首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amyloid beta peptide (Abeta), a mediator of neuronal and vascular degeneration in the pathogenesis of Alzheimer's disease and cerebral amyloid angiopathy may have peripheral actions. Platelets are enriched with Abeta and have been shown to enhance platelet actions. However, the detailed signaling pathways through which Abeta activates platelets have not been previously explored. In this study, we examined the intra-platelet Abeta distribution using a gold labeling technique and noted that Abeta was predominantly localized in the cytoplasm of resting platelets. A marked increase in Abeta-gold labeling in an open canalicular system was observed in collagen-activated platelets. Exogenous Abeta (2-10 microM) stimulated platelet aggregation accompanied by phospholipase Cgamma2 (PLCgamma2) phosphorylation, phosphoinositide breakdown, and [Ca(2+)]i mobilization as well as protein kinase C (PKC) activation. Ro318220, an inhibitor of PKC, suppressed Abeta-induced platelet aggregation, PKC activation, and [Ca(2+)]i mobilization in platelets, suggesting that the PLCgamma2-PKC pathway is involved in Abeta-induced platelet aggregation. In the electron spin resonance study, Abeta (2 and 10 microM) markedly triggered hydroxyl radical formation in platelets. In an in vivo study, Abeta (2mg/kg) significantly shortened the latency for inducing platelet plug formation in the mesenteric venules of mice. In conclusion, we are the first to demonstrate (1) the distribution of Abeta in human platelets; and that (2) Abeta activation of platelets is mediated, at least partially, by the PLCgamma2-PKC pathway; and (3) Abeta triggers thrombus formation in vivo.  相似文献   

2.
Inflammation of the vascular wall is considered as the principal underlying mechanism in the development of atherosclerosis. Besides their specific functions in haemostasis via thrombus formation after an endothelial injury, a growing body of evidence indicates that platelets play an important role in the inflammatory reactions occurring in the vascular wall as well as in the subsequent tissue repair mechanisms. Platelets interact with activated endothelium as well as with circulating leukocytes and progenitor cells. These interactions, involve direct cell-to-cell interactions as well as autocrine and paracrine pathways, which lead to activation of platelets and their respective cellular counterpart. An increasing body of evidence suggests that antiplatelet therapy may reduce vascular inflammation primarily by inhibiting platelet activation. The aim of the present review is to highlight the molecular basis of platelet-mediated inflammatory response, focusing on the mechanisms underlying the platelet-endothelial cell interaction. The anti-inflammatory effects of current antiplatelet therapies will be also discussed.  相似文献   

3.
This chapter summarizes current ideas about the intracellular signaling that drives platelet responses to vascular injury. After a brief overview of platelet activation intended to place the signaling pathways into context, the first section considers the early events of platelet activation leading up to integrin activation and platelet aggregation. The focus is on the G protein-mediated events utilized by agonists such as thrombin and ADP, and the tyrosine kinase-based signaling triggered by collagen. The second section considers the events that occur after integrin engagement, some of which are dependent on close physical contact between platelets. A third section addresses the regulatory events that help to avoid unprovoked or excessive platelet activation, after which the final section briefly considers individual variations in platelet reactivity and the role of platelet signaling in the innate immune response and embryonic development.  相似文献   

4.
The activation of platelets at sites of vascular injury is essential for primary hemostasis, but also underlies arterial thrombosis leading to myocardial infarction or stroke. The inhibition of platelet function is therefore a major strategy to prevent and treat arterial thrombosis. Platelet stimuli like ADP, thrombin or thromboxane A(2) activate receptors that are coupled to heterotrimeric G proteins to regulate intracellular signaling pathways. Activation of platelets through these receptors has been shown to involve signaling through various heterotrimeric G proteins. The G protein G(13), which is able to link receptors to the Rho/Rho-kinase pathway, has recently been shown to be critically involved in platelet activation and to play an important role in platelet-dependent arterial thrombosis. The G(13)-mediated signaling pathway may therefore be an interesting new target for antiplatelet drugs.  相似文献   

5.
Vessel occlusion within a coronary artery is the precipitating event in unstable coronary syndromes and is primarily due to rupture of atheromatous plaque and subsequent thrombus formation. In the nondiseased vessel, the intact endothelium releases the vasodilator and antithrombotic agent nitric oxide (NO) preventing platelet adherence and activation. In the diseased vessel and during unstable coronary syndromes, release of both endothelial and platelet NO is impaired contributing to thrombus formation. Nitric oxide availability in the vascular system has been associated with various disease states, genetic variants, and medication use. Recently, through the development of new NO donors and by targeting specific signaling pathways, there has been an attempt to enhance the antithrombotic actions of NO as a means to manipulate arterial thrombosis.  相似文献   

