首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Membrane depolarization evoked by 25-40 mM K+ elicited an immediate increase of somatic and neuritic [Ca2+]i in cultured dopaminergic neurons as measured by digital fluorescence microscope imaging. The rise of neuritic [Ca2+]i was inhibited by N-type but not L-type Ca2+ channel blockers, while the rise of somatic [Ca2+]i was prevented by both L- and N-type Ca2+ channel blockers. Similarly, depolarization-induced [3H]dopamine release was selectively attenuated by N-type Ca2+ channel blockers. The present results suggest that [3H]dopamine release from mesencephalic neuronal cell cultures relates to a Ca(2+)-dependent mechanism regulated by N-type channels located in the vicinity of the exocytotic sites within neuritic processes.  相似文献   

2.
3.
4.
1. The modulation of membrane currents by serotonin (5-HT) was studied in isolated clusters of tail sensory neurons. Serotonin was applied by micropressure ejection onto the somata of sensory neurons voltage-clamped at fixed holding potentials. The range of holding potentials tested in this study was selected to produce a steady-state Ca2+-activated K+ current (IK,Ca). Serotonin induced an inward shift in the holding current associated with a decrease in slope conductance. 2. Intracellular injection of adenosine 3',5'-cyclic monophosphate (cAMP) mimicked the response to 5-HT and induced an inward current associated with a decrease in slope conductance. The responses to 5-HT and cAMP had similar voltage dependencies and both responses were due to an apparent decrease in K+ current. Responses to cAMP were markedly reduced when generated at the peak of a response to 5-HT. The nonsummation of the maximal current responses indicated that 5-HT and cAMP utilize a common, saturable mechanism. 3. In contrast to the consistent decrease in steady-state K+ conductance elicited by cAMP, injection of guanosine 3',5'-cyclic monophosphate (cGMP) produced variable responses. In most cells, cGMP induced outward shifts in holding current that were associated with an increase in slope conductance. 4. Several lines of evidence indicated that IK,Ca contributed to the holding current at the level of membrane potentials that were examined. Inward shifts in holding current associated with a decrease in slope conductance were produced in the presence of agents that block Ca2+ channels, such as Co2+, Cd2+ or Ni2+ and by replacement of extracellular Ca2+ with Ba2+. Reducing the concentration of cytoplasmic Ca2+ through intracellular injection of EGTA had similar effects. Furthermore, inward shifts in holding current were produced by 5 mM tetraethylammonium chloride (TEA), which is known to block IK,Ca in neurons of Aplysia. This concentration of TEA also attenuated the outward current produced in response to direct intracellular injection of Ca2+. 5. Serotonin appears to modulate the IK,Ca that contributes to the steady-state holding current. The same manipulations that block the steady-state IK,Ca (see above) also attenuated the response to 5-HT. Furthermore, K+ currents activated by intracellular injection of Ca2+ were attenuated by 5-HT. 6. These results indicate that the changes in holding current produced by 5-HT are mediated, at least in part, by cAMP. In addition, it appears that 5-HT modulates a steady-state calcium-activated K+ current in addition to the previously described S-current (40, 58) and delayed K+ current (8, 9).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The endogenous lipid agent N-arachidonoylethanolamine (anandamide), among other effects, has been shown to be involved in nociceptive processing both in the central and peripheral nervous systems. Anandamide is thought to be synthesised by several enzymatic pathways both in a Ca2+-sensitive and Ca2+-insensitive manner, and rat primary sensory neurons produce anandamide. Here, we show for the first time, that cultured rat primary sensory neurons express at least four of the five known Ca2+-insensitive enzymes implicated in the synthesis of anandamide, and that application of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-arachidonoyl, the common substrate of the anandamide-synthesising pathways, results in anandamide production which is not changed by the removal of extracellular Ca2+. We also show that anandamide, which has been synthesised in primary sensory neurons following the application of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-arachidonoyl induces a transient receptor potential vanilloid type 1 ion channel-mediated excitatory effect that is not inhibited by concomitant activation of the cannabinoid type 1 receptor. Finally, we show that sub-populations of transient receptor potential vanilloid type 1 ion channel-expressing primary sensory neurons also express some of the putative Ca2+-insensitive anandamide-synthesising enzymes. Together, these findings indicate that anandamide synthesised by primary sensory neuron via a Ca2+-insensitive manner has an excitatory rather than an inhibitory role in primary sensory neurons and that excitation is mediated predominantly through autocrine signalling. Regulation of the activity of the Ca2+-insensitive anandamide-synthesising enzymes in these neurons may be capable of regulating the activity of these cells, with potential relevance to controlling nociceptive processing.  相似文献   

