首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Imitation is an important component of human social learning throughout life. Theoretical models and empirical data from anthropology and psychology suggest that people tend to imitate self-similar individuals, and that such imitation biases increase the adaptive value (e.g., self-relevance) of learned information. It is unclear, however, what neural mechanisms underlie people''s tendency to imitate those similar to themselves. We focused on the own-gender imitation bias, a pervasive bias thought to be important for gender identity development. While undergoing fMRI, participants imitated own- and other-gender actors performing novel, meaningless hand signs; as control conditions, they also simply observed such actions and viewed still portraits of the same actors. Only the ventral and dorsal striatum, orbitofrontal cortex and amygdala were more active when imitating own- compared to other-gender individuals. A Bayesian analysis of the BrainMap neuroimaging database demonstrated that the striatal region preferentially activated by own-gender imitation is selectively activated by classical reward tasks in the literature. Taken together, these findings reveal a neurobiological mechanism associated with the own-gender imitation bias and demonstrate a novel role of reward-processing neural structures in social behavior.  相似文献   

2.
Although neural signals of reward anticipation have been studied extensively, the functional relationship between reward and attention has remained unclear: Neural signals implicated in reward processing could either reflect attentional biases towards motivationally salient stimuli, or proceed independently of attentional processes. Here, we sought to disentangle reward and attention‐related neural processes by independently modulating reward value and attentional task demands in a functional magnetic resonance imaging study in healthy human participants. During presentation of a visual reward cue that indicated whether monetary reward could be obtained in a subsequent reaction time task, participants either attended to the reward cue or performed an unrelated attention‐demanding task at two different levels of difficulty. In ventral striatum and ventral tegmental area, neural responses were modulated by reward anticipation irrespective of attentional demands, thus indicating attention‐independent processing of reward cues. By contrast, additive effects of reward and attention were observed in visual cortex. Critically, reward‐related activations in right anterior insula strongly depended on attention to the reward cue. Dynamic causal modelling revealed that the attentional modulation of reward processing in insular cortex was mediated by enhanced effective connectivity from ventral striatum to anterior insula. Our results provide evidence for distinct functional roles of the brain regions involved in the processing of reward‐indicating information: While subcortical structures signal the motivational salience of reward cues even when attention is fully engaged elsewhere, reward‐related responses in anterior insula depend on available attentional resources, likely reflecting the conscious evaluation of sensory information with respect to motivational value. Hum Brain Mapp 35:3036–3051, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
OBJECTIVE: Alcohol and other drugs of abuse stimulate dopamine release in the ventral striatum, which includes the nucleus accumbens, a core region of the brain reward system, and reinforce substance intake. Chronic alcohol intake is associated with down-regulation of central dopamine D(2) receptors, and delayed recovery of D(2) receptor sensitivity after detoxification is positively correlated with high risk for relapse. Prolonged D(2) receptor dysfunction in the ventral striatum may interfere with a dopamine-dependent error detection signal and bias the brain reward system toward excessive attribution of incentive salience to alcohol-associated stimuli. METHOD: Multimodal imaging, with the radioligand [(18)F]desmethoxyfallypride and positron emission tomography as well as functional magnetic resonance imaging (fMRI), was used to compare 11 detoxified male alcoholics with 13 healthy men. The authors measured the association of D(2)-like dopamine receptors in the ventral striatum with alcohol craving and central processing of alcohol cues. RESULTS: Activation of the medial prefrontal cortex and striatum by alcohol-associated stimuli, relative to activation by neutral visual stimuli, was greater in the detoxified alcoholics than in the healthy men. The alcoholics displayed less availability of D(2)-like receptors in the ventral striatum, which was associated with alcohol craving severity and with greater cue-induced activation of the medial prefrontal cortex and anterior cingulate as assessed with fMRI. DISCUSSION: In alcoholics, dopaminergic dysfunction in the ventral striatum may attribute incentive salience to alcohol-associated stimuli, so that alcohol cues elicit craving and excessive activation of neural networks associated with attention and behavior control.  相似文献   

