首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The superficial amygdala (SFA) is important in human emotion/affective processing via its strong connection with other limbic and cerebral cortex for receptive and expressive emotion processing. Few studies have investigated the functional connectivity changes of the SFA under extreme conditions, such as prolonged sleep loss, although the SFA showed a distinct functional connectivity pattern throughout the brain. In this study, resting‐state functional magnetic resonance imaging (rs‐fMRI) was employed to investigate the changes of SFA–cortical functional connectivity after 36 hr of total sleep deprivation (TSD). Fourteen healthy male volunteers aged 25.9 ± 2.3 years (range 18–28 years) enrolled in this within‐subject crossover study. We found that the right SFA showed increased functional connectivity with the right medial prefrontal cortex (mPFC) and decreased functional connectivity with the right dorsal posterior cingulate cortex (dPCC) in the resting brain after TSD compared with that during rested wakefulness. For the left SFA, decreased connectivity with the right dorsal anterior cingulate cortex (dACC) and right dPCC was found. Further regression analysis indicated that the functional link between mPFC and SFA significantly correlated with the Profile of Mood State scores. Our results suggest that the amygdala cannot be treated as a single unit in human neuroimaging studies and that TSD may alter the functional connectivity pattern of the SFA, which in turn disrupts emotional regulation. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
Emotion processing deficits are prominent in schizophrenia and exist prior to the onset of overt psychosis. However, developmental trajectories of neural circuitry subserving emotion regulation and the role that they may play in illness onset have not yet been examined in patients at risk for psychosis. The present study employed a cross-sectional analysis to examine age-related functional activation in amygdala and prefrontal cortex, as well as functional connectivity between these regions, in adolescents at clinical high risk (CHR) for psychosis relative to typically developing adolescents. Participants (n=34) performed an emotion processing fMRI task, including emotion labeling, emotion matching, and non-emotional control conditions. Regression analyses were used to predict activation in the amygdala and ventrolateral prefrontal cortex (vlPFC) based on age, group, sex, and the interaction of age by group. CHR adolescents exhibited altered age-related variation in amygdala and vlPFC activation, relative to controls. Controls displayed decreased amygdala and increased vlPFC activation with age, while patients exhibited the opposite pattern (increased amygdala and decreased vlPFC activation), suggesting a failure of prefrontal cortex to regulate amygdala reactivity. Moreover, a psychophysiological interaction analysis revealed decreased amygdala-prefrontal functional connectivity among CHR adolescents, consistent with disrupted brain connectivity as a vulnerability factor in schizophrenia. These results suggest that the at-risk syndrome is marked by abnormal development and functional connectivity of neural systems subserving emotion regulation. Longitudinal data are needed to confirm aberrant developmental trajectories intra-individually and to examine whether these abnormalities are predictive of conversion to psychosis, and of later deficits in socioemotional functioning.  相似文献   

3.
Adolescence is a sensitive period of social-affective development, characterized by biological, neurological, and social changes. The field currently conceptualizes these changes in terms of an imbalance between systems supporting reactivity and regulation, specifically nonlinear changes in reactivity networks and linear changes in regulatory networks. Previous research suggests that the labeling or reappraisal of emotion increases activity in lateral prefrontal cortex (LPFC), and decreases activity in amygdala relative to passive viewing of affective stimuli. However, past work in this area has relied heavily on paradigms using static, adult faces, as well as explicit regulation. In the current study, we assessed cross-sectional trends in neural responses to viewing and labeling dynamic peer emotional expressions in adolescent girls 10–23 years old. Our dynamic adolescent stimuli set reliably and robustly recruited key brain regions involved in emotion reactivity (medial orbital frontal cortex/ventral medial prefrontal cortex; MOFC/vMPFC, bilateral amygdala) and regulation (bilateral dorsal and ventral LPFC). However, contrary to the age-trends predicted by the dominant models in studies of risk/reward, the LPFC showed a nonlinear age trend across adolescence to labeling dynamic peer faces, whereas the MOFC/vMPFC showed a linear decrease with age to viewing dynamic peer faces. There were no significant age trends observed in the amygdala.  相似文献   