6.
Ca2+ -induced Ca2+ -release (CICR) from ryanodine-sensitive Ca2+ stores provides a mechanism to amplify and propagate a transient increase in intracellular calcium concentration ([Ca2+]i). A subset of rat dorsal root ganglion neurons in culture exhibited regenerative CICR when sensitized by caffeine. [Ca2+]i oscillated in the maintained presence of 5 mM caffeine and 25 mM K+. Here, CICR oscillations were used to study the complex interplay between Ca2+ regulatory mechanisms at the cellular level. Oscillations depended on Ca2+ uptake and release from the endoplasmic reticulum (ER) and Ca2+ influx across the plasma membrane because cyclopiazonic acid, ryanodine, and removal of extracellular Ca2+ terminated oscillations. Increasing caffeine concentration decreased the threshold for action potential-evoked CICR and increased oscillation frequency. Mitochondria regulated CICR by providing ATP and buffering [Ca2+]i. Treatment with the ATP synthase inhibitor, oligomycin B, decreased oscillation frequency. When ATP concentration was held constant by recording in the whole cell patch-clamp configuration, oligomycin no longer affected oscillation frequency. Aerobically derived ATP modulated CICR by regulating the rate of Ca2+ sequestration by the ER Ca2+ pump. Neither CICR threshold nor Ca2+ clearance by the plasma membrane Ca2+ pump were affected by inhibition of aerobic metabolism. Uncoupling electron transport with carbonyl cyanide p-trifluoromethoxy-phenyl-hydrazone or inhibiting mitochondrial Na+/Ca2+ exchange with CGP37157 revealed that mitochondrial buffering of [Ca2+]i slowed oscillation frequency, decreased spike amplitude, and increased spike width. These findings illustrate the interdependence of energy metabolism and Ca2+ signaling that results from the complex interaction between the mitochondrion and the ER in sensory neurons.  相似文献   

7.
We studied inactivation of Ca(2+)-induced Ca(2+) release (CICR) via ryanodine receptors (RyRs) in bullfrog sympathetic neurons. The rate of rise in [Ca(2+)](i) due to CICR evoked by a depolarizing pulse decreased markedly within 10-20 ms to a much slower rate despite persistent Ca(2+) entry and little depletion of Ca(2+) stores. The Ca(2+) entry elicited by the subsequent pulse within 50 ms, during which the [Ca(2+)](i) level remained unchanged, did not generate a distinct [Ca(2+)](i) rise. This mode of [Ca(2+)](i) rise was unaffected by a mitochondrial uncoupler, carbonyl cyanide p-trifluromethoxy-phenylhydrazone (FCCP, 1 microm). Paired pulses of varying interval and duration revealed that recovery from inactivation became distinct >or= 50 ms after depolarization and depended on [Ca(2+)](i). The inactivation was prevented by BAPTA (>or= 100 microm) but not by EGTA (相似文献   

8.
The contribution of subclasses of K(+) channels to the response of mammalian neurons to anoxia is not yet clear. We investigated the role of ATP-sensitive (K(ATP)) and Ca(2+)-activated K(+) currents (small conductance, SK, big conductance, BK) in mediating the effects of chemical anoxia by cyanide, as determined by electrophysiological analysis and fluorometric Ca(2+) measurements in dorsal vagal neurons of rat brainstem slices. The cyanide-evoked persistent outward current was abolished by the K(ATP) channel blocker tolbutamide, but not changed by the SK and BK channel blockers apamin or tetraethylammonium. The K(+) channel blockers also revealed that ongoing activation of K(ATP) and SK channels counteracts a tonic, spike-related rise in intracellular Ca(2+) ([Ca(2+)](i)) under normoxic conditions, but did not modify the rise of [Ca(2+)](i) associated with the cyanide-induced outward current. Cyanide depressed the SK channel-mediated afterhyperpolarizing current without changing the depolarization-induced [Ca(2+)](i) transient, but did not affect spike duration that is determined by BK channels. The afterhyperpolarizing current and the concomitant [Ca(2+)](i) rise were abolished by Ca(2+)-free superfusate that changed neither the cyanide-induced outward current nor the associated [Ca(2+)](i) increase. Intracellular BAPTA for Ca(2+) chelation blocked the afterhyperpolarizing current and the accompanying [Ca(2+)](i) increase, but had no effect on the cyanide-induced outward current although the associated [Ca(2+)](i) increase was noticeably attenuated. Reproducing the cyanide-evoked [Ca(2+)](i) transient with the Ca(2+) pump blocker cyclopiazonic acid did not evoke an outward current.Our results show that anoxia mediates a persistent hyperpolarization due to activation of K(ATP) channels, blocks SK channels and has no effect on BK channels, and that the anoxic rise of [Ca(2+)](i) does not interfere with the activity of these K(+) channels.  相似文献   

