首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The nucleus accumbens (NAc) is known widely for its role in the reward circuit, which is dysregulated in a number of psychological disorders. Recent evidence also suggests the contribution of this structure in spatial and gustatory memories. Because of its role in different types of memories, similar to the hippocampus, we assumed the formation of spine clusters, which are engrams of memory, to be present on dendrites of medium spiny neurons (MSNs). We found that the activation of clustered inputs resulted in sublinear summation when clusters were present on the same branch and also when inputs were distributed on different branches. The size, as well as the location of clusters, was found to affect the summation. With an increase in cluster size and distance from soma, the summation was increasingly sublinear. When the temporal integration window was measured for clustered spines, it was found to be narrower as compared to that for a single spine. Also, distally located clusters resulted in a wider temporal window, as compared to proximal clusters. Our results suggest that depending on the location of clusters, the modes of integration will differ in MSNs possessing clustered spines.  相似文献   

2.
Anatomical tracing studies indicate that the nucleus accumbens receives inputs from limbic structures, and projects to the ventral pallidum. In order to get more fundamental insight into how information from the limbic areas is relayed via the nucleus accumbens, electrophysiological experiments were carried out in rats under halothane anaesthesia. Inputs originating in the subiculum were activated by electrical stimulation of the fornix fibres, and both field potentials and extracellular unit activity were recorded from the medial and lateral aspects of the nucleus accumbens. Evoked potentials consisted of two positive peaks (P1 at 10 ms and P2 at 25-30 ms). In between a negative-going wave (N1) was present. These initial components were followed by a complex negative wave (N2) with variable duration of 30-100 ms. The P2 and N2 components showed a conspicuous paired-pulse facilitation at stimulus intervals between 80 and at least 200 ms. When responses were recorded at increasing stimulus intensity, the second response emerged at lower threshold than the first response. The mechanisms underlying these phenomena were investigated by analysing the extracellularly recorded unit activity. Primarily, excitatory responses were found. Onset-latencies could be divided roughly into two clusters, one around 10 ms, representing monosynaptic inputs, and a second around 24-26 ms. Inhibitory responses were also found. Stimulation of the ventral pallidum was carried out in order to test whether the cells that could be driven by stimulation of the subicular inputs were projection cells. Latencies of antidromic action potentials ranged from 9 to 13 ms. A minority of the identified projection cells were activated by limbic inputs. The projection cells were found in the core region of the nucleus accumbens. Units that were inhibited by stimulation of the limbic inputs were found in the shell only, whereas excitatory responses were measured in both subdivisions of the nucleus accumbens. For the latter responses a significant enhancement, by a factor of four, was found using double pulse stimulation of the fornix at intervals of 100 ms. The basic electrophysiological properties are compared with those described in the literature, and speculations about the possible mechanisms responsible for the paired-pulse facilitation phenomena are put forward.  相似文献   

3.
We have investigated the integration of excitatory (parallel fiber) synaptic inputs in cerebellar Purkinje cells of young rats in vitro and in a compartmental model of such a cell, based on 3D morphological reconstruction. Excitatory synaptic inputs at two independent dendritic sites were activated by electrical stimulation with various delays between the two stimuli. Population postsynaptic potentials summed linearly under current clamp condition when the two dendritic input sites were spatially separated (>200 microm) but sublinearly, in a delay dependent manner, when the input sites were close (<50 microm) to each other. Population postsynaptic currents measured under voltage clamp conditions summed linearly independent of the spatial and temporal separation of inputs. Summation of inputs in a passive compartmental model of a Purkinje cell was similar to that of Purkinje cells in vitro. We show that sublinear summation of neighboring inputs is independent of inhibitory mechanisms and suggest that sublinearity is mainly due to a locally reduced driving force.  相似文献   

4.
Computational subunits in thin dendrites of pyramidal cells   总被引:12,自引:0,他引:12  
The thin basal and oblique dendrites of cortical pyramidal neurons receive most of the synaptic inputs from other cells, but their integrative properties remain uncertain. Previous studies have most often reported global linear or sublinear summation. An alternative view, supported by biophysical modeling studies, holds that thin dendrites provide a layer of independent computational 'subunits' that sigmoidally modulate their inputs prior to global summation. To distinguish these possibilities, we combined confocal imaging and dual-site focal synaptic stimulation of identified thin dendrites in rat neocortical pyramidal neurons. We found that nearby inputs on the same branch summed sigmoidally, whereas widely separated inputs or inputs to different branches summed linearly. This strong spatial compartmentalization effect is incompatible with a global summation rule and provides the first experimental support for a two-layer 'neural network' model of pyramidal neuron thin-branch integration. Our findings could have important implications for the computing and memory-related functions of cortical tissue.  相似文献   