4.
Communication between the amygdala and other brain regions critically regulates sensitivity to threat, which has been associated with risk for mood and affective disorders. The extent to which these neural pathways are genetically determined or correlate with risk-related personality measures is not fully understood. Using functional magnetic resonance imaging, we evaluated independent and interactive effects of the 5-HTTLPR genotype and neuroticism on amygdala functional connectivity during an emotional faces paradigm in 76 healthy individuals. Functional connectivity between left amygdala and medial prefrontal cortex (mPFC) and between both amygdalae and a cluster including posterior cingulate cortex, precuneus and visual cortex was significantly increased in 5-HTTLPR S′ allele carriers relative to LALA individuals. Neuroticism was negatively correlated with functional connectivity between right amygdala and mPFC and visual cortex, and between both amygdalae and left lateral orbitofrontal (lOFC) and ventrolateral prefrontal cortex (vlPFC). Notably, 5-HTTLPR moderated the association between neuroticism and functional connectivity between both amygdalae and left lOFC/vlPFC, such that S′ carriers exhibited a more negative association relative to LALA individuals. These findings provide novel evidence for both independent and interactive effects of 5-HTTLPR genotype and neuroticism on amygdala communication, which may mediate effects on risk for mood and affective disorders.  相似文献   

5.
BACKGROUND: Schizophrenia patients show reduced neural activity, relative to controls, in the amygdala and its projection to the medial prefrontal cortex (MPFC) in response to fear perception. In this study we tested the hypothesis that schizophrenia is characterized by abnormal functional connectivity in the amygdala network underlying fear perception. METHODS: Functional MRI images were acquired from 14 schizophrenia patients and 14 matched healthy control subjects during an emotion perception task, in which fearful and neutral facial expression stimuli were presented pseudorandomly under nonconscious (using masking) and conscious conditions. Both subtraction and functional connectivity analyses were undertaken using a region of interest approach. RESULTS: In response to fearful facial expressions, schizophrenia patients displayed reduced amygdala activity, compared to controls, in both the conscious and nonconscious conditions. The amygdala displayed a reversal of the normal pattern of connectivity with the brainstem, visual cortex, and also with the dorsal and ventral divisions of the MPFC in the schizophrenia patients. CONCLUSIONS: The presence of functional disconnections in amygdala pathways suggests that schizophrenia patients have a failure in coordinating their automatic orienting to salient signals and the associated prefrontal monitoring of these signals.  相似文献   

6.
CONTEXT Emotion regulation deficits figure prominently in generalized anxiety disorder (GAD) and in other anxiety and mood disorders. Research examining emotion regulation and top-down modulation has implicated reduced coupling of the amygdala with prefrontal cortex and anterior cingulate cortex, suggesting altered frontolimbic white matter connectivity in GAD. OBJECTIVES To investigate structural connectivity between ventral prefrontal cortex or anterior cingulate cortex areas and the amygdala in GAD and to assess associations with functional connectivity between those areas. DESIGN Participants underwent diffusion-tensor imaging and functional magnetic resonance imaging. SETTING University magnetic resonance imaging facility. PARTICIPANTS Forty-nine patients with GAD and 39 healthy volunteer control subjects, including a matched subset of 21 patients having GAD without comorbid Axis I diagnoses and 21 healthy volunteers matched for age, sex, and education. MAIN OUTCOME MEASURES The mean fractional anisotropy values in the left and right uncinate fasciculus, as measured by tract-based analysis for diffusion-tensor imaging data. RESULTS Lower mean fractional anisotropy values in the bilateral uncinate fasciculus indicated reduced frontolimbic structural connectivity in patients with GAD. This reduction in uncinate fasciculus integrity was most pronounced for patients without comorbidity and was not observed in other white matter tracts. Across all participants, higher fractional anisotropy values were associated with more negative functional coupling between the pregenual anterior cingulate cortex and the amygdala during the anticipation of aversion. CONCLUSIONS Reduced structural connectivity of a major frontolimbic pathway suggests a neural basis for emotion regulation deficits in GAD. The functional significance of these structural differences is underscored by decreased functional connectivity between the anterior cingulate cortex and the amygdala in individuals with reduced structural integrity of the uncinate fasciculus.  相似文献   

