首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Further study on steam-treated notoginseng, the roots of Panax notoginseng (Burk.) F.H. Chen (Araliaceae), which is a famous traditional Chinese medicine that is used both in raw and treated forms for a long time, led to the isolation of a new dammarane-type saponin, namely notoginsenoside ST-4. Its structure was elucidated to be 3β,12β,20(S)-tri-hydroxydammar-24-ene-3-O-β-d-xylopyranosyl-(1 → 2)-β-d-glucopyranosyl-(1 → 2)-β-d-glu-copyranoside, based on the detailed analyses of the 1D and 2D NMR spectral data and acidic hydrolysis. Notoginsenoside ST-4 was investigated for its antiviral activity on herpes simplex type 1 (HSV-1) and type 2 (HSV-2) in vitro. The 50% effective concentration (EC50) values, determined by plaque reduction assay, were 16.47 ± 0.67 and 19.44 ± 1.16 μM for HSV-1 and HSV-2, respectively, whereas the 50% cytotoxic concentration (CC50) determined by the XTT test on Vero cells was 510.64 ± 4.56 μM. As analyzed by attachment assay and penetration assay based on plaque reduction assay, the antiviral activity of notoginsenoside ST-4 was principally due to the penetration inhibition effects, which was confirmed by fluorescence microscopy observation that notoginsenoside ST-4 blocked the penetration of virus. Therefore, notoginsenoside ST-4 might be a promising agent for herpes simplex virus infection.  相似文献   

2.
The antiviral effect of Australian tea tree oil (TTO) and eucalyptus oil (EUO) against herpes simplex virus was examined. Cytotoxicity of TTO and EUO was evaluated in a standard neutral red dye uptake assay. Toxicity of TTO and EUO was moderate for RC-37 cells and approached 50% (TC50) at concentrations of 0.006% and 0.03%, respectively. Antiviral activity of TTO and EUO against herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2) was tested in vitro on RC-37 cells using a plaque reduction assay. The 50% inhibitory concentration (IC50) of TTO for herpes simplex virus plaque formation was 0.0009% and 0.0008% and the IC50 of EUO was determined at 0.009% and 0.008% for HSV-1 and HSV-2, respectively. Australian tea tree oil exhibited high levels of virucidal activity against HSV-1 and HSV-2 in viral suspension tests. At noncytotoxic concentrations of TTO plaque formation was reduced by 98.2% and 93.0% for HSV-1 and HSV-2, respectively. Noncytotoxic concentrations of EUO reduced virus titers by 57.9% for HSV-1 and 75.4% for HSV-2. Virus titers were reduced significantly with TTO, whereas EUO exhibited distinct but less antiviral activity. In order to determine the mode of antiviral action of both essential oils, either cells were pretreated before viral infection or viruses were incubated with TTO or EUO before infection, during adsorption or after penetration into the host cells. Plaque formation was clearly reduced, when herpes simplex virus was pretreated with the essential oils prior to adsorption. These results indicate that TTO and EUO affect the virus before or during adsorption, but not after penetration into the host cell. Thus TTO and EUO are capable to exert a direct antiviral effect on HSV. Although the active antiherpes components of Australian tea tree and eucalyptus oil are not yet known, their possible application as antiviral agents in recurrent herpes infection is promising.  相似文献   