4.
Medial temporal lobe (MTL) dependent long-term memory for novel events is modulated by a circuitry that also responds to reward and includes the ventral striatum, dopaminergic midbrain, and medial orbitofrontal cortex (mOFC). This common neural network may reflect a functional link between novelty and reward whereby novelty motivates exploration in the search for rewards; a link also termed novelty "exploration bonus." We used fMRI in a scene encoding paradigm to investigate the interaction between novelty and reward with a focus on neural signals akin to an exploration bonus. As expected, reward related long-term memory for the scenes (after 24 hours) strongly correlated with activity of MTL, ventral striatum, and substantia nigra/ventral tegmental area (SN/VTA). Furthermore, the hippocampus showed a main effect of novelty, the striatum showed a main effect of reward, and the mOFC signalled both novelty and reward. An interaction between novelty and reward akin to an exploration bonus was found in the hippocampus. These data suggest that MTL novelty signals are interpreted in terms of their reward-predicting properties in the mOFC, which biases striatal reward responses. The striatum together with the SN/VTA then regulates MTL-dependent long-term memory formation and contextual exploration bonus signals in the hippocampus.  相似文献   

5.
Immaturities in adolescent reward processing are thought to contribute to poor decision making and increased susceptibility to develop addictive and psychiatric disorders. Very little is known; however, about how the adolescent brain processes reward. The current mechanistic theories of reward processing are derived from adult models. Here we review recent research focused on understanding of how the adolescent brain responds to rewards and reward-associated events. A critical aspect of this work is that age-related differences are evident in neuronal processing of reward-related events across multiple brain regions even when adolescent rats demonstrate behavior similar to adults. These include differences in reward processing between adolescent and adult rats in orbitofrontal cortex and dorsal striatum. Surprisingly, minimal age related differences are observed in ventral striatum, which has been a focal point of developmental studies. We go on to discuss the implications of these differences for behavioral traits affected in adolescence, such as impulsivity, risk-taking, and behavioral flexibility. Collectively, this work suggests that reward-evoked neural activity differs as a function of age and that regions such as the dorsal striatum that are not traditionally associated with affective processing in adults may be critical for reward processing and psychiatric vulnerability in adolescents.  相似文献   

6.
BACKGROUND: Functional disturbances in reward-related brain systems are thought to play a role in the development of mood, impulse, and substance-abuse disorders. Studies in nonhuman primates have identified brain regions, including the dorsal/ventral striatum and orbital-frontal cortex, in which neural activity is modulated by reward. Recent studies in adults have concurred with these findings by observing reward-contingent blood oxygen level-dependent (BOLD) responses in these regions during functional magnetic resonance imaging (fMRI) paradigms; however, no previous studies indicate whether comparable modulations of neural activity exist in the brain reward systems of children and adolescents. METHODS: We used event-related fMRI and a behavioral paradigm modeled on previous work in adults to study brain responses to monetary gains and losses in psychiatrically healthy children and adolescents as part of a program examining the neural substrates of anxiety and depression in youth. RESULTS: Regions and time-courses of reward-related activity were similar to those observed in adults with condition-dependent BOLD changes in the ventral striatum and lateral and medial orbital-frontal cortex; specifically, these regions showed larger responses to positive than to negative feedback. CONCLUSIONS: These results provide further evidence for the value of event-related fMRI in examining reward systems of the brain, demonstrate the feasibility of this approach in children and adolescents, and establish a baseline from which to understand the pathophysiology of reward-related psychiatric disorders in youth.  相似文献   

7.
Choice selection and reward anticipation: an fMRI study   总被引:9,自引:0,他引:9  
We examined neural activations during decision-making using fMRI paired with the wheel of fortune task, a newly developed two-choice decision-making task with probabilistic monetary gains. In particular, we assessed the impact of high-reward/risk events relative to low-reward/risk events on neural activations during choice selection and during reward anticipation. Seventeen healthy adults completed the study. We found, in line with predictions, that (i) the selection phase predominantly recruited regions involved in visuo-spatial attention (occipito-parietal pathway), conflict (anterior cingulate), manipulation of quantities (parietal cortex), and preparation for action (premotor area), whereas the anticipation phase prominently recruited regions engaged in reward processes (ventral striatum); and (ii) high-reward/risk conditions relative to low-reward/risk conditions were associated with a greater neural response in ventral striatum during selection, though not during anticipation. Following an a priori ROI analysis focused on orbitofrontal cortex, we observed orbitofrontal cortex activation (BA 11 and 47) during selection (particularly to high-risk/reward options), and to a more limited degree, during anticipation. These findings support the notion that (1) distinct, although overlapping, pathways subserve the processes of selection and anticipation in a two-choice task of probabilistic monetary reward; (2) taking a risk and awaiting the consequence of a risky decision seem to affect neural activity differently in selection and anticipation; and thus (3) common structures, including the ventral striatum, are modulated differently by risk/reward during selection and anticipation.  相似文献   