7.
The ability to process and respond to emotional facial expressions is a critical skill for healthy social and emotional development. There has been growing interest in understanding the neural circuitry underlying development of emotional processing, with previous research implicating functional connectivity between amygdala and frontal regions. However, existing work has focused on threatening emotional faces, raising questions regarding the extent to which these developmental patterns are specific to threat or to emotional face processing more broadly. In the current study, we examined age‐related changes in brain activity and amygdala functional connectivity during an fMRI emotional face matching task (including angry, fearful, and happy faces) in 61 healthy subjects aged 7–25 years. We found age‐related decreases in ventral medial prefrontal cortex activity in response to happy faces but not to angry or fearful faces, and an age‐related change (shifting from positive to negative correlation) in amygdala–anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC) functional connectivity to all emotional faces. Specifically, positive correlations between amygdala and ACC/mPFC in children changed to negative correlations in adults, which may suggest early emergence of bottom‐up amygdala excitatory signaling to ACC/mPFC in children and later development of top‐down inhibitory control of ACC/mPFC over amygdala in adults. Age‐related changes in amygdala–ACC/mPFC connectivity did not vary for processing of different facial emotions, suggesting changes in amygdala–ACC/mPFC connectivity may underlie development of broad emotional processing, rather than threat‐specific processing. Hum Brain Mapp 37:1684–1695, 2016. © 2016 Wiley Periodicals, Inc .  相似文献   

8.
The aim of this functional magnetic resonance imaging (fMRI) study was to compare regional brain activity in schizophrenia subjects with (FA+) and without (FA-) flat affect during the viewing of emotionally negative pictures. Thirteen FA+ subjects and 11 FA- subjects were scanned while being presented with a series of emotionally negative and neutral pictures. Experientially, the viewing of the negative pictures induced a negative emotional state whose intensity was significantly greater in the FA- group than in the FA+ group. Neurally, the Negative minus Neutral contrast revealed, in the FA- group, significant loci of activation in the midbrain, pons, anterior cingulate cortex, insula, ventrolateral orbitofrontal cortex, anterior temporal pole, amygdala, medial prefrontal cortex, and extrastriate visual cortex. In the FA+ group, this contrast produced significant loci of activation in the midbrain, pons, anterior temporal pole, and extrastriate visual cortex. When the brain activity measured in the FA+ group was subtracted from that measured in the FA- group, only the lingual gyrus was significantly activated. Perhaps in FA+ subjects an amygdaloid malfunction rendered the amygdala unable to correctly evaluate the emotional meaning of the pictures presented, thus preventing effective connectivity linking the amygdala to the brain regions implicated in the physiological and experiential dimensions of emotion. Alternatively, a disturbance of effective connectivity in the neural networks linking the midbrain and the medial prefrontal system may have been responsible for the quasi absence of emotional reaction in FA+ subjects, and the abnormal functioning of the medial prefrontal cortex and anterior cingulate cortex in the FA+ group.  相似文献   

9.
Many features of posttraumatic stress disorder (PTSD) can be linked to exaggerated and dysregulated emotional responses. Central to the neurocircuitry regulating emotion are functional interactions between the amygdala and the ventromedial prefrontal cortex (vmPFC). Findings from human and animal studies suggest that disruption of this circuit predicts individual differences in emotion regulation. However, only a few studies have examined amygdala-vmPFC connectivity in the context of emotional processing in PTSD. The aim of the present research was to investigate the hypothesis that PTSD is associated with disrupted functional connectivity of the amygdala and vmPFC in response to emotional stimuli, extending previous findings by demonstrating such links in an understudied, highly traumatized, civilian population. 40 African-American women with civilian trauma (20 with PTSD and 20 non-PTSD controls) were recruited from a large urban hospital. Participants viewed fearful and neutral face stimuli during functional magnetic resonance imaging (fMRI). Relative to controls, participants with PTSD showed an increased right amygdala response to fearful stimuli (pcorr < .05). Right amygdala activation correlated positively with the severity of hyperarousal symptoms in the PTSD group. Participants with PTSD showed decreased functional connectivity between the right amygdala and left vmPFC (pcorr < .05). The findings are consistent with previous findings showing PTSD is associated with an exaggerated response of amygdala-mediated emotional arousal systems. This is the first study to show that the amygdala response may be accompanied by disruption of an amygdala-vmPFC functional circuit that is hypothesized to be involved in prefrontal cortical regulation of amygdala responsivity.  相似文献   