3.
The polyphenole-enriched acetone-water extract R2 from the aerial parts of Rumex acetosa L. containing high amounts of oligomeric and polymeric proanthocyanidins and flavonoids was tested for antiviral activity. R2 exhibited strong antiviral activity against herpes simplex virus type-1 (HSV-1) while the replication of adenovirus 3 was not affected. By plaque reduction test and MTT assay on Vero cells, the HSV-1-specific inhibitory concentration (IC(50)) and cytotoxic concentration (CC(50)) were determined. R2 exibited an IC(50) of 0.8 μg/mL and a selectivity index (SI) (ratio of IC(50) to CC(50)) of approximately 100 when added to the virus inoculum for 1h at 37°C prior to infection. The antiviral activity was due to the presence of flavan-3-ols and oligomeric proanthocyanidins in the extract. Structure-activity analyses indicated that flavan-3-ols and proanthocyanidins with galloylation at position O-3 are highly potent compounds (SI>40), while ungalloylated compounds did not exhibit antiviral effects (SI<1). R2 and a major proanthocyanidin from R2, epicatechin-3-O-gallate-(4β→8)-epicatechin-3-O-gallate abolished virus entry into the host cell by blocking attachment to the cell surface. When added after attachment at a concentration of ≥ 12.5 μg/mL, R2 inhibited also penetration of HSV-1 into the host cell. R2 and epicatechin-3-O-gallate-(4β→8)-epicatechin-3-O-gallate were shown to directly interact with viral particles leading to the oligomerisation of envelope proteins as demonstrated for the essential viral glycoprotein gD. Using raft cultures with three-dimensional organotypic human skin equivalents it was shown that treatment of cultures with R2 after infection with HSV-1 resulted in a reduced viral spread.  相似文献   

4.
The essential oil obtained in toto from Santolina insularis was investigated for its antiviral activity on herpes simplex type 1 (HSV-1) and type 2 (HSV-2) in vitro. The IC(50) values, determined by plaque reduction assays, were 0.88 and 0.7 microg/ml for HSV-1 and HSV-2, respectively, while the CC(50) determined by the MTT test on Vero cells was 112 microg/ml, indicating a CC(50)/IC(50) ratio of 127 for HSV-1 and 160 for HSV-2. Results obtained by plaque reduction assays also indicated that the antiviral activity of S. insularis was principally due to direct virucidal effects. Antiviral activity against HSV-1 and HSV-2 was not observed in a post-attachment assay, and attachment assays indicated that virus adsorption was not inhibited. Up to 80% inhibition of HSV-1 was achieved at the concentration of 40 microg/ml by yield reduction assay. Furthermore, reduction of plaque formation assays also showed that S. insularis essential oil inhibits cell-to-cell transmission of both HSV-1 and HSV-2.  相似文献   

5.
Casuarinin, a hydrolyzable tannin isolated from the bark of Terminalia arjuna Linn. (Combretaceae), was investigated for its antiviral activity on herpes simplex type 2 (HSV-2) in vitro. Results showed that the IC(50) of casuarinin in XTT and plaque reduction assays were 3.6+/-0.9 and 1.5+/-0.2 microM, respectively. The 50% cytotoxic concentration for cell growth (CC(50)) was 89+/-1 microM. Thus, the selectivity index (SI) (ratio of CC(50) to IC(50)) of casuarinin was 25 and 59 for XTT and plaque reduction assays, respectively. Casuarinin continued to exhibit antiviral activity even added 12 h after infection. During the attachment assay, casuarinin was shown to prevent the attachment of HSV-2 to cells. Furthermore, casuarinin also exhibited an activity in inhibiting the viral penetration. Interestingly, casuarinin was virucidal at a concentration of 25 microM, reducing viral titers up to 100,000-fold. This study concludes that casuarinin possesses anti-herpesvirus activity in inhibiting viral attachment and penetration, and also disturbing the late event(s) of infection.  相似文献   

6.
The in vitro antiviral activity as well as the mechanism of action of a new antiviral agent, a kanamycin analogue, 1-N-pentadecanoyl-3'-N-trifluoroacetyl kanamycin A (PTKA) against herpes simplex virus type 2 (HSV-2) was investigated. The drug showed excellent antiviral action with negligible cytotoxic effect on the culture cells. Based on plaque reduction assays the 50% inhibitory dose (ID50) of the drug was 1 microgram/ml, and at 20 micrograms/ml plaque formation was totally suppressed. The compound inhibited viral protein synthesis in infected cells without affecting RNA and DNA synthesis, when added to the cultures after virus adsorption. Moreover, pretreatment of the cells with PTKA before HSV-2 infection, increased the antiviral activity significantly. Dot-blot hybridization analysis revealed that the drug reduced the level of immediate early viral mRNA if applied before infection. There was no detectable action at the level of virus adsorption, penetration or uncoating. These results indicate that PTKA exerted its antiviral action at the early stage of viral replication as well as at the level of viral protein synthesis.  相似文献   