6.
Prostaglandin-induced cAMP elevation restrains key signaling pathways in platelet activation including Ca(2+) mobilization and integrin alphaIIbbeta3 affinity regulation. We investigated how cAMP turnover by cyclic nucleotide phosphodiesterases (PDEs) regulates platelet activation. In washed human platelets, inhibition of all PDEs and also specific inhibition of PDE3 but not of PDE5 suppressed thrombin-induced Ca(2+) responses. The effect of general PDE or PDE3 inhibition was accompanied by an increase in cAMP, and potentiated by Gs stimulation with prostaglandin E(1). In platelet-rich plasma, general or PDE3 inhibition blocked platelet aggregation, integrin activation, secretion and thrombin generation. In contrast, inhibition of PDE5 increased the cGMP level, but without significant influence on aggregation, alphaIIbbeta3 activation, secretion or procoagulant activity. Nitroprusside (nitric oxide) potentiated the effect of PDE5 inhibition in elevating cGMP. Nitroprusside inhibited platelet responses, but this was accompanied by elevation of cAMP. Together, these results indicate that cAMP is persistently formed in platelets, independently of agonist-induced Gs stimulation. PDE3 thus functions to keep cAMP at a low equilibrium level and reduce the cAMP-regulated threshold for platelet activation. This crucial role of PDE3, but not of PDE5, extends to all major processes in thrombus formation: assembly of platelets into aggregates, secretion of autocrine products, and procoagulant activity.  相似文献   

7.
Platelet activation induces rapid thrombus formation at a ruptured atherosclerotic plaque leading to acute vessel occlusion and a fatal or non-fatal cardiovascular event. More recent evidence suggests that activated platelets play an additional central role during the initiation of atherosclerosis, essentially facilitating leukocyte adhesion and recruitment. Endothelial dysfunction is a common and early feature of cardiovascular diseases characterized by reduced bioavailability of prostacyclin and nitric oxide (NO). Subsequently impaired endogenous platelet inhibition causes platelet activation in pre-atherosclerotic vascular disease resulting in enhanced platelet susceptibility to agonists released from the inflamed endothelium. Platelet adhesion to inflammatory, dysfunctional endothelium precedes leukocyte adhesion. Indeed, adherent activated platelets are mandatory for leukocyte recruitment in the early phases of atherosclerosis under arterial flow conditions. Increased expression of chemokines in atherosclerotic plaques and the inflamed endothelium initiates and facilitates pro-inflammatory processes in leukocytes and the vascular wall. Apart from their chemotactic properties, some chemokines such as fractalkine contribute to platelet activation. Moreover, fractalkine induces leukocyte recruitment to inflamed endothelial cells under arterial flow by activating adherent platelets. An aggressive form of atherosclerosis is found in patients with diabetes. Since diabetes is currently considered as a risk equivalent for coronary artery disease, the interaction between oxidative stress, endothelial dysfunction, impaired endogenous platelet inhibition and platelet activation is discussed in the light of diabetes. Defective regulation of platelet activation/aggregation is a predominant cause for arterial thrombosis, the major complication of atherosclerosis triggering myocardial infarction and stroke.  相似文献   

8.
The Role of the Platelet in the Pathogenesis of Atherothrombosis   总被引:15,自引:0,他引:15  
Platelet adhesion, activation, and aggregation at sites of vascular endothelial disruption caused by atherosclerosis are key events in arterial thrombus formation. Platelet tethering and adhesion to the arterial wall, particularly under high shear forces, are achieved through multiple high-affinity interactions between platelet membrane receptors (integrins) and ligands within the exposed subendothelium, most notably collagen and von Willebrand factor (vWF). Platelet adhesion to collagen occurs both indirectly, via binding of the platelet glycoprotein (GP) Ib-V-IX receptor to circulating vWF, which binds to exposed collagen, and directly, via interaction with the platelet receptors GP VI and GP Ia/IIb. Platelet activation, initiated by exposed collagen and locally generated soluble platelet agonists (primarily thrombin, ADP, and thromboxane A2), provides the stimulus for the release of platelet-derived growth factors, adhesion molecules and coagulation factors, activation of adjacent platelets, and conformational changes in the platelet alpha(IIb)beta3 integrin (GP IIb/IIIa receptor). Platelet aggregation, mediated primarily by interaction between the activated platelet GP IIb/IIIa receptor and its ligands, fibrinogen and vWF, results in the formation of a platelet-rich thrombus. Currently available antiplatelet drugs (aspirin [acetylsalicylic acid], dipyridamole, clopidogrel, ticlopidine, abciximab, eptifibatide, tirofiban) act on specific targets to inhibit platelet activation and aggregation. Elucidation of the multiple mechanisms involved in platelet thrombus formation provides opportunities for selectively inhibiting the pathways most relevant to the pathophysiology of atherothrombosis.  相似文献   