9.
Connor J  Pozzo-Miller LD 《Journal of neurophysiology》2003,90(5):3579; author reply 3579-3579; author reply 3580
  相似文献   

10.
《Neuroscience》1999,95(3):745-752
It is demonstrated that not all voltage-gated calcium channel types expressed in neostriatal projection neurons (L, N, P, Q and R) contribute equally to the activation of calcium-dependent potassium currents. Previous work made clear that different calcium channel types contribute with a similar amount of current to whole-cell calcium current in neostriatal neurons. It has also been shown that spiny neurons posses both “big” and “small” types of calcium-dependent potassium currents and that activation of such currents relies on calcium entry through voltage-gated calcium channels. In the present work it was investigated whether all calcium channel types equally activate calcium-dependent potassium currents. Thus, the action of organic calcium channel antagonists was investigated on the calcium-activated outward current. Transient potassium currents were reduced by 4-aminopyridine and sodium currents were blocked by tetrodotoxin. It was found that neither 30 nM ω-Agatoxin-TK, a blocker of P-type channels, nor 200 nM calciseptine or 5 μM nitrendipine, blockers of L-type channels, were able to significantly reduce the outward current. In contrast, 400 nM ω-Agatoxin-TK, which at this concentration is able to block Q-type channels, and 1 μM ω-Conotoxin GVIA, a blocker of N-type channels, both reduced outward current by about 50%. These antagonists given together, or 500 nM ω-Conotoxin MVIIC, a blocker of N- and P/Q-type channels, reduced outward current by 70%. In addition, the N- and P/Q-type channel blockers preferentially reduce the afterhyperpolarization recorded intracellularly.The results show that calcium-dependent potassium channels in neostriatal neurons are preferentially activated by calcium entry through N- and Q-type channels in these conditions.  相似文献   

11.
It is demonstrated that not all voltage-gated calcium channel types expressed in neostriatal projection neurons (L, N, P, Q and R) contribute equally to the activation of calcium-dependent potassium currents. Previous work made clear that different calcium channel types contribute with a similar amount of current to whole-cell calcium current in neostriatal neurons. It has also been shown that spiny neurons possess both "big" and "small" types of calcium-dependent potassium currents and that activation of such currents relies on calcium entry through voltage-gated calcium channels. In the present work it was investigated whether all calcium channel types equally activate calcium-dependent potassium currents. Thus, the action of organic calcium channel antagonists was investigated on the calcium-activated outward current. Transient potassium currents were reduced by 4-aminopyridine and sodium currents were blocked by tetrodotoxin. It was found that neither 30 nM omega-Agatoxin-TK, a blocker of P-type channels, nor 200 nM calciseptine or 5 microM nitrendipine, blockers of L-type channels, were able to significantly reduce the outward current. In contrast, 400 nM omega-Agatoxin-TK, which at this concentration is able to block Q-type channels, and 1 microM omega-Conotoxin GVIA, a blocker of N-type channels, both reduced outward current by about 50%. These antagonists given together, or 500 nM omega-Conotoxin MVIIC, a blocker of N- and P/Q-type channels, reduced outward current by 70%. In addition, the N- and P/Q-type channel blockers preferentially reduce the afterhyperpolarization recorded intracellularly. The results show that calcium-dependent potassium channels in neostriatal neurons are preferentially activated by calcium entry through N- and Q-type channels in these conditions.  相似文献   