10.
Evidence from neuroimaging studies indicate that individuals with bipolar disorder (BD) exhibit altered functioning of fronto-limbic systems implicated in voluntary emotion regulation. Few studies, however, have examined the extent to which unaffected youth at familial risk for BD exhibit such alterations. Using an fMRI emotional working memory paradigm, we investigated the functioning of fronto-limbic systems in fifteen healthy bipolar offspring (8–17 years old) with at least one parent diagnosed with BD (HBO), and 16 age-matched healthy control (HC) participants. Neural activity and functional connectivity analyses focused on a priori neural regions supporting emotion processing (amygdala and ventral striatum) and voluntary emotion regulation (ventrolateral prefrontal cortex (VLPFC), dorsolateral prefrontal cortex (DLPFC), and anterior cingulate cortex (ACC)). Relative to HC, HBO exhibited greater right VLPFC (BA47) activation in response to positive emotional distracters and reduced VLPFC modulation of the amygdala to both the positive and negative emotional distracters; there were no group differences in connectivity for the neutral distracters. These findings suggest that alterations in the functioning of fronto-limbic systems implicated in voluntary emotion regulation are present in unaffected bipolar offspring. Future longitudinal studies are needed to determine the extent to which such alterations represent neurodevelopmental markers of risk for future onset of BD.  相似文献   

11.
Fulwiler CE  King JA  Zhang N 《Neuroreport》2012,23(10):606-610
An important distinction in research on the neural mechanisms of emotion regulation involves the relatively limited duration of emotional states versus emotional traits that are defined as the stable tendency to experience particular emotions in daily life. Neuroimaging investigations of the regulation of anger states point to the involvement of reciprocal changes in the prefrontal cortex and amygdala activity, but the neural substrate of trait anger has received less attention. We used resting-state functional MRI to determine whether the variation in the strength of functional connectivity between the amygdala and the orbitofrontal cortex is associated with trait anger. Sixteen healthy men completed the Spielberger State-Trait Anger Expression Inventory. Correlational analysis for resting-state functional connectivity (RSFC) was carried out with the left and the right amygdala as separate seed regions. Anger measures were correlated to RSFC involving the right and the left amygdala on a voxel-by-voxel basis across all individuals. We found that Trait Anger was inversely associated with the strength of RSFC between the amygdala and the contralateral middle orbitofrontal cortex. The association was stronger for the right amygdala-left orbitofrontal connection. Anger Control, the tendency to try to control expressions of anger, showed the opposite pattern of being positively correlated with amygdala-orbitofrontal connectivity. The present study provides evidence that RSFC in a corticolimbic circuit might subserve stable differences in anger regulation. Our findings also suggest that RSFC may prove valuable as a trait marker for disorders characterized by emotional dysregulation such as depression, anxiety, and personality disorders.  相似文献   

12.
Alterations in brain function in schizophrenia and other neuropsychiatric disorders are evident not only during specific cognitive challenges, but also from functional MRI data obtained during a resting state. Here we apply probabilistic independent component analysis (pICA) to resting state fMRI series in 25 schizophrenia patients and 25 matched healthy controls. We use an automated algorithm to extract the ICA component representing the default mode network (DMN) as defined by a DMN-specific set of 14 brain regions, resulting in z-scores for each voxel of the (whole-brain) statistical map. While goodness of fit was found to be similar between the groups, the region of interest (ROI) as well as voxel-wise analysis of the DMN showed significant differences between groups. Healthy controls revealed stronger effects of pICA-derived connectivity measures in right and left dorsolateral prefrontal cortices, bilateral medial frontal cortex, left precuneus and left posterior lateral parietal cortex, while stronger effects in schizophrenia patients were found in the right amygdala, left orbitofrontal cortex, right anterior cingulate and bilateral inferior temporal cortices. In patients, we also found an inverse correlation of negative symptoms with right anterior prefrontal cortex activity at rest and negative symptoms. These findings suggest that aberrant default mode network connectivity contributes to regional functional pathology in schizophrenia and bears significance for core symptoms.  相似文献   

13.