5.
In the anaesthetized cat, lobules I and II of the cerebellar anterior lobe vermis were examined to determine their role in the vestibulospinal and neck-vestibulospinal reflexes with respect to: the somatotopic representation of afferent inputs from labyrinth, neck and tail; and the inhibitory influence on vestibulospinal tract (VST) neurones receiving vestibular and neck afferent inputs. After electrical stimulation of the vestibular nerve and of neck afferents, almost identical responses via mossy fibres were evoked in the lobules, with the prominent response in lobules I and IIa of Larsell. Stimulation of the nerve supplying the dorsal region of the tail induced primarily the mossy fibre response, but also the climbing fibre response, in lobule II. The most responsive areas to tail and neck afferent stimulation did not overlap each other. In the lateral vestibular nucleus, 163 antidromically identified VST neurones were recorded extra- or intracellularly. On the basis of the response pattern to contralateral neck afferent stimulation, they were classified into 3 groups: neurones with excitation (n = 45); neurones with inhibition (n = 71); and neurones with no modulation (n = 47). Stimulation of lobules I-IIa inhibited the activities of 44 VST neurones. Out of them, 41 neurones belonged to the first group. They made up 91% of the group. Twenty-nine of these neurones, i.e. neurones receiving excitatory inputs from the neck and inhibitory inputs from the lobules, received additional excitatory input from the labyrinth. Although lobules I-IIa may be regarded as neck area in the anterior lobe vermis from the viewpoint of sensory input, they did not exert inhibitory influence only exceptionally on vestibulocollic neurones, but predominantly on VST neurones sending their axons to lower thoracic or more caudal segments in the spinal cord. It is suggested from these results that lobules I-IIa have a close relationship with the neck reflex and/or interaction of neck and vestibulospinal reflexes being concerned with the postural adjustment of a rather wide area of the body.  相似文献   

6.
Stimulation of α2-noradrenergic (NA) receptors within the PFC improves working memory performance. This improvement is accompanied by a selective increase in the activity of PFC neurons during delay periods, although the cellular mechanisms responsible for this enhanced response are largely unknown. Here we used current and voltage clamp recordings to characterize the response of layer V–VI PFC pyramidal neurons to α2-NA receptor stimulation. α2-NA receptor activation produced a small hyperpolarization of the resting membrane potential, which was accompanied by an increase in input resistance and evoked firing. Voltage clamp analysis demonstrated that α2-NA receptor stimulation inhibited a caesium and ZD7288-sensitive hyperpolarization-activated (HCN) inward current. Suppression of HCN current by α2-NA stimulation was not dependent on adenylate cyclase but instead required activation of a PLC–PKC linked signalling pathway. Similar to direct blockade of HCN channels, α2-NA receptor stimulation produced a significant enhancement in temporal summation during trains of distally evoked EPSPs. These dual effects of α2-NA receptor stimulation – membrane hyperpolarization and enhanced temporal integration – together produce an increase in the overall gain of the response of PFC pyramidal neurons to excitatory synaptic input. The net effect is the suppression of isolated excitatory inputs while enhancing the response to a coherent burst of synaptic activity.  相似文献   

7.
Field and postsynaptic potentials of facial motoneurones evoked by stimulation of the caudal trigeminal nucleus were studied in cats by means of extra- and intracellular recording. Mono- and polysynaptic input onto facial motoneurones from the caudal trigeminal nucleus were shown. Four types of responses were distinguished: excitatory postsynaptic potentials generating a single action potential; a gradual shift of depolarization inducing multiple discharges; a rhythmic discharge of action potentials appearing at a low level of depolarization; excitatory postsynaptic potentials or a sequence of excitatory and inhibitory postsynaptic potentials. Multiple discharge was shown to appear as a result of effective summation of high frequency excitatory influences from efferent neurones of the caudal trigeminal nucleus projecting into the facial nucleus. Factors facilitating the development of gradual depolarization are: dendritic localization of synaptic terminals, dendritic origin of after-depolarizing processes and the high input resistance of the facial motoneurone membrane. It is thought that specific features of facial motoneurones and properties of afferent inputs are supposed to provide high sensitivity of neuronal organization of the facial nucleus to afferent signals as well as wide diversity in controlling its activity.  相似文献   