12.
Rat hippocampal neurons grown in dissociated cell culture were studied in a medium containing 1 microM tetrodotoxin (TTX) and 25 mM tetraethylammonium (TEA), which eliminated the Na+ and K+ conductances normally activated by depolarizing current injections. In this medium depolarizing current pulses evoked depolarizing regenerative potentials and afterhyperpolarizations in most cells. Both of these events were blocked by close application of Co2+ or Cd2+. These events resemble Ca2+ spikes reported previously in hippocampal pyramidal cells. The membrane potential at which these Ca2+ spikes could be triggered and the rheobase current necessary were dependent on the potential at which the cell was conditioned: the more depolarized the holding potential, the more negative the absolute potential at which a spike could be triggered and the less rheobase current required. The duration of these Ca2+ spikes was also sensitive to the holding potential: the more depolarized the holding level, the longer the duration of the triggered spikes. The amplitude and duration of the Ca2+ spikes were enhanced in a reversible manner by 0.5-1.0 mM 4-aminopyridine (4-AP) delivered in the vicinity of the cell. Two-electrode voltage-clamp analysis of cells studied in TTX, TEA-containing medium revealed an inward current response that peaked in 25-50 ms during depolarizing commands. This response first became detectable during commands to -30 mV. It peaked in amplitude during commands to -10 mV and was enhanced in medium containing elevated [Ca2+]0. It was blocked by either 20 mM Mg2+, 0.2 mM Cd2+, 5 mM Co2+, or 5 mM Mn2+. These results have led us to identify this inward current response as ICa2+. 4-AP enhanced the magnitude and duration of ICa2+ independent of the drug's depressant effects on a transient K+ current also observed under these same experimental conditions. In many but not all cells the Ca2+ spike was followed by a long-lasting hyperpolarization associated with an increase in membrane conductance. This was blocked by Co2+. Under voltage clamp ICa2+ was followed by a slowly developing outward current response that was attenuated by Co2+ or Cd2+. These properties observed under current- and voltage-clamp recording conditions are superficially similar to those previously reported for Ca2+-dependent K+ conductance mechanisms (IC) recorded in these and other membranes. Long-lasting tail currents following activation of IC inverted in the membrane potential range for the K+ equilibrium potential found in these cells.  相似文献   

13.
 Sustained Ca2+ elevation (”Ca2+ response”), caused by subsequent readdition of Ca2+ to the medium after application of adenosine 5’-triphosphate (ATP, 15 μM) in a Ca2+-free medium, was studied using single bovine aortic endothelial (BAE) cells. In cells in which the resting intracellular Ca2+ concentration ([Ca2+]i) was between about 50 and 110 nM, a massive Ca2+ response occurred and consisted of phasic and sustained components, whereas cells with a resting [Ca2+]i of over 110 nM displayed small plateau-like Ca2+ responses. An increase of internal store depletion resulted in loss of the phasic component. When the store was partly depleted, the dependence of the Ca2+ response amplitude on resting [Ca2+]i was biphasic over the range of 50 to 110 nM. The greatest degree of store depletion was associated with small monophasic Ca2+ responses, the amplitudes of which were almost constant and in the same range as resting [Ca2+]i. Ni2+, known to partly block Ca2+ entry, caused no change in the half-decay time of [Ca2+]i down to the level of the sustained phase [57 ± 4 s in control and 54 ± 3 s (n = 13) in the presence of 10 mM Ni2+] when added at the peak of the phasic component of the Ca2+ response. However, it lowered the sustained phase of the Ca2+ response by 42%. When applied at the start of the readdition of Ca2+, Ni2+ blocked the phasic component of the Ca2+ response, there being a threefold decrease in the initial rate of [Ca2+]i rise. In cells with a resting [Ca2+]i of 75–80 nM, pre-treatment with ryanodine (10 μM) did not affect the peak amplitude of the Ca2+ response, but it did increase the level of the sustained component. In some cells, ryanodine caused an oscillatory Ca2+ response. In conclusion, partial depletion of the inositol 1,4,5-trisphosphate-(IP 3-) sensitive store by a submaximal concentration of agonist (in Ca2+-free medium) was followed, on readdition of Ca2+, by Ca2+ entry, which appeared to trigger IP 3-sensitive Ca2+ release (IICR) which, in turn, initiated Ca2+-sensitive Ca2+ release (CICR), thus resulting in a massive elevation of [Ca2+]i. Received: 3 July 1996 / Received after revision and accepted: 9 September 1996  相似文献   