Background:

Abnormal connectivity of the anticorrelated intrinsic networks, the task-negative network (TNN), and the task-positive network (TPN) is implicated in schizophrenia. Comparisons between schizophrenic patients and their unaffected siblings enable further understanding of illness susceptibility and pathophysiology. We examined the resting-state connectivity differences in the intrinsic networks between schizophrenic patients, their unaffected siblings, and healthy controls.

Methods:

Resting-state functional magnetic resonance images were obtained from 25 individuals in each subject group. The posterior cingulate cortex/precuneus and right dorsolateral prefrontal cortex were used as seed regions to identify the TNN and TPN through functional connectivity analysis. Interregional connectivity strengths were analyzed using overlapped intrinsic networks composed of regions common to all subject groups.

Results:

Schizophrenic patients and their unaffected siblings showed increased connectivity in the TNN between the bilateral inferior temporal gyri. By contrast, schizophrenic patients alone demonstrated increased connectivity between the posterior cingulate cortex/precuneus and left inferior temporal gyrus and between the ventral medial prefrontal cortex and right lateral parietal cortex in the TNN. Schizophrenic patients exhibited increased connectivity between the left dorsolateral prefrontal cortex and right inferior frontal gyrus in the TPN relative to their unaffected siblings, though this trend only approached statistical significance in comparison to healthy controls.

Conclusion:

Resting-state hyperconnectivity of the intrinsic networks may disrupt network coordination and thereby contribute to the pathophysiology of schizophrenia. Similar, though milder, hyperconnectivity of the TNN in unaffected siblings of schizophrenic patients may contribute to the identification of schizophrenia endophenotypes and ultimately to the determination of schizophrenia risk genes.  相似文献   

14.
Psychopaths show a reduced ability to recognize emotion facial expressions, which may disturb the interpersonal relationship development and successful social adaptation. Behavioral hypotheses point toward an association between emotion recognition deficits in psychopathy and amygdala dysfunction. Our prediction was that amygdala dysfunction would combine deficient activation with disturbances in functional connectivity with cortical regions of the face-processing network. Twenty-two psychopaths and 22 control subjects were assessed and functional magnetic resonance maps were generated to identify both brain activation and task-induced functional connectivity using psychophysiological interaction analysis during an emotional face-matching task. Results showed significant amygdala activation in control subjects only, but differences between study groups did not reach statistical significance. In contrast, psychopaths showed significantly increased activation in visual and prefrontal areas, with this latest activation being associated with psychopaths’ affective–interpersonal disturbances. Psychophysiological interaction analyses revealed a reciprocal reduction in functional connectivity between the left amygdala and visual and prefrontal cortices. Our results suggest that emotional stimulation may evoke a relevant cortical response in psychopaths, but a disruption in the processing of emotional faces exists involving the reciprocal functional interaction between the amygdala and neocortex, consistent with the notion of a failure to integrate emotion into cognition in psychopathic individuals.  相似文献   

15.
Cerullo MA, Fleck DE, Eliassen JC, Smith MS, DelBello MP, Adler CM, Strakowski SM. A longitudinal functional connectivity analysis of the amygdala in bipolar I disorder across mood states. Bipolar Disord 2012: 14: 175–184. © 2012 The Authors. Journal compilation © 2012 John Wiley & Sons A/S. Objective: Bipolar I disorder is characterized by affective symptoms varying between depression and mania. The specific neurophysiology responsible for depression in bipolar I disorder is unknown but previous neuroimaging studies suggest impairments in corticolimbic regions that are responsible for regulating emotion. The amygdala seems to play a central role in this network and is responsible for appraisal of emotional stimuli. To further understand the role of the amygdala in the generation of mood symptoms, we used functional magnetic resonance imaging (fMRI) to examine a group of patients with bipolar I disorder longitudinally. Methods: fMRI was used to study regional brain activation in 15 bipolar I disorder patients followed for up to one year. Patients received an fMRI scan during an initial manic episode and a subsequent depressive episode. During the scans, patients performed an attentional task that incorporated emotional pictures. Fifteen healthy comparison subjects were also scanned at baseline and then at four months. Whole‐brain functional connectivity analysis was performed using the left and right amygdala as seed regions. Results: Significant changes in amygdala functional connectivity were found between the manic and depressed phases of illness. The right amygdala was significantly more positively correlated with the left inferior frontal gyrus during mania and with the right insula during depression. There were no significant differences in left amygdala correlations across mood states in the bipolar I disorder group. Conclusions: In the transition from a manic/mixed episode to a depressive episode, subjects with bipolar I disorder showed unique changes in cortical–amygdala functional connectivity. Increased connectivity between the insula and right amygdala may generate excessive positive feedback, in that both of these regions are involved in the appraisal of emotional stimuli. Increased correlation between the right amygdala and the inferior frontal gyrus in mania is consistent with previous findings of decreased prefrontal modulation of limbic regions in mania. These differences in connectivity may represent neurofunctional markers of mood state as they occurred in the same individuals across manic and depressive episodes.  相似文献   

