首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brain-derived neurotrophic factor (BDNF) has recently emerged as one of the most potent molecular mediators of not only central synaptic plasticity, but also behavioral interactions between an organism and its environment. Our previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that induction of long-term potentiation (LTP) in the projection from the basolateral nucleus of the amygdala (Bla) to the IC, previous to CTA training, enhances the retention of this task. Recently, we found that intracortical microinfusion of BDNF induces a lasting potentiation of synaptic efficacy in the Bla-IC projection of adult rats in vivo. In this work, we present experimental data showing that intracortical microinfusion of BDNF previous to CTA training enhances the retention of this task. These findings support the concept that BDNF may contribute to memory-related functions performed by a neocortical area, playing a critical role in long-term synaptic plasticity.  相似文献   

2.
Brain-derived neurotrophic factor (BDNF) has emerged as an important molecular mediator of synaptic plasticity. Our previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that the intracortical microinfusion of BDNF induces a lasting potentiation of synaptic efficacy in the projection from the basolateral nucleus of the amygdala (Bla) to the IC of adult rats in vivo. Recently, we have found that intracortical microinfusion of BDNF previous to CTA training modifies the retention of this task. In this work, we present experimental data showing that BDNF effects on CTA retention are dependent on both the activation of mitogen-activated protein kinases (MAPK) and phosphatidylinositol-3-kinase (PI-3K) at the insular cortex. Our results are evidence of the crucial role of both pathways in the modification of the CTA trace of memory caused by BDNF at a neocortical area.  相似文献   

3.
Changes in synaptic efficacy and morphology have been proposed as mechanisms underlying learning and memory processes. In our previous studies, high frequency stimulation (HFS) sufficient to induce LTP at the hippocampal mossy fiber (MF) pathway, leads to MF synaptogenesis, in a prominent contralateral form, at the stratum oriens of hippocampal CA3 area. Recently we reported that acute intrahippocampal microinfusion of BDNF induces a lasting potentiation of synaptic efficacy at the MF projection accompanied by a structural reorganization at the CA3 area within the stratum oriens region in a prominent ipsilateral form. It is considered that the capacity of synapses to express plastic changes is itself subject to variation dependent on previous experience. Here we used intrahippocampal microinfusion of BDNF to analyze its effects on functional and structural synaptic plasticity induced by subsequent mossy fiber HFS sufficient to induce LTP in adult rats, in vivo. Our results show that BDNF modifies the ability of the MF pathway to present LTP by HFS. Moreover BDNF modified the structural reorganization pattern produced by HFS, presenting a balanced bilateral appearance. Microinfusion of K252a blocks the functional and morphological effects produced by BDNF, revealing that the BDNF modulation is dependent on its TrkB receptor activation. These findings support the idea that BDNF actions modify subsequent synaptic plasticity; a homeostatic mechanism thought to be essential for synaptic integration among prolonged temporal domains in the adult mammalian brain. © 2010 Wiley Periodicals, Inc., Inc.  相似文献   

4.
It has been proposed that long-term potentiation (LTP) a form of activity-dependent modification of synaptic efficacy, may be a synaptic mechanism for certain types of learning. Recent studies on the insular cortex (IC) a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that tetanic stimulation of the basolateral nucleus of the amygdala (Bla) induce an N-methyl- -aspartate (NMDA) dependent LTP in the IC of adult rats in vivo. Here we present experimental data showing that intracortical administration of the NMDA receptor competitive antagonist CPP (-3(-2 carboxipiperazin-4-yl)-propyl-1-phosphonic acid) disrupts the acquisition of conditioned taste aversion, as well as, the IC-LTP induction in vivo. These findings are of particular interest since they provide support for the view that the neural mechanisms underlying NMDA dependent neocortical LTP, constitute a possible mechanism for the learning related functions performed by the IC.  相似文献   

5.
Long-lasting changes in synaptic strength, such as long-term potentiation (LTP), are thought to underlie memory formation. Recent studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and retention of conditioned taste aversion (CTA), have demonstrated that tetanic stimulation of the basolateral nucleus of the amygdala (Bla) induce LTP in the IC of adult rats in vivo, as well as, that blockade of N-methyl-D-aspartate (NMDA) receptors disrupts CTA and IC-LTP induction in vivo. Here, we present experimental data showing that induction of LTP in the Bla-IC projection previous to CTA training enhances the retention of this task. These findings are of particular interest since they provide support for the view that the neural mechanisms underlying neocortical LTP may contribute to memory related functions performed by the IC.  相似文献   

6.
Brain-derived neurotrophic factor (BDNF) is abundantly expressed in the hippocampus and cerebral cortex and is involved in synaptic plasticity and long-term potentiation (LTP). The present study was under taken to investigate whether endogenous BDNF was required for spatial learning and memory in a rat model. Antibodies to BDNF (anti-BDNF, n=7) or control immunoglobulin G (control, n=6) were delivered into the rat brain continuously for 7 days with an osmotic pump. The rats were then subjected to a battery of behavioral tests. The results show that the average escape latencies in