8.
Dysfunctional processing of reward and punishment may play an important role in depression. However, functional magnetic resonance imaging (fMRI) studies have shown heterogeneous results for reward processing in fronto-striatal regions. We examined neural responsivity associated with the processing of reward and loss during anticipation and receipt of incentives and related prediction error (PE) signalling in depressed individuals. Thirty medication-free depressed persons and 28 healthy controls performed an fMRI reward paradigm. Regions of interest analyses focused on neural responses during anticipation and receipt of gains and losses and related PE-signals. Additionally, we assessed the relationship between neural responsivity during gain/loss processing and hedonic capacity. When compared with healthy controls, depressed individuals showed reduced fronto-striatal activity during anticipation of gains and losses. The groups did not significantly differ in response to reward and loss outcomes. In depressed individuals, activity increases in the orbitofrontal cortex and nucleus accumbens during reward anticipation were associated with hedonic capacity. Depressed individuals showed an absence of reward-related PEs but encoded loss-related PEs in the ventral striatum. Depression seems to be linked to blunted responsivity in fronto-striatal regions associated with limited motivational responses for rewards and losses. Alterations in PE encoding might mirror blunted reward- and enhanced loss-related associative learning in depression.  相似文献   

9.
The anticipation of control over aversive events in life is relevant for our mental health. Insights on the underlying neural mechanisms remain limited. We developed a new functional magnetic resonance imaging (fMRI) task that uses auditory stimuli to explore the neural correlates of (1) the anticipation of control over aversion and (2) the processing of aversion. In a sample of 25 healthy adults, we observed increased neural activation in the medial prefrontal cortex (ventromedial prefrontal cortex and rostral anterior cingulate cortex), other brain areas relevant for reward anticipation (ventral striatum, brainstem [ventral tegmental area], midcingulate cortex), and the posterior cingulate cortex when they anticipated control over aversion compared with anticipating no control (1). The processing of aversive sounds compared to neutral sounds (2) was associated with increased neural activation in the bilateral posterior insula. Our findings provide evidence for the important role of medial prefrontal regions in control anticipation and highlight the relevance of conceiving the neural mechanisms involved within a reward‐based framework.  相似文献   

10.
What basic visual structures underlie human face detection and how can we extract such structures directly from the amplitude of neural responses elicited by face processing? Here, we address these issues by investigating an extension of noise‐based image classification to BOLD responses recorded in high‐level visual areas. First, we assess the applicability of this classification method to such data and, second, we explore its results in connection with the neural processing of faces. To this end, we construct luminance templates from white noise fields based on the response of face‐selective areas in the human ventral cortex. Using behaviorally and neurally‐derived classification images, our results reveal a family of simple but robust image structures subserving face representation and detection. Thus, we confirm the role played by classical face selective regions in face detection and we help clarify the representational basis of this perceptual function. From a theory standpoint, our findings support the idea of simple but highly diagnostic neurally‐coded features for face detection. At the same time, from a methodological perspective, our work demonstrates the ability of noise‐based image classification in conjunction with fMRI to help uncover the structure of high‐level perceptual representations. Hum Brain Mapp 34:3101–3115, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
The representation of reward anticipation and reward prediction errors is the basis for reward-associated learning. The representation of whether or not a reward occurred (reward receipt) is important for decision making. Recent studies suggest that, while reward anticipation and reward prediction errors are encoded in the midbrain and the ventral striatum, reward receipts are encoded in the medial orbitofrontal cortex. In order to substantiate this functional specialization we analyzed data from an fMRI study in which 59 subjects completed two simple monetary reward paradigms. Because reward receipts and reward prediction errors were correlated, a statistical model comparison was applied separating the effects of the two. Reward prediction error fitted BOLD responses significantly better than reward receipt in the midbrain and the ventral striatum. Conversely, reward receipt fitted BOLD responses better in the orbitofrontal cortex. Activation related to reward anticipation was found in the orbitofrontal cortex. The results confirm a functional specialization of behaviorally important aspects of reward processing within the mesolimbic dopaminergic system.  相似文献   

12.
The reinforcement sensitivity theory (RST) relates individual differences in reward sensitivity to the activation of the behavioral approach system (BAS). Dopamine-related brain structures have been repeatedly associated with reward processing, but also with cognitive processes such as task switching. In the present study, we examined the association between reward sensitivity and the event-related fMRI BOLD response with set switching in 31 males. As expected, the right inferior frontal cortex (rIFG) and the striatum (i.e. the left putamen) were involved in set-switching activity for the overall sample. Interindividual differences in Gray's reward sensitivity were related to stronger activity in the rIFG and the ventral striatum. Thus, trait reward sensitivity contributed to the modulation of brain responsiveness in set-switching tasks. Having considered previous research, we propose that higher BAS activity is associated with a stronger reward to process a better implementation of goal-directed tasks and the diminished processing of secondary cues.  相似文献   