14.
15.
Neurotransmitter release during action potentials is thought to require transient, localized [Ca2+]i as high as hundreds of micromolar near presynaptic release sites. Most experimental attempts to characterize the magnitude and time course of these Ca2+ domains involve optical methods that sample large volumes, require washout of endogenous buffers and often affect Ca2+ kinetics and transmitter release. Endogenous calcium-activated potassium (KCa) channels colocalize with presynaptic Ca2+ channels in Xenopus nerve-muscle cultures. We used these channels to quantify the rapid, dynamic changes in [Ca2+]i at active zones during synaptic activity. Confirming Ca2+-domain predictions, these KCa channels revealed [Ca2+]i over 100 microM during synaptic activity and much faster buildup and decay of Ca2+ domains than shown using other techniques.  相似文献   

16.
17.
18.
Rises in cytosolic Ca2+ induced by a high K+ concentration (30 or 60 mM) (K+-induced Ca2+ transient) were recorded by fluorimetry of Ca2+ indicators in cultured rabbit otic ganglion cells. When external Ca2+ ([Ca2+]o) was reduced to a micromolar (10-40 microM) or nanomolar (<10 nM) level prior to high-K+ treatment, K+-induced Ca2+ transients of considerable amplitude (50% of control) were generated in most cells, although those initiated at normal [Ca2+]o were reduced markedly or abolished by reducing [Ca2+]o during exposure to a high K+ concentration. Lowering [Ca2+]o alone occasionally caused a transient rise in cytosolic Ca2+. K+-induced Ca2+ transients at micromolar [Ca2+]o were repeatedly generated and propagated inwardly at a speed slower than that at normal [Ca2+]o, while those at nanomolar [Ca2+]o occurred only once. K+-induced Ca2+ transients at micromolar [Ca2+]o were not blocked by ryanodine (10 microM), carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP, 5 microM: at 20-22 degrees C but blocked at 31-34 degrees C) or thapsigargin (1-2 microM), but were blocked by Ni2+ (1 mM) or nicardipine (10 microM). Thus, there is a ryanodine-insensitive Ca2+-release mechanism in FCCP- and thapsigargin-insensitive Ca2+ stores in rabbit otic ganglion cells, which is primed by lowering [Ca2+]o and then activated by depolarization-induced Ca2+ entry. This Ca2+-induced Ca2+ release may operate when [Ca2+]o is decreased by intense neuronal activity.  相似文献   

19.
Sharp electrode current-clamp recording techniques were used to characterize the response of nigral dopamine (DA)-containing neurons in rat brain slices to injected current pulses applied in the presence of TTX (2 microM) and under conditions in which apamin-sensitive Ca2+-activated K+ channels were blocked. Addition of apamin (100-300 nM) to perfusion solutions containing TTX blocked the pacemaker oscillation in membrane voltage evoked by depolarizing current pulses and revealed an afterdepolarization (ADP) that appeared as a shoulder on the falling phase of the voltage response. ADP were preceded by a ramp-shaped slow depolarization and followed by an apamin-insensitive hyperpolarizing afterpotential (HAP). Although ADPs were observed in all apamin-treated cells, the duration of the response varied considerably between individual neurons and was strongly potentiated by the addition of TEA (2-3 mM). In the presence of TTX, TEA, and apamin, optimal stimulus parameters (0.1 nA, 200-ms duration at -55 to -68 mV) evoked ADP ranging from 80 to 1,020 ms in duration (355.3 +/- 56.5 ms, n = 16). Both the ramp-shaped slow depolarization and the ensuing ADP were markedly voltage dependent but appeared to be mediated by separate conductance mechanisms. Thus, although bath application of nifedipine (10-30 microM) or low Ca2+, high Mg2+ Ringer blocked the ADP without affecting the ramp potential, equimolar substitution of Co2+ for Ca2+ blocked both components of the voltage response. Nominal Ca2+ Ringer containing Co2+ also blocked the HAP evoked between -55 and -68 mV. We conclude that the ADP elicited in DA neurons after blockade of apamin-sensitive Ca2+-activated K+ channels is mediated by a voltage-dependent, L-type Ca2+ channel and represents a transient form of the regenerative plateau oscillation in membrane potential previously shown to underlie apamin-induced bursting activity. These data provide further support for the notion that modulation of apamin-sensitive Ca2+-activated K+ channels in DA neurons exerts a permissive effect on the conductances that are involved in the expression of phasic activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号