7.
The in vitro antiviral activity of two amphiphilic synthetic peptides, modelin-1 (mod-1) and modelin-5 (mod-5), and of the natural antibacterial peptide magainin-2 (mag-2) against herpes simplex viruses type 1 (HSV-1) and 2 (HSV-2) were evaluated. The peptides were incubated with the virus, i.e. direct inactivation, and their effects examined by means of plaque reduction assay and/or reduction in virus yield. Only mod- displayed a strong antiviral effect against HSV-1 and HSV-2, with 50% effective dose (ED50) values of 4.6 and 4.1 μg/mL, respectively. Mag-2, mod-5 and a mixture of both had no significant inhibitory effect. Addition of mod-1 up to a concentration of 100μg/mL to the culture medium had no significant cytotoxic effect on host vero cells, as measured by the trypan blue-exclusion method. It showed, however, considerable hemolytic activity against human red blood cells. Experiments including acyclovir (ACV) as a reference viral inhibitor indicated that the mode of action of mod-1 is different from that of ACV. In contrast to ACV, the peptide inactivates the virus following a very short incubation before vero cell infection, suggesting some kind of direct interaction of the peptide with the viral envelope, rather than inhibition of viral DNA replication or gene expression. Our results suggest that mod-1 may be an effective topical antiviral agent against herpes viruses.  相似文献   

8.
(E)-5-(2-Bromovinyl-2'-deoxyuridine (BrVUdR) showed strong antiviral activity against different laboratory strains and clinical isolates of herpes simplex virus type 1 (HSV-1) on primary rabbit testes (PRT) cells with a 50% inhibition of plaque formation (ID50) at 0.01-0.02 microM. One laboratory strain (HSV-1-S), however, was completely refractory even at concentrations as high as 100 microM. In contrast, the ID50S for all herpes simplex virus type 2 (HSV-2) strains were about 10(2) - 10(3) times higher (8-25 microM) than for the HSV-1 strains. No toxicity in mice treated with 140 mg BrVUdR/kg/day for 14 days was observed, and successful treatments of herpes encephalitis in mice induced experimentally by intracerebral infection with one laboratory strain (HSV-1-Kupka) and one clinical isolate (HSV-1-64) were achieved. Treatment of encephalitis in mice induced by the strain HSV-1-S insensitive to BrVUdR in cell culture failed to be effective. Similar antibody titers against HSV-1 were found in surviving mice of the control and of the BrVUdR-treated groups.  相似文献   

9.
We examined whether phenoxazine derivatives, 2-amino-4,4alpha-dihydro-4alpha-7-dimethyl-3H-phenoxazine-3-one (Phx-1), 3-amino-1,4alpha-dihydro-4alpha-8-dimethyl-2H-phenoxazine-2-one (Phx-2), and 2-amino-phenoxazine-3-one (Phx-3) may have antiviral activity against herpes family viruses: human cytomegalovirus (HCMV), herpes simplex virus type 1 (HSV-1), and herpes simplex virus type 2 (HSV-2). The antiviral activity was evaluated by the selectivity index (SI), which is the ratio of 50% cytotoxic concentration (CC(50)) and 50% antiviral concentration (IC(50)). Among these phenoxazines, Phx-2 exerted strong antiviral activity to HCMV with the SI of 200, while Phx-1 and Phx-3 exerted no marked anti-HCMV activity. Phx-2 also showed moderate inhibition of HSV-1 and HSV-2, with the SI of 6.7 and 17, respectively. In the time-of-addition experiments, inhibitory effect of Phx-2 against HCMV was active even when applied to cells at 100 h after HCMV infection, while ganciclovir (GCV) showed potent inhibition when applied to cells before 42-h post-infection, but its inhibitory effects disappeared thereafter. Attachment and penetration of HCMV was not affected by the presence of Phx-2. When HCMV was pretreated with Phx-2, concentration-dependent virucidal action was observed, suggesting that Phx-2 inactivates HCMV directly. From these data, it was found that Phx-2 might have a different anti-HCMV target from GCV.  相似文献   