13.
《Social neuroscience》2013,8(3):320-334
Positive behavioral responses to attractive faces have led neuroscientists to investigate underlying neural mechanisms in a “reward circuit” that includes brain regions innervated by dopamine pathways. Using male faces ranging from attractive to extremely unattractive, disfigured ones, this study is the first to demonstrate heightened responses to both rewarding and aversive faces in numerous areas of this putative reward circuit. Parametric analyses employing orthogonal linear and nonlinear regressors revealed positive nonlinear effects in anterior cingulate cortex, lateral orbital frontal cortex (LOFC), striatum (nucleus accumbens, caudate, putamen), and ventral tegmental area, in addition to replicating previously documented linear effects in medial orbital frontal cortex (MOFC) and LOFC and nonlinear effects in amygdala and MOFC. The widespread nonlinear responses are consistent with single cell recordings in animals showing responses to both rewarding and aversive stimuli, and with some human fMRI investigations of non-face stimuli. They indicate that the reward circuit does not process face valence with any simple dissociation of function across structures. Perceiver gender modulated some responses to our male faces: Women showed stronger linear effects, and men showed stronger nonlinear effects, which may have functional implications. Our discovery of nonlinear responses to attractiveness throughout the reward circuit echoes the history of amygdala research: Early work indicated a linear response to threatening stimuli, including faces; later work also revealed a nonlinear response with heightened activation to affectively salient stimuli regardless of valence. The challenge remains to determine how such dual coding influences feelings, such as pleasure and pain, and guides goal-related behavioral responses, such as approach and avoidance.  相似文献   

14.
BACKGROUND: Although abnormalities in reward processing have been proposed to underlie attention-deficit/hyperactivity disorder (ADHD), this link has not been tested explicitly with neural probes. METHODS: This hypothesis was tested by using fMRI to compare neural activity within the striatum in individuals with ADHD and healthy controls during a reward-anticipation task that has been shown previously to produce reliable increases in ventral striatum activity in healthy adults and healthy adolescents. Eleven adolescents with ADHD (5 off medication and 6 medication-na?ve) and 11 healthy controls (ages 12-17 y) were included. Groups were matched for age, gender, and intelligence quotient. RESULTS: We found reduced ventral striatal activation in adolescents with ADHD during reward anticipation, relative to healthy controls. Moreover, ventral striatal activation was negatively correlated with parent-rated hyperactive/impulsive symptoms across the entire sample. CONCLUSIONS: These findings provide neural evidence that symptoms of ADHD, and impulsivity or hyperactivity in particular, may involve diminished reward anticipation, in addition to commonly observed executive dysfunction.  相似文献   

15.
Despite being one of the healthiest developmental periods, morbidity and mortality rates increase dramatically during adolescence, largely due to preventable, risky behaviors. Heightened reward sensitivity, coupled with ineffective cognitive control, has been proposed to underlie adolescents’ risk taking. In this study, we test whether reward sensitivity can be redirected to promote safe behavior. Adolescents completed a risk-taking task in the presence of their mother and alone during fMRI. Adolescents demonstrated reduced risk-taking behavior when their mothers were present compared with alone, which was associated with greater recruitment of the ventrolateral prefrontal cortex (VLPFC) when making safe decisions, decreased activation in the ventral striatum following risky decisions and greater functional coupling between the ventral striatum and VLPFC when making safe decisions. Importantly, the very same neural circuitry (i.e. ventral striatum) that has been linked to greater risk-taking can also be redirected toward thoughtful, more deliberative and safe decisions.  相似文献   

16.
Dissociation of reward anticipation and outcome with event-related fMRI.   总被引:16,自引:0,他引:16  
Reward processing involves both appetitive and consummatory phases. We sought to examine whether reward anticipation vs outcomes would recruit different regions of ventral forebrain circuitry using event-related fMRI. Nine healthy volunteers participated in a monetary incentive delays task in which they either responded to a cued target for monetary reward, responded to a cued target for no reward, or did not respond to a cued target during scanning. Multiple regression analyses indicated that while anticipation of reward vs non-reward activated foci in the ventral striatum, reward vs non-reward outcomes activated foci in the ventromedial frontal cortex. These findings suggest that reward anticipation and outcomes may differentially recruit distinct regions that lie along the trajectory of ascending dopamine projections.  相似文献   