8.
Background activity of spinoreticular tract neurons in the T1-T4 segments was on average inhibited 80% by electrical stimulation of nucleus raphe magnus. Nucleus raphe magnus stimulation inhibited responses of spinoreticular tract neurons to somatic input produced by touching the skin and hair (innocuous stimulus) or pinching the skin and muscle (noxious stimulus). Inhibition of responses to noxious and innocuous somatic inputs was not significantly different. Inhibition produced during nucleus raphe magnus stimulation was less effective when the activity of spinoreticular tract cells increased. This relationship was consistent for both background activity and responses to somatic noxious or innocuous input. Nucleus raphe magnus stimulation inhibited responses of spinoreticular tract neurons to visceral input produced by electrical stimulation of cardiopulmonary sympathetic afferent fibers. Responses to C-fiber sympathetic afferent fibers were more effectively inhibited than were responses to A-delta sympathetic afferent fibers. In conclusion, stimulation of the nucleus raphe magnus inhibits T1-T4 spinoreticular tract neuronal responses to visceral and somatic inputs. Since spinoreticular neurons project to the medullary reticular formation, activation of the nucleus raphe magnus could modulate affective-motivational behavior and cardiovascular adjustments that often occur during angina pectoris.  相似文献   

9.
Soto C  Martín-Cora F  Leiras R  Velo P  Canedo A 《Neuroscience》2006,137(3):1015-1030
This study examined the modulatory influence exerted by GABA(B) receptors on the transmission of cutaneous afferent input to cuneate nucleus neurons in anesthetized cats. Electrical stimulation at the center of a receptive field activated cuneate nucleus cells at latencies of < or = 7 ms whereas stimulation at neighboring sites (receptive field edge) increased the response latency. Extracellular recording combined with microiontophoresis demonstrated that GABA(B) receptors are tonically active. Blockade of GABA(B) receptors prolonged sensory-evoked response durations and decreased times of occurrence of successive bursts whereas the agonist baclofen suppressed both these effects. Ejection of baclofen delayed the evoked response from the receptive field edge with respect to the receptive field center response and inhibited responses from the receptive field edge more effectively than responses from the receptive field center. From these results it is concluded that activation of GABA(B) receptors precludes cuneate cells from reaching firing threshold when afferent inputs are weak, spatially modulate cuneate nucleus excitability, play a major role in temporal pattern of discharges, and shape cutaneous receptive fields.  相似文献   

10.
The nucleus accumbens is regarded as the limbic-motor interface, in view of its limbic afferent and somatomotor and autonomic efferent connections. Within the accumbens, there appear to be specific areas in which limbic afferent fibres, derived from the hippocampus and the amygdala, overlap. These afferent inputs have been suggested to converge monosynaptically on cells within the accumbens and are hypothesized to play a role in paradigms such as conditioned place preference. Convergence between inputs from basolateral amygdala and hippocampus can be demonstrated with electrophysiological recording methods, but these do not conclusively preclude polysynaptic mechanisms.We examined the synaptic input to the projection neurons of the accumbens, the medium-sized densely spiny neurons. We labelled the projection neurons with a small injection of biotinylated dextran amine into the accumbens, and the afferents from the basolateral amygdala and ventral subiculum of the hippocampus with injections of biotinylated dextran amine and Phaseolus vulgaris-leucoagglutinin respectively, and revealed the anterogradely labelled fibres with different chromogens. The labelled accumbens-projection neurons were studied with correlated light and electron microscopy for identified monosynaptic inputs. With this technique we have demonstrated anatomically that monosynaptic convergence between the ventral subicular region of the hippocampus and the basolateral region of the amygdala occurs at the level of the proximal as well as distal dendrites. Finally, we suggest that these anatomical arrangements may represent the framework for the integrative role that has been assigned to the accumbens.  相似文献   