10.
Eleven heterocyclic Schiff bases of aminohydroxyguanidine tosylate (SB-AHGs), compounds I-XI, were tested for antiviral activity against herpes simplex virus type 1 (HSV-1) and adenovirus type 5 (Ad 5) via plaque reduction and virus yield reduction assays. This work was undertaken to test the hypothesis that low molecular weight SB-AHGs (MW < 235 for the free SB) make better antiviral agents than high MW SB-AHGs (MW > 300). The plaque reduction assay method demonstrated that three compounds, I, VII and IX, had moderate activity against HSV-1, with 50% inhibitory concentration (IC50) values of 38.0, 23.5 and 52.1 microM, respectively. Against Ad 5, compounds I, VIII and XI exhibited moderate activity, with IC50 values of 52.7, 19.3 and 5.1 microM, respectively. Among the compounds screened, compound I (1-[(3'-hydroxy-6'-methyl-2'-pyridyl)methylene]amino-3-hydroxyguanidi ne tosylate) was the most promising antiviral candidate, with selectivity indices (SI) of 10.2 (HSV-1) and 7.6 (Ad 5), respectively. Virus yield reduction assays indicated that compound I had less antiviral potency against HSV-1 than against Ad 5. The antiviral effects of compound I at a high input virus multiplicity of infection (MOI > 5) indicated that compound I had effective anti-adenoviral activity at 24 h post infection. This work demonstrated that some of SB-AHGs only have moderate antiviral activities against Ad 5 and HSV-1 viruses. In general, low MW SB-AHGs have low cytotoxicities to the host cells.  相似文献   

11.
Betulin, a pentacyclic triterpenoid, was isolated from the bark of Betula papyrifera. The antiviral efficacies of betulin on herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) were evaluated using viral plaque reduction assays on Vero cells. The results indicate that betulin is active against both HSV-1 and HSV-2 infections with the 50% effective concentrations (EC(50)) of 0.40 and 4.15 microg/ml, respectively. The cytotoxicity of betulin was examined on Vero cells using a neutral red uptake assay. The 50% cytotoxic concentration (CC(50)) of betulin was 73.1 microg/ml. A synergistic antiviral effect between betulin and acyclovir (ACV) was determined by drug combination studies. Strong and moderate synergistic antiviral effects were observed for betulin and ACV against HSV-1 when the concentrations of ACV and betulin were higher than 0.068 and 0.4 microg/ml, respectively. At the concentrations lower than these, additive effect was found. Synergistic antiviral effects were also found against HSV-2 at higher concentrations than for HSV-1, i.e. 0.45 microg/ml of ACV combined with 8.4 microg/ml of betulin.  相似文献   