16.
Objective: We examined resting state functional connectivity in the brain between key emotion regulation regions in bipolar I disorder to delineate differences in coupling from healthy subjects. Methods: Euthymic subjects with bipolar I disorder (n = 20) and matched healthy subjects (n = 20) participated in a resting state functional magnetic resonance imaging scan. Low‐frequency fluctuations in blood oxygen level‐dependent (BOLD) signal were correlated in the six connections between four anatomically defined nodes: left and right amygdala and left and right ventrolateral prefrontal cortex (vlPFC). Seed‐to‐voxel connectivity results were probed for commonly coupled regions. Following this, an identified region was included in a mediation analysis to determine the potential of mediation. Results: The bipolar I disorder group exhibited significant hyperconnectivity between right amygdala and right vlPFC relative to healthy subjects. The connectivity between these regions in the bipolar I disorder group was partially mediated by activity in the anterior cingulate cortex (ACC). Conclusions: Greater coupling between right amygdala and right vlPFC and their partial mediation by the ACC were found in bipolar I disorder subjects in remission and in the absence of a psychological task. These findings have implications for a trait‐related and clinically important imaging biomarker.  相似文献   

17.
Alcoholic patients who have undergone multiple detoxifications/relapses show altered processing of emotional signals. We performed functional magnetic resonance imaging during performance of implicit and explicit versions of a task in which subjects were presented with morphs of fearful facial emotional expressions. Participants were abstaining, multiply detoxified (MDTx; n=12) or singly detoxified patients (SDTx; n=17), and social drinker controls (n=31). Alcoholic patients were less able than controls to recognize fearful expressions, and showed lower activation in prefrontal areas, including orbitofrontal cortex and insula, which mediate emotional processing. The decrease in activation was greater in MDTx patients who also showed decreased connectivity between insula and prefrontal areas, and between amygdala and globus pallidus. In the explicit condition, the strength of connectivity between insula and areas involved in regulation of emotion (inferior frontal cortex and frontal pole) was negatively correlated with both the number of detoxifications and dependency (measured by the severity of alcohol dependency (SADQ) and control over drinking score (Impaired Control questionnaire, ICQ)). In contrast, increased connectivity was found between insula and the colliculus neuronal cluster, and between amygdala and stria terminalis bed nucleus. In the implicit condition, number of detoxifications and ICQ score correlated positively with connectivity between amygdala and prefrontal cortical areas involved in attentional and executive processes. Repeated episodes of detoxification from alcohol are associated with altered function both in fear perception pathways and in cortical modulation of emotions. Such changes may confer increased sensitivity to emotional stress and impaired social competence, contributing to relapse.  相似文献   