11.
Gastric vagal and cerebellar fastigial nuclear afferents have been implicated in the regulation of food intake by their communication with lateral hypothalamic area (LHA), which is generally referred to be the feeding center. This study was designed to examine the possible convergence of the inputs from the gastric vagal trunks and cerebellar fastigial nucleus (FN) on the LHA neurons. Among recorded 191 LHA neurons, 99 (51.8%) responded to the stimulation of the gastric vagal trunks, of which 55 (55.6%) also responded to the cerebellar FN stimulation. Of 62 LHA neurons that responded to the gastric vagal stimulation, 43 (69.4%) showed an inhibitory response to the intravenous glucose application indicating they were glycemia-sensitive neurons. When the gastric vagal trunks and cerebellar FN were stimulated simultaneously, a summation of the responses usually could be seen in the recorded LHA neurons (16/20, 80%). Moreover, of 45 LHA neurons that responded to both of the gastric vagal trunks and FN stimuli, 30 (66.7%) were identified to be glycemia-sensitive neurons. These results demonstrated that gastric vagal afferents could reach glycemia-sensitive neurons of the LHA, and that the inputs from cerebellar FN and gastric vagal trunks could converge onto glycemia-sensitive neurons in the LHA. According to the facts that gastric vagal inputs and blood glucose level may transmit meal-related visceral signals and FN may forward the somatic information to the LHA, we suggest that an integration of the somatic-visceral response related to the food intake may take place in the LHA following the gastric vagal and cerebellar FN afferent inputs and the integration may play an important role in the short-term regulation of feeding behavior.  相似文献   

12.
1. The circulatory effects of artificial hyperventilation with air and low oxygen mixtures were studied in rabbits anaesthetized with chloralose-urethane and given decamethonium iodide. The role of vagal afferents in the response to hypoxia was also assessed in spontaneously breathing unanaesthetized and anaesthetized animals.2. In the anaesthetized rabbit artificial hyperventilation inhibited all the changes in autonomic activity to the heart and peripheral circulation resulting from stimulation of the arterial chemoreceptors, and also reduced vagal efferent tone. In animals with section of the carotid sinus and aortic nerves the changes in autonomic activity observed during hypoxia and hyperventilation were much smaller than in normal animals and affected only cardiac autonomic activity.3. The effects of hyperventilation during hypoxia were mediated chiefly through vagal afferents rather than through the effects of hypocapnia. In the absence of changes in autonomic activity (e.g. during artificial hyperventilation with air) the circulatory effects were small and less clearly related to afferent vagal activity.4. In the spontaneously breathing anaesthetized and unanaesthetized rabbit vagal afferent activity resulting from the respiratory response to hypoxia inhibits sympatho-adrenal activity in the same way as during hypoxia with artificial hyperventilation.5. The importance of the vagal afferent input in the rabbit is discussed in relation to the qualitative differences in circulatory response with increasing severity of hypoxia, and in relation to the effects of anaesthesia.  相似文献   

13.
The topographic order of inputs to nucleus accumbens in the rat   总被引:4,自引:0,他引:4  
Afferents to the nucleus accumbens have been studied with the retrograde transport of unconjugated wheatgerm agglutinin as detected by immunohistochemistry using the peroxidase-antiperoxidase method, in order to define precisely afferent topography from the cortex, thalamus, midbrain and amygdala. Cortical afferent topography was extremely precise. The largest number of cells was found following injections to the anterior accumbens. Anteromedial injections labelled a very large extent of the subiculum and part of the entorhinal cortex. Anterolateral injections produced less subicular and entorhinal label but also labelled the posterior perirhinal cortex. Posteromedial injections labelled only the ventral subiculum and a few cells in the adjacent medial entorhinal cortex. Posterolateral injections labelled few lateral entorhinal neurones but did label a long anteroposterior strip of perirhinal cortex. Prefrontal cortex label was found only after anterior accumbens injections. In the amygdala labelled neurones were found in cortical, central, lateral posterior, anteromedial and basolateral nuclei. Basolateral amygdala projected chiefly to the anteromedial accumbens and central nucleus to anterolateral accumbens. Only a weak amygdala label was found after posterior accumbens injections. In the ventral tegmental area, the midline interfascicular nucleus projected only to medial accumbens. The paranigral ventral tegmentum projected chiefly to the medial accumbens and the parabrachial area chiefly to the lateral accumbens. In the thalamus, heaviest label was found after anterior accumbens injections. Most cells were found in the paraventricular, reuniens and rhomboid nuclei and at posterior thalamic levels lying medial to the fasciculus retroflexus. There was only restricted topography found from thalamic sites. Retrograde label was also found in the ventral pallidum and lateral hypothalamus. Single small injection sites within accumbens received input from the whole anteroposterior extent of the thalamus and ventral tegmentum. The medial accumbens was found to have a close relationship to habenula, globus pallidus and interfascicular nucleus. It appeared that the heaviest volume of inputs projected to anteromedial accumbens, where output from hippocampus (CAI), subiculum, entorhinal and prefrontal cortices converged with output from amygdala, midline thalamus and ventral tegmentum.  相似文献   