12.
Aqueous extracts from species of the Lamiaceae family were examined for their antiviral activity against Herpes simplex virus (HSV). Extracts from lemon balm (Melissa officinalis), peppermint (Mentha x piperita), prunella (Prunella vulgaris), rosemary (Rosmarinus officinalis), sage (Salvia officinalis) and thyme (Thymus vulgaris) were screened. Their inhibitory activity against Herpes simplex virus type 1 (HSV-1), type 2 (HSV-2) and an acyclovir-resistant strain of HSV-1 (ACV (res)) was tested in vitro on RC-37 cells in a plaque reduction assay. The 50% inhibitory concentrations (IC (50)) of the extracts for HSV plaque formation were determined in dose-response studies. All test compounds showed a high antiviral activity against HSV-1, HSV-2 and ACV (res). In order to identify the mode of antiviral action, the extracts were added to the cells or viruses at different stages of infection. Both types of Herpes virus including ACV (res) were considerably neutralized after treatment with the extracts prior to infection. At maximum non-cytotoxic concentrations of the extracts, plaque formation was significantly reduced by > 90% for HSV-1 and HSV-2 and > 85% for ACV (res). In time-response studies over a period of 2 hours, a clearly time-dependent activity was demonstrated. These results indicate that the extracts affect HSV before adsorption, but have no effect on the intracellular virus replication. Therefore, the extracts exert their antiviral effect on free HSV and offer a chance to use them for topical therapeutic application against recurrent HERPES infections.  相似文献   

13.
The keggin-type heteropolyoxotungstate K(7)[PTi(2)W(10)O(40)].6H(2)O (PM-19) is a potent polyoxometalate (PM) inhibitor of the replication of herpes simplex virus (HSV). Pretreatment of Vero cells with PM-19 prior to HSV-2 infection enhanced the antiviral potency of PM-19 almost 10-fold compared with treatment of the cells only after infection. The pretreatment effect of PM-19 is called "the memory effect". The memory effect was reflected by inhibition of plaque formation and decrease of intracellular virus DNA quantity, and was strongest when PM-19 was present during the penetration stage of HSV-2 infection. The effect was maintained under conditions of fusion induced by polyethyleneglycol treatment. This suggests that PM-19 does not act at the fusion stage of infection. Using the infectious center assay method, it was clarified that a second round of infection was inhibited by about 30% in the presence of PM-19 at the penetration stage compared with the virus control in nontreated cells. The inhibition was enhanced to about 60% by PM-19 pretreatment prior to infection. This suggests that PM-19 pretreatment of the cells protects them against HSV-2 infection.  相似文献   

14.
The inhibitory activity of manuka oil against Herpes simplex virus type 1 (HSV-1) and Herpes simplex virus type 2 (HSV-2) was tested in vitro on RC-37 cells (monkey kidney cells) using a plaque reduction assay. In order to determine the mode of antiviral action of the essential oil, manuka oil was added at different times to the cells or viruses during the infection cycle. Both HSV types were significantly inhibited when the viruses were pretreated with manuka oil 1 h prior to cell infection. At non-cytotoxic concentrations of the essential oil, plaque formation was significantly reduced by 99.5 % and 98.9 % for HSV-1 and HSV-2, respectively. The 50 % inhibitory concentration (IC (50)) of manuka oil for virus plaque formation was determined at 0.0001 % v/v ( = 0.96 microg/mL) and 0.00006 % v/v ( = 0.58 microg/mL) for HSV-1 and HSV-2, respectively. On the other hand, pretreatment of host cells with the essential oil before viral infection did not affect plaque formation. After virus penetration into the host cells only replication of HSV-1 particle was significantly inhibited to about 41 % by manuka oil. Flavesone and leptospermone, two characteristic ss-triketones of manuka oil, inhibited the virulence of HSV-1 in the same manner as the essential oil itself. When added at non-cytotoxic concentrations to the virus 1 h prior to cell infection, plaque formation was reduced by 99.1 % and 79.7 % for flavesone and leptospermone, respectively.  相似文献   

