestic use. The primary route of titanium dioxide nanoparticle exposure is inhalation. The extent to which nanoparticles contribute to cellular toxicity is known to associate induction of oxidative stress. To investigate this problem further, the effect of titanium dioxide nanoparticles was examined on cell lines representative of alveolo-capillary barrier.The present study showed that all nanoparticle-exposed cell lines displayed ROS generation. Macrophage-like THP-1 and HPMEC-ST1.6R microvascular cells were sensitive to endogenous redox changes and underwent apoptosis, but not alveolar epithelial A549 cells. Genotoxic potential of titanium dioxide nanoparticles was investigated using the activation of γH2AX, activation of DNA repair proteins and cell cycle arrest. In the sensitive cell lines, DNA damage was persistent and activation of DNA repair pathways was observed. Moreover, western blot analysis showed that specific pathways associated with cellular stress response were activated concomitantly with DNA repair or apoptosis.Nanoparticles-induced oxidative stress is finally signal transducer for further physiological effects including genotoxicity and cytotoxicity. Within activated pathways, HSP27 and SAPK/JNK proteins appeared as potential biomarkers of intracellular stress and of sensitivity to endogenous redox changes, respectively, enabling to predict cell behavior.  相似文献   

18.
ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function   总被引:1,自引:0,他引:1  
This review focuses on the emerging evidence that reactive oxygen species (ROS) derived from glucose metabolism, such as H2O2, act as metabolic signaling molecules for glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells. Particular emphasis is placed on the potential inhibitory role of endogenous antioxidants, which rise in response to oxidative stress, in glucose-triggered ROS and GSIS. We propose that cellular adaptive response to oxidative stress challenge, such as nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant induction, plays paradoxical roles in pancreatic beta-cell function. On the one hand, induction of antioxidant enzymes protects beta-cells from oxidative damage and possible cell death, thus minimizing oxidative damage-related impairment of insulin secretion. On the other hand, the induction of antioxidant enzymes by Nrf2 activation blunts glucose-triggered ROS signaling, thus resulting in reduced GSIS. These two premises are potentially relevant to impairment of beta-cells occurring in the late and early stage of Type 2 diabetes, respectively. In addition, we summarized our recent findings that persistent oxidative stress due to absence of uncoupling protein 2 activates cellular adaptive response which is associated with impaired pancreatic beta-cell function.  相似文献   

19.
We evaluated the cytoprotective effect of myricetin on oxidative stress damaged cells by assessment of the scavenging effect of reactive oxygen species (ROS) and the activities of antioxidant enzymes. Myricetin showed the scavenging effect of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals on intracellular ROS. In addition, myricetin restored the activity and protein expression of cellular antioxidant defense enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) reduced by hydrogen peroxide (H(2)O(2)) treatment. H(2)O(2)-induced cellular DNA and lipid damages, and myricetin was found to prevent the DNA damage shown by inhibition of DNA tail and it decreased nuclear phospho-histone H2A.X expression, which are both markers for DNA strand breakage. Membrane lipid peroxidation was also attenuated as shown by inhibition of TBARS formation and of fluorescence intensity of diphenyl-1-pyrenylphosphine (DPPP). These results suggest that myricetin protects cells against H(2)O(2)-induced cell damage via inhibition of ROS generation and activation of antioxidant enzymes.  相似文献   

20.
Arsenicals have commonly been seen to induce reactive oxygen species (ROS) which can lead to DNA damage and oxidative stress. At low levels, arsenicals still induce the formation of ROS, leading to DNA damage and protein alterations. UROtsa cells, an immortalized human urothelial cell line, were used to study the effects of arsenicals on the human bladder, a site of arsenical bioconcentration and carcinogenesis. Biotransformation of As(III) by UROtsa cells has been shown to produce methylated species, namely monomethylarsonous acid [MMA(III)], which has been shown to be 20 times more cytotoxic. Confocal fluorescence images of UROtsa cells treated with arsenicals and the ROS sensing probe, DCFDA, showed an increase of intracellular ROS within five min after 1 microM and 10 microM As(III) treatments. In contrast, 50 and 500 nM MMA(III) required pretreatment for 30 min before inducing ROS. The increase in ROS was ameliorated by preincubation with either SOD or catalase. An interesting aspect of these ROS detection studies is the noticeable difference between concentrations of As(III) and MMA(III) used, further supporting the increased cytotoxicity of MMA(III), as well as the increased amount of time required for MMA(III) to cause oxidative stress. These arsenical-induced ROS produced oxidative DNA damage as evidenced by an increase in 8-hydroxyl-2'-deoxyguanosine (8-oxo-dG) with either 50 nM or 5 microM MMA(III) exposure. These findings provide support that MMA(III) cause a genotoxic response upon generation of ROS. Both As(III) and MMA(III) were also able to induce Hsp70 and MT protein levels above control, showing that the cells recognize the ROS and respond. As(III) rapidly induces the formation of ROS, possibly through it oxidation to As(V) and further metabolism to MMA(III)/(V). These studies provide evidence for a different mechanism of MMA(III) toxicity, one that MMA(III) first interacts with cellular components before an ROS response is generated, taking longer to produce the effect, but with more substantial harm to the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号