17.
The brain's reward system is crucial to understand obesity in modern society, as increased neural responsivity to reward can fuel the unhealthy food choices that are driving the growing obesity epidemic. Brain's reward system responsivity to food and monetary rewards in individuals with excessive weight (overweight and obese) versus normal weight controls, along with the relationship between this responsivity and body mass index (BMI) were tested. The sample comprised 21 adults with obesity (BMI > 30), 21 with overweight (BMI between 25 and 30), and 39 with normal weight (BMI < 25). Participants underwent a functional magnetic resonance imaging (fMRI) session while performing two tasks that involve the processing of food (Willing to Pay) and monetary rewards (Monetary Incentive Delay). Neural activations within the brain reward system were compared across the three groups. Curve fit analyses were conducted to establish the association between BMI and brain reward system's response. Individuals with obesity had greater food‐evoked responsivity in the dorsal and ventral striatum compared with overweight and normal weight groups. There was an inverted U‐shape association between BMI and monetary‐evoked responsivity in the ventral striatum, medial frontal cortex, and amygdala; that is, individuals with BMIs between 27 and 32 had greater responsivity to monetary stimuli. Obesity is associated with greater food‐evoked responsivity in the ventral and dorsal striatum, and overweight is associated with greater monetary‐evoked responsivity in the ventral striatum, the amygdala, and the medial frontal cortex. Findings suggest differential reactivity of the brain's reward system to food versus monetary rewards in obesity and overweight. Hum Brain Mapp 38:666–677, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
Accumulated evidence from animal studies implicates the ventral striatum in the processing of reward information. Recently, deep brain stimulation (DBS) surgery has enabled researchers to analyze neurophysiological recordings from humans engaged in reward tasks. We present data recorded from the human ventral striatum during deep brain stimulation surgery as a participant played a video game coupled to the receipt of visual reward images. To our knowledge, we identify the first instances of reward-sensitive single unit activity in the human ventral striatum. Local field potential data suggest that alpha oscillations are sensitive to positive feedback, whereas beta oscillations exhibit significantly higher power during unrewarded trials. We report evidence of alpha-gamma cross-frequency coupling that differentiates between positive and negative feedback.  相似文献   

19.
Food is an innate reward stimulus related to energy homeostasis and survival, whereas money is considered a more general reward stimulus that gains a rewarding value through learning experiences. Although the underlying neural processing for both modalities of reward has been investigated independently from one another, a more detailed investigation of neural similarities and/or differences between food and monetary reward is still missing. Here, we investigated the neural processing of food compared with monetary-related rewards in 27 healthy, normal-weight women using functional magnetic resonance imaging. We developed a task distinguishing between the anticipation and the receipt of either abstract food or monetary reward. Both tasks activated the ventral striatum during the expectation of a reward. Compared with money, greater food-related activations were observed in prefrontal, parietal and central midline structures during the anticipation and lateral orbitofrontal cortex (lOFC) during the receipt of food reward. Furthermore, during the receipt of food reward, brain activation in the secondary taste cortex was positively related to the body mass index. These results indicate that food-dependent activations encompass to a greater extent brain regions involved in self-control and self-reflection during the anticipation and phylogenetically older parts of the lOFC during the receipt of reward.  相似文献   

20.
Learning occurs when an outcome differs from expectations, generating a reward prediction error signal (RPE). The RPE signal has been hypothesized to simultaneously embody the valence of an outcome (better or worse than expected) and its surprise (how far from expectations). Nonetheless, growing evidence suggests that separate representations of the two RPE components exist in the human brain. Meta‐analyses provide an opportunity to test this hypothesis and directly probe the extent to which the valence and surprise of the error signal are encoded in separate or overlapping networks. We carried out several meta‐analyses on a large set of fMRI studies investigating the neural basis of RPE, locked at decision outcome. We identified two valence learning systems by pooling studies searching for differential neural activity in response to categorical positive‐versus‐negative outcomes. The first valence network (negative > positive) involved areas regulating alertness and switching behaviours such as the midcingulate cortex, the thalamus and the dorsolateral prefrontal cortex whereas the second valence network (positive > negative) encompassed regions of the human reward circuitry such as the ventral striatum and the ventromedial prefrontal cortex. We also found evidence of a largely distinct surprise‐encoding network including the anterior cingulate cortex, anterior insula and dorsal striatum. Together with recent animal and electrophysiological evidence this meta‐analysis points to a sequential and distributed encoding of different components of the RPE signal, with potentially distinct functional roles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号