15.
Extracts from five Tibetan medicinal plants collected from the Tibetan Plateau were evaluated for antiviral activity against herpes simplex virus type 2 (HSV-2) in vitro and in vivo. Viral plaque reduction assays showed that extracts from four out of five plants inhibited HSV-2 infection significantly with 50% effective concentrations (EC50) values ranging from 0.35?±?0.11 to 1.83?±?0.21?mg/mL. The other plant, Swertia mussotii Franch. (Gentianaceae), exhibited activity in inhibiting the viral biosynthesis. In the attachment assay, two plants, Dracocephalum heterophyllum Benth. (Lamiaceae) and Dracocephalum tanguticum Maxim. (Lamiaceae) reduced the attachment of HSV-2 to cell surface. Interestingly, all of the extracts showed virucidal activity. Analyzed by real-time PCR, three extracts showed strong inhibition of HSV DNA replication with Dracocephalum heterophyllum and Dracocephalum tanguticum at the concentration of 4?mg/mL and Lagotis brevituba Maxim. (Scrophulariaceae) at 1?mg/mL. BALB/c mice were used for determining in vivo efficacy. Mice encephalitis herpes models were established by infection with HSV-2. The extracts of Dracocephalum heterophyllum, Dracocephalum tanguticum, and Swertia mussotii at a dose of 1?g/kg per day significantly prolonged the mean survival times and reduced the mortality of HSV-2 infected mice compared with control group (P?<?0.05). Taken together, we conclude that the antiviral mechanisms of these plants involve various stages of virus replication. Extracts from three of these plants, Dracocephalum heterophyllum, Dracocephalum tanguticum, and Swertia mussotii, may be possible candidates in developing anti-HSV-2 medicine.  相似文献   

16.
Dendrimers are macromolecules with broad-spectrum antiviral activity and minimal toxicity effective in animal models in preventing transmission of herpes simplex virus (HSV) infection. In order to further understand the mechanism of action, and toxicity profiles of the dendrimer SPL-2999 against HSV, we investigated in vitro activities as follows: modified plaque reduction assays for SPL-2999 showed that 50% effective concentrations (EC(50)) determined by pre-treatment of cells with SPL-2999 were 0.5 microg/ml (30 nM) for HSV-2 and 1 microg/ml (60 nM) for HSV-1, respectively. SPL-2999 was not toxic to Vero cells at concentration up to the highest tested (CC(50) greater than 1000 microg/ml). SPL-2999 appears to completely inhibit both viral adsorption and penetration to Vero cells at concentrations of higher than 3 microg/ml. Additionally, virus yield reduction assay showed that SPL-2999 was effective on cells already infected with HSV with EC(90)s (effective concentration giving 90% virus yield reduction) approximately 29.2 microg/ml for HSV-1 and 6.7 microg/ml for HSV-2. When Vero cells were infected with HSV at moi (multiplicity of infection) of 0.01 pfu/cell, the infected cells could be completely protected from viral cytopathic effect (CPE) by SPL-2999 with EC(90)s (effective concentration that protects 90% of cells from virus lysis) of 15 microg/ml for HSV-1 and 10 microg/ml for HSV-2. Results from Southern blot hybridization indicated that SPL-2999 inhibited DNA synthesis in HSV infected cells. We conclude that SPL-2999 inhibits both HSV entry into susceptible cells and late stages of HSV replication. Our data indicate that SPL-2999 is a potent inhibitor of both HSV-1 and -2 with the potential for further development as either a topical microbicide or a therapeutic agent.  相似文献   

17.
An antiviral drug susceptibility assay of herpes simplex virus (HSV) was developed using real-time PCR quantification of intracellular viral DNA load. The number of HSV DNA copies within Vero cells after 24 h infection was strongly correlated with the number of plaques obtained after 72 h infection. Antiviral drug susceptibility of HSV was determined after virus growth for 24h by measuring the reduction of intracellular HSV DNA in the presence of increasing concentrations of either acyclovir (ACV) or foscarnet (PFA). This assay required neither preliminary titration of infectious stock nor follow-up of cytopathic effect. The 50% inhibitory concentrations (IC50s) obtained with 27 isolates of HSV types 1 and 2 by using this test were significantly correlated with those obtained in parallel with plaque reduction assay taken as the reference method (r=0.91, p<0.0001 and r=0.51, p=0.009 for ACV and PFA, respectively). The threshold real-time PCR IC50s for ACV and PFA resistance did not differ according to HSV type and were determined to be 1.0 and 100 microM, respectively. The real-time PCR susceptibility assay reported here is rapid, reproducible, applicable for HSV-1 as well as HSV-2, and suitable for automation.  相似文献   