14.
The concept of reward is central to psychology, but remains a cipher for neuroscience. Considerable evidence implicates dopamine in the process of reward and much of the data derives from the nucleus accumbens. Gustatory stimuli are widely used for animal studies of reward, but the connections between the taste and reward systems are unknown. In a series of experiments, our laboratory has addressed this issue using functional neurochemistry and neuroanatomy. First, using microdialysis probes, we demonstrated that sapid sucrose releases dopamine in the nucleus accumbens. The effect is dependent on oral stimulation and concentration. We subsequently determined that this response was independent of the thalamocortical gustatory system, but substantially blunted by damage to the parabrachial limbic taste projection. Further experiments using c-fos histochemistry confirmed that the limbic pathway was the prime carrier for the gustatory afferent activity that drives accumbens dopamine release.  相似文献   

15.
1. Selective electrical stimulation of the paramedian reticular nucleus (PRN) in anaesthetized and decerebrate-anaesthetized cats elicited cardiac slowing which was shown to be due to inhibition of the sympathetic input to the heart.2. In decerebrate preparations stimulation of the PRN elicited cardioacceleration which was abolished by bilateral vagotomy.3. It is suggested that these changes in heart rate in opposite directions can be accounted for by an inhibitory influence of the PRN on both neural inputs to the heart. In the absence of vagal activity, demonstrated in anaesthetized and decerebrate-anaesthetized preparations, the response to stimulation of the PRN resulted in cardiac slowing. In contrast, when both sympathetic and parasympathetic pathways were active (decerebrate preparation) stimulation of the PRN resulted in cardio-acceleration, due to simultaneous inhibition of the two neural inputs to the heart.4. It is concluded that the two inhibitory functions of the PRN are probably mediated by two different populations of neurones and that the PRN plays an integrative role in the medullary control of heart rate.  相似文献   

16.
The glycemia-sensitive neurons of the ventromedial hypothalamic nucleus (VMN) have traditionally been implicated in feeding regulation. Some studies reported that the neuronal activity of the VMN could be modulated by inputs from the gastric vagal afferent, and the cerebellum might participate in regulating non-somatic visceral activities via the cerebellohypothalamic projections. The present study was therefore undertaken to investigate whether the inputs from the gastric vagal nerves and the cerebellar interpositus nucleus (IN) could reach and converge onto single VMN neurons, especially those glycemia-sensitive ones. Among recorded 283 VMN neurons, 187 (66.1%) and 139 (49.1%) responded to the gastric vagal and the cerebellar IN stimulations, respectively. Within the VMN neurons that were responsive to either of the gastric vagal or cerebellar IN stimulation, 91 responded to both of the stimuli, suggesting a convergence of gastric vagal and cerebellar inputs on the cells. When the gastric vagal nerves and cerebellar IN were stimulated simultaneously, a summation of the responses could be observed (n = 22). Moreover, of the 91 cells that responded to both of the gastric vagal and cerebellar IN stimuli, 61 (67.0%) were identified to be glycemia-sensitive neurons. These results demonstrate that the visceral signals conveyed by the gastric vagal afferents and the somatic information forwarded by the cerebellar IN could converge onto single VMN neurons, especially the glycemia-sensitive neurons. And the findings suggest that an integration of the somatic-visceral response related to the food intake could take place in the VMN and the cerebellum might actively participate in the short-term feeding regulation through the cerebellohypothalamic projections.  相似文献   

17.
The neurons located in the mesencephalic ventro-medial tegmentum (VMT) and projecting to the nucleus accumbens, the septum and the frontal cortex were identified by the antidromic activation method. The activity of single VMT cells was extracellularly recorded in Ketamine anaesthetized rats. The effect of the stimulation of the medial frontal cortex on the activity of these identified VMT cells has been studied. The main response observed was an excitation which was followed in some cases by a depression of the spontaneous discharge of the cells.  相似文献   