9.
Platelet activation and aggregation is an integral component of the pathophysiology that leads to thrombotic and ischemic diseases such as cerebral stroke, peripheral vascular disease and myocardial infarction. Anti-platelet agents (such as aspirin, ADP receptor antagonists, and GPIIb/IIIa antagonists), phosphodiesterase inhibitors and anti-coagulants are major part of the current treatment towards treating ischemic diseases. However, their limited efficacy in the setting of arterial thrombosis, unfavorable side effect profile and cost-to-benefit issues substantiate the need for the development of newer and more efficacious antithrombotic drugs. Various platelet agonists like adenosine diphosphate (ADP), thrombin and thromboxane A2 (TXA2) activate platelets by acting via their respective surface receptors, which couple to one or more distinct G-proteins belonging to either the G(i), G(q), G(12/13) or G(s) families. Upon activation, each of these G-proteins trigger a series of intracellular signaling cascades, causing the platelets to undergo shape change, secrete their granular contents, generate positive feedback mediators and form stable platelet aggregates. In addition, various G-protein-mediated signaling cascades act in synergy with one another to amplify the magnitude of the platelet responses. The significance of G-proteins as key mediators of the platelet function and normal hemostasis is further corroborated by extensive gene knockout studies. In this review we will limit our discussion to understanding the role of G-proteins in the process of platelet activation and discuss some of the anti-thrombotic drugs that mediate their beneficial effects by interfering with or preventing the initiation of the G-protein signaling pathway.  相似文献   

10.
Taming platelets with cyclic nucleotides.   总被引:13,自引:0,他引:13  
Cardiovascular diseases are often accompanied and aggravated by pathologic platelet activation. Tight regulation of platelet function is an essential prerequisite for intact vessel physiology or effective cardiovascular therapy. Physiological platelet antagonists as well as various pharmacological vasodilators inhibit platelet function by activating adenylyl and guanylyl cyclases and increasing intracellular cyclic AMP (cAMP) and cyclic GMP (cGMP) levels, respectively. Elevation of platelet cyclic nucleotides interferes with basically all known platelet activatory signaling pathways, and effectively blocks complex intracellular signaling networks, cytoskeletal rearrangements, fibrinogen receptor activation, degranulation, and expression of pro-inflammatory signaling molecules. The major target molecules of cyclic nucleotides in platelets are cyclic nucleotide-dependent protein kinases that mediate their effects through phosphorylation of specific substrates. They directly affect receptor/G-protein activation and interfere with a variety of signal transduction pathways, including the phospholipase C, protein kinase C, and mitogen-activated protein kinase pathways. Regulation of these pathways blocks several steps of cytosolic Ca(2+) elevation and controls a multitude of cytoskeleton-associated proteins that are directly involved in organization of the platelet cytoskeleton. Due to their multiple sites of action and strong inhibitory potencies, cyclic nucleotides and their regulatory pathways are of particular interest for developing new approaches for the treatment of thrombotic and cardiovascular disorders.  相似文献   

11.
Amyloid beta peptide (amyloid-beta), which accumulates in the cerebral microvessels in an age-dependent manner, plays a key role in the pathogenesis of cerebral amyloid angiopathy. Platelets are an important cellular element in vasculopathy of various causes. Amyloid-beta may activate or potentiate platelet aggregation. The present study explored the signaling events that underlie amyloid-beta activation of platelet aggregation. Platelet aggregometry, immunoblotting and assays to detect activated cellular events were applied to examine the signaling processes of amyloid-beta activation of platelets. Exogenous amyloid-beta (1-2 microM) potentiated platelet aggregation caused by collagen and other agonists. At higher concentrations (5-10 microM), amyloid-beta induced platelet aggregation which was accompanied by an increase in thromboxane A2 (TxA2) formation. These amyloid-beta actions on platelets were causally related to amyloid-beta activation of p38 mitogen-activated protein kinase (MAPK). Inhibitors of p38 MAPK and its upstream signaling pathways including proteinase-activated receptor 1 (PAR1), Ras, phosphoinositide 3-kinase (PI3-kinase), or Akt, but not extracellular signal-regulated kinase 2 (ERK2)/c-Jun N-terminal kinase 1 (JNK1), blocked amyloid-beta-induced platelet activation. These findings suggest that the p38 MAPK, but not ERK2 or JNK1 pathway, is specifically activated in amyloid-beta-induced platelet aggregation with the following signaling pathway: PAR1 --> Ras/Raf --> PI3-kinase --> Akt --> p38 MAPK --> cytosolic phospholipase A2 (cPLA2)--> TxA2. In conclusion, this study demonstrates amyloid-beta activation of a p38 MAPK signaling pathway in platelets leading to aggregation. Further studies are needed to define the specific role of amyloid-beta activation of platelets in the pathogenesis of vasculopathy including cerebral amyloid angiopathy.  相似文献   

12.
Thrombin-mediated activation of platelets is critical for hemostasis, but the signaling pathways responsible for this process are not completely understood. In addition, signaling within this cascade can also lead to thrombosis. In this study, we have defined a new signaling pathway for the thrombin receptor protease activated receptor-1 (PAR1) in human platelets. We show that PAR1 couples to G(i/o) in human platelets and activates phosphoinositide-3 kinase (PI3K). PI3K activation regulates platelet integrin alphaIIbbeta3 activation and platelet aggregation and potentiates the PAR1-mediated increase in intraplatelet calcium concentration. PI3K inhibitors eliminated these effects downstream of PAR1, but they had no effect on PAR4 signaling. This study has identified an important role for the direct activation of G(i/o) by PAR1 in human platelets. Given the efficacy of clopidogrel, which blocks the G(i/o)-coupled P2Y purinoceptor 12, as an antiplatelet/antithrombotic drug, our data suggest that specifically blocking only PAR1-mediated G(i/o) signaling could also be an effective therapeutic approach with the possibility of less unwanted bleeding.  相似文献   

13.
Pathological conditions such as coronary artery disease are clinically controlled via therapeutic regulation of platelet activity. Thrombin, through protease-activated receptor (PAR) 1 and PAR4, plays a central role in regulation of human platelet function in that it is known to be the most potent activator of human platelets. Currently, direct thrombin inhibitors used to block platelet activation result in unwanted side effects of excessive bleeding. An alternative therapeutic strategy would be to inhibit PAR-mediated intracellular platelet signaling pathways. To elucidate the best target, we are studying differences between the two platelet thrombin receptors, PAR1 and PAR4, in mediating thrombin's action. In this study, we show that platelet activation by PAR1-activating peptide (PAR1-AP) requires a phospholipase D (PLD)-mediated phosphatidic acid (PA) signaling pathway. We show that this PAR1-specific PA-mediated effect is not regulated through differential granule secretion after PAR-induced platelet activation. Perturbation of this signaling pathway via inhibition of lipid phosphate phosphatase-1 (LPP-1) by propranolol or inhibition of the phosphatidylcholine-derived phosphatidic acid (PA) formation by PLD with a primary alcohol significantly attenuated platelet activation by PAR1-AP. Platelet activation by thrombin or PAR4-AP was insensitive to these inhibitors. Furthermore, these inhibitors significantly attenuated activation of Rap1 after stimulation by PAR1-AP but not thrombin or PAR4-AP. Because PA metabolites such as diacylglycerol play an important role in intracellular signaling, identifying crucial differences in PA regulation of PAR-induced platelet activation may lead to a greater understanding of the role of PAR1 versus PAR4 in progression of thrombosis.  相似文献   

14.
Rupture of an atherosclerotic plaque exposes a thrombogenic matrix, which instantly triggers platelet tethering and activation. We here delineate the sequence of events during arterial thrombus formation and dissect the specific role of the various platelet receptors in this process. We also discuss the interplay of platelets with circulating immune cells, which support arterial thrombosis by fibrin formation in a process that involves extracellular nucleosomes. In the second part of this chapter we describe the role of platelets in atherosclerotic lesion formation. Platelets adhere to the dysfunctional endothelium early during atherogenesis. They contain a large machinery of proinflammatory molecules, which can be released upon their activation. This prepares the ground for subsequent leukocyte recruitment and infiltration, and boosts the inflammatory process of the arterial wall. Together, platelets play a critical role in both acute and chronic processes of the vascular wall, which makes them an attractive target for pharmacological strategies to treat arterial thrombosis and, potentially, also atheroprogression.  相似文献   

15.
We have previously reported presence of the glucocorticoid (GC) receptor (GR) alpha on blood platelets, and its ability to modulate platelet aggregation when activated by the synthetic GC prednisolone (Pred). In the present study we investigated the effects of Pred on broader aspects of platelet functions to unveil novel non-genomic actions on this cell type. Using whole blood assay we demonstrated that Pred was the only GC able to inhibit platelet aggregation and platelet–monocyte interactions. This latter effect was due to regulation of platelets, not monocytes. We next examined the effects of Pred on physiological actions of platelets, observing inhibition of platelet adhesion and spreading on collagen under static conditions. Moreover Pred inhibited thrombus formation under flow, suggesting potential important effects in haemostasis and thrombosis. Pred was unable to regulate platelet reactivity under conditions where the effects of platelet-derived ADP and TxA2 were blocked, suggesting that the GC targeted the activation-dependent component of the adhesion and aggregation response. The effects of Pred were not mediated through cyclic nucleotide signaling, but rather seemed to evolve around selective regulation of P2Y12 ADP receptor signaling, intimating a novel mode of action. This study details the actions of Pred on platelets unveiling novel properties which could be relevant for this GC in controlling unwanted vascular and thrombotic diseases.  相似文献   

16.
The effects of 1,2-bis(nicotinamido)propane (AVS) on platelet function and vascular endothelium were investigated using various experimental thrombosis and vascular endothelial injury models. Neither in vitro platelet aggregation induced by ADP, collagen or arachidonate nor ex vivo platelet aggregation by ADP or collagen could be antagonized by AVS. On the other hand, AVS prevented mice, rats and rabbits from death induced by acute cerebral or pulmonary thromboembolism following the injection of arachidonate or collagen. These activities were as potent as those of acetylsalicylic acid. The disrupting actions of citrate and/or lipidperoxide (13-hydroperoxy linoleic acid) on endothelium were well inhibited by the pretreatment of AVS. AVS did not inhibit cyclooxygenase, increased prostacyclin (PGI2)/thromboxane A2 (TXA2) ratio in the coupled system of platelets and aortic microsomes. In conclusion, AVS inhibited thrombus formation in vivo while it was ineffective in vitro platelet alone system, which may result from the actions of this agent on both platelets and vascular endothelium. The above-mentioned results clearly show that AVS may be a new potent anti-vascular damaging agent with both endothelium stabilizing and PGI2 enhancing activities.  相似文献   

17.
1. The aim of this study was to identify the presence of matrix metalloproteinase-9 (MMP-9) in human platelets and systematically examine its inhibitory mechanisms of platelet activation. 2. In this study, we report on an efficient method for the quantitative analysis of pro-MMP-9 in human platelets using capillary zone electrophoresis (CZE). To elucidate subcellular localization of MMP-9 in human platelets, we investigated intraplatelet MMP-9 by immunogold labeling and visualized it using electron microscopy. In an in vivo thrombotic study, platelet thrombus formation was induced by irradiation of mesenteric venules with filtered light in mice pretreated with fluorescein sodium. 3. MMP-9-gold labeling was observed on the plasma membrane, alpha-granules, open canalicular system, and within the cytoplasma both in resting and activated platelets. Furthermore, activated MMP-9 concentration-dependently (15-90 ng ml(-1)) inhibited platelet aggregation stimulated by agonists. Activated MMP-9 (21 and 90 ng ml(-1)) inhibited phosphoinositide breakdown, intracellular Ca(2+) mobilization, and thromboxane A(2) formation in human platelets stimulated by collagen (1 microg ml(-1)). In addition, activated MMP-9 (21 and 90 ng ml(-1)) significantly increased the formation of nitric oxide/cyclic GMP. 4. Rapid phosphorylation of a platelet protein of Mr 47,000 (P47), a marker of protein kinase C activation, was triggered by phorbol-12, 13-dibutyrate (PDBu) (60 nm). This phosphorylation was markedly inhibited by activated MMP-9 (21 and 90 ng ml(-1)). Activated MMP-9 (1 microg g(-1)) significantly prolonged the latency period of inducing platelet plug formation in mesenteric venules. 5. These results indicate that the antiplatelet activity of activated MMP-9 may be involved in the following pathways. (1) Activated MMP-9 may inhibit the activation of phospholipase C, followed by inhibition of phosphoinositide breakdown, protein kinase C activation, and thromboxane A(2) formation, thereby leading to inhibition of intracellular Ca(2+) mobilization. (2) Activated MMP-9 also activated the formation of nitric oxide/cyclic GMP, resulting in inhibition of platelet aggregation. These results strongly indicate that MMP-9 is a potent inhibitor of aggregation. It may play an important role as a negative feedback regulator during platelet activation.  相似文献   

18.
Platelets play a pivotal role in the pathophysiology of acute coronary syndromes. Chronic beta-blockade has been shown to improve the long-term clinical outcome in coronary heart disease. Because platelets play a central role in thrombus formation, the aim of the present study was to investigate if chronic beta-blockade may transregulate the expression of alpha2-adrenergic receptors on human platelets and via this mechanism may modulate platelet activation. The densities of alpha2-adrenergic receptors of platelets were determined in healthy volunteers under chronic beta-blockade and as alpha2-adrenergic receptor-mediated function in catecholamine-induced platelet aggregation was determined. Chronic beta-blockade induced a time-dependent reduction of alpha2-adrenergic receptors. This reduction was accompanied by a decrease of the alpha-subunit of Gi proteins as demonstrated by Western blot analysis. This transregulation at both the receptor level and the G-protein level resulted in an almost complete loss of the alpha2-adrenergic receptor-mediated inhibition of adenylyl cyclase. The impairment of the alpha2-adrenergic receptor system correlated with a reduction of the catecholamine-induced activation and aggregation of human platelets. The functional transregulation of alpha2-adrenergic receptors by chronic beta-blockade in platelets and the consequent impairment of platelet activation may contribute to the therapeutic success of beta-blocker therapy.  相似文献   

19.
Lei W  Huang Y  Zhang Y  Yu G  Wan S  Lee W  Zhang Y 《Toxicon》2012,59(1):104-109
Bm-TFF2 is an amphibian trefoil factor purified from the Bombina maxima skin secretion that is highly toxic to mammals. We previously reported that Bm-TFF2 activates human platelets via protease-activated receptor 1. In this study, for a better understanding of platelet activation induced by Bm-TFF2, we used affinity chromatography and pharmacological inhibitors to investigate the downstream signaling pathway. Using Bm-TFF2-affinity chromatography, Gq was specifically eluted from the Bm-TFF2-coulped column. Pharmacological inhibitors such as U73122, Xestospongin C, BAPTA-AM and Gö6976 can significantly inhibit Bm-TFF2-induced platelet aggregation. These results suggested that Gq activation and the downstream PLCβ-IP3 receptor-cytoplasmic Ca2+-PKC signaling pathway is crucial for Bm-TFF2 to stimulate platelet aggregation. Furthermore, Bm-TFF2 induced strong platelet shape change at the concentrations of 5 nM, in which the Ca2+ mobilization of the platelets stimulated was not detectable. The p160ROCK inhibitorY27632 totally inhibited the shape change, indicating that Bm-TFF2 may activate the G12/13 pathway which leads to the activation of RhoA-p160ROCK. In conclusion, Bm-TFF2 induced platelet activation mainly via the Gq and G12/13 signaling pathway. This study on the signaling pathway of Bm-TFF2 stimulation may help us understand the toxicity of B. maxima skin secretion to the human platelets.  相似文献   

20.
Thrombogenic and inflammatory activity are two distinct aspects of platelet biology, which are sustained by the ability of activated platelets to interact with each other (homotypic aggregation) and to adhere to circulating leucocytes (heterotypic aggregation). These two events are regulated by distinct biomolecular mechanisms that are selectively activated in different pathophysiological settings. They can occur simultaneously, for example, as part of a pro-thrombotic/pro-inflammatory response induced by vascular damage, or independently, as in certain clinical conditions in which abnormal heterotypic aggregation has been observed in the absence of intravascular thrombosis. Current antiplatelet drugs have been developed to target specific molecular signalling pathways mainly implicated in thrombus formation, and their ever increasing clinical use has resulted in clear benefits in the treatment and prevention of arterial thrombotic events. However, the efficacy of currently available antiplatelet drugs remains suboptimal, most likely because their therapeutic action is limited to only few of the signalling pathways involved in platelet homotypic aggregation. In this context, modulation of heterotypic aggregation, which is believed to contribute importantly to acute thrombotic events, as well to the pathophysiology of atherosclerosis itself, may offer benefits over and above the classical antiplatelet approach. This review will focus on the distinct biomolecular pathways that, following platelet activation, underlie homotypic and heterotypic aggregation, aiming potentially to identify novel therapeutic targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号