18.
Several chemically defined plant extracts were investigated for their antiviral action on herpes simplex virus (HSV-1, HSV-2)-infected African green monkey kidney cells and human adenocarcinoma cells, using a plaque formation assay. Among them, the monomeric hydrolyzable tannins, oligomeric ellagitannins and condensed tannins, having galloyl groups or hexahydroxydiphenoyl groups, had the most potent anti-HSV activity. Their 50% effective doses (0.03-0.1 microgram/ml) were by two-three orders of magnitude lower than their 50% cytotoxic doses (greater than 10 micrograms/ml). On the other hand, gallic acid, neutral polysaccharides, chemically modified (N,N-dimethylaminoethyl-, carboxymethyl-, and sulfated-) glucans, sialic acid-rich glycoproteins, and uronic acid-rich pine cone polysaccharide showed little or no activity. Using radiolabeled virus particles, we demonstrated that the anti-HSV effect of the tannins is due to inhibition of virus adsorption to the cells.  相似文献   

19.
ASP2151 was developed as a novel inhibitor of herpes simplex virus (HSV) and varicella-zoster virus helicase-primase. The anti-HSV activity of ASP2151 toward a clinical HSV isolate with acyclovir (ACV)-resistant/thymidine kinase (TK)-deficiency was characterized in vitro and in vivo using a plaque reduction assay and the ear pinna infection in mice. The IC50 ranged from 0.018 to 0.024 μg/ml, indicating the susceptibility of TK-deficient HSV-2 was similar to that of wild-type HSV-2 strains. Anti-HSV activity of ASP2151 in vivo was evaluated in mice infected with wild-type HSV-2 and TK-deficient HSV-2. ASP2151 significantly reduced the copy numbers of wild-type HSV-2 and TK-deficient HSV-2 at the inoculation ear pinna, while valacyclovir significantly reduced the copy number of wild type HSV-2 but not that of TK-deficient HSV-2 in the inoculated ear pinna. Thus, ASP 2151 showed therapeutic efficacy in mice infected with both wild-type and TK-deficient HSV-2. In conclusion, ASP2151 is a promising novel herpes helicase-primase inhibitor that indicates the feasibility of ASP2151 for clinical application for the treatment of HSV infections, including ACV-resistant/TK-deficient HSV infection.  相似文献   

20.
Antiviral activity of Spirulina maxima against herpes simplex virus type 2   总被引:5,自引:0,他引:5  
Spirulina has been used in a variety of practical applications in biotechnology and medical sciences. This paper presents the antiviral activity found in a hot water extract (HWE) of a commercial preparation of Spirulina maxima, studied by a microplate inhibition assay, using several viruses. The HWE inhibited the infection for: herpes simplex virus type 2 (HSV-2), pseudorabies virus (PRV), human cytomegalovirus (HCMV), and HSV-1, and the 50% effective inhibition doses (ED(50)) were 0.069, 0.103, 0.142, and 0.333 mg/ml for each virus, respectively. For adenovirus the inhibition was less than 20%, and no inhibition was found for measles virus, subacute sclerosing panencephalitis virus (SSPE), vesicular stomatitis virus (VSV), poliovirus 1 and rotavirus SA-11, at concentrations of 2 mg/ml of the HWE. The highest antiviral activity was for HSV-2, with a selectivity index of 128. The antiviral activity was not due to a virucidal effect. Herpesvirus infection was inhibited at the initial events (adsorption and penetration) of the viral cycle. To initiate the isolation and identification of the compound that exhibits the antiviral activity of S. maxima, some extracts made by using several solvents with different polarity were evaluated by microplate inhibition assay using HSV-2. The highest antiviral activity was detected in the methanol-water 3:1, which suggests that the antiviral activity is probably due to highly polar compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号