18.
The nitric oxide generating neurons of the nucleus accumbens exert a powerful influence over striatal function, in addition, these nitrergic inputs are in a position to regulate the dopaminergic and glutamatergic inputs on striatal projection neurons. It was the aim of this study to establish the source of the glutamatergic drive to nitric oxide synthase interneurons of the nucleus accumbens. The nucleus accumbens nitric oxide-generating neurons receive asymmetrical, excitatory, presumably glutamatergic inputs. Possible sources of these inputs could be the limbic and cortical regions known to project to this area. To identify sources of the excitatory inputs to the nitric oxide synthase-containing interneurons of the nucleus accumbens in the rat we first examined the ultrastructural morphology of asymmetrical synaptic specializations contacting nitric oxide synthase-immunohistochemically labeled interneurons in the nucleus accumbens. Neurons were selected from different regions of the nucleus accumbens, drawn using camera lucida, processed for electron microscopic analysis, and the boutons contacting nitric oxide synthase-labeled dendrites were photographed and correlated to the drawings. Using vesicle size as the criterion the source was predicted to be either the prefrontal cortex or the ventral subiculum of the hippocampus. To examine this prediction, a further study used anterograde tracing from both the prefrontal cortex and the ventral subiculum, and nitric oxide synthase immunohistochemistry with correlated light and electron microscopy. Based on appositions by anterogradely labeled fibers, selected nitric oxide synthase-labeled neurons within the nucleus accumbens, were examined with electron microscopic analysis. With this technique we confirmed the prediction that subicular afferent boutons make synaptic contact with nitric oxide synthase interneurons, and demonstrated anatomically that nitric oxide synthase boutons make synaptic contact with the dendritic arbors of nitric oxide synthase interneurons. We suggest that the subicular input may excite the nitric oxide synthase neurons synaptically, while the nitric oxide synthase-nitric oxide synthase interactions underlie a nitric oxide signaling network which propagates hippocampal information, and expands the hippocampus's influence on 'gating' information flow across the nucleus accumbens.  相似文献   

19.
Summary Although it has been known for a long time that in awake cats, natural stimulation of the skin induces short latency responses in rubrospinal cells, the pathway possibly involved has been identified only recently (Padel et al. 1988). This tract, which was described in acute, chloralose anaesthetized cats, ascends in the ventromedial spinal cord and is activated via collaterals of primary afferent fibres running in the dorsal columns of the spinal cord. The present study demonstrates that this newly described spino-rubral tract is able to send detailed somaesthetic information to the red nucleus. After lesions leaving intact only the spino-rubral pathway, excitatory and inhibitory responses to natural peripheral stimulations were recorded in identified rubral efferent cells. The most effective stimuli were touching the skin, passive joint rotation and hair displacement. Each cell was found to possess a particular receptive field. These fields which could be ipsi-, contra-, or bi-lateral were generally located on a single limb, although they could include two or more limbs, or even exceptionally the whole body with or without preferential zones. The topographic organization of receptive fields was arranged somatotopically in the red nucleus and overlapped the motor representation. The somaesthetic inputs transmitted through the spino-rubral pathway to the red nucleus are very similar to those previously observed in the intact cat, which supports the idea that this pathway may play a functional role in motor control. The spino-rubro-spinal loop may provide a fast adaptation of the descending motor command, thus producing a fine and harmonious tuning between the changing surroundings and the animal's movements.  相似文献   

20.
Although it has been known for a long time that in awake cats, natural stimulation of the skin induces short latency responses in rubrospinal cells, the pathway possibly involved has been identified only recently (Padel et al. 1988). This tract, which was described in acute, chloralose anaesthetized cats, ascends in the ventromedial spinal cord and is activated via collaterals of primary afferent fibres running in the dorsal columns of the spinal cord. The present study demonstrates that this newly described spino-rubral tract is able to send detailed somaesthetic information to the red nucleus. After lesions leaving intact only the spino-rubral pathway, excitatory and inhibitory responses to natural peripheral stimulations were recorded in identified rubral efferent cells. The most effective stimuli were touching the skin, passive joint rotation and hair displacement. Each cell was found to possess a particular receptive field. These fields which could be ipsi-, contra-, or bi-lateral were generally located on a single limb, although they could include two or more limbs, or even exceptionally the whole body with or without preferential zones. The topographic organization of receptive fields was arranged somatotopically in the red nucleus and overlapped the motor representation. The somaesthetic inputs transmitted through the spino-rubral pathway to the red nucleus are very similar to those previously observed in the intact cat, which supports the idea that this pathway may play a functional role in motor control. The spino-rubro-spinal loop may provide a fast adaptation of the descending motor command, thus producing a fine and harmonious tuning between the changing surroundings and the animal's movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号