18.
Functional neuroimaging studies on cognitive dysfunction in schizophrenia have suggested regional brain activation changes in the dorsolateral prefrontal cortex and the medial temporal lobe. However, less is known about the functional coupling of these areas during cognitive performance. In this study, we used functional magnetic resonance imaging, a verbal working memory (WM) task and multivariate statistical techniques to investigate the functional coupling of temporally anticorrelated neural networks during cognitive processing in patients with schizophrenia (n = 16) compared to healthy controls (n = 16). Independent component analysis identified 18 independent components (ICs) among which two ICs were selected for further analyses. These ICs included temporally anticorrelated networks which were most highly associated with the delay period of the task in both healthy controls and patients with schizophrenia. Functional network abnormalities in patients with schizophrenia were detected within a “task-positive” lateral frontoparietal network, where increased functional connectivity was found in bilateral dorsolateral prefrontal regions. In addition, aberrant functional coupling of the hippocampal cortex in patients with schizophrenia was detected within a “task-negative” medial frontotemporal network. In patients with schizophrenia, functional connectivity indices in the left dorsolateral prefrontal cortex and the right hippocampal cortex were positively correlated with accuracy during the WM task, while the connectivity strength in the right dorsolateral prefrontal cortex was negatively correlated with measures of symptom severity. These data suggest that within two temporally anticorrelated network states, patients with schizophrenia exhibit increased and persistent dorsolateral prefrontal and hippocampal connectivity during WM performance.  相似文献   

19.
Perlman SB, Almeida JRC, Kronhaus DM, Versace A, LaBarbara EJ, Klein CR, Phillips ML. Amygdala activity and prefrontal cortex–amygdala effective connectivity to emerging emotional faces distinguish remitted and depressed mood states in bipolar disorder. Bipolar Disord 2012: 14: 162–174. © 2012 The Authors. Journal compilation © 2012 John Wiley & Sons A/S. Objectives: Few studies have employed effective connectivity (EC) to examine the functional integrity of neural circuitry supporting abnormal emotion processing in bipolar disorder (BD), a key feature of the illness. We used Granger Causality Mapping (GCM) to map EC between the prefrontal cortex (PFC) and bilateral amygdala and a novel paradigm to assess emotion processing in adults with BD. Methods: Thirty‐one remitted adults with BD [(remitted BD), mean age = 32 years], 21 adults with BD in a depressed episode [(depressed BD), mean age = 33 years], and 25 healthy control participants [(HC), mean age = 31 years] performed a block‐design emotion processing task requiring color‐labeling of a color flash superimposed on a task‐irrelevant face morphing from neutral to emotional (happy, sad, angry, or fearful). GCM measured EC preceding (top‐down) and following (bottom‐up) activity between the PFC and the left and right amygdalae. Results: Our findings indicated patterns of abnormally elevated bilateral amygdala activity in response to emerging fearful, sad, and angry facial expressions in remitted‐BD subjects versus HC, and abnormally elevated right amygdala activity to emerging fearful faces in depressed‐BD subjects versus HC. We also showed distinguishable patterns of abnormal EC between the amygdala and dorsomedial and ventrolateral PFC, especially to emerging happy and sad facial expressions in remitted‐BD and depressed‐BD subjects. Discussion: EC measures of neural system level functioning can further understanding of neural mechanisms associated with abnormal emotion processing and regulation in BD. Our findings suggest major differences in recruitment of amygdala–PFC circuitry, supporting implicit emotion processing between remitted‐BD and depressed‐BD subjects, which may underlie changes from remission to depression in BD.  相似文献   

20.
This study investigated the neural basis of individual variation in emotion regulation, specifically the ability to reappraise negative stimuli so as to down-regulate negative affect. Brain functions in young adults were measured with functional Magnetic Resonance Imaging during three conditions: (i) attending to neutral pictures; (ii) attending to negative pictures and (iii) reappraising negative pictures. Resting-state functional connectivity was measured with amygdala and dorsolateral prefrontal cortical (DLPFC) seed regions frequently associated with emotion regulation. Participants reported more negative affect after attending to negative than neutral pictures, and less negative affect following reappraisal. Both attending to negative vs neutral pictures and reappraising vs attending to negative pictures yielded widespread activations that were significantly right-lateralized for attending to negative pictures and left-lateralized for reappraising negative pictures. Across participants, more successful reappraisal correlated with less trait anxiety and more positive daily emotion, greater activation in medial and lateral prefrontal regions, and lesser resting-state functional connectivity between (a) right amygdala and both medial prefrontal and posterior cingulate cortices, and (b) bilateral DLPFC and posterior visual cortices. The ability to regulate emotion, a source of resilience or of risk for distress, appears to vary in relation to differences in intrinsic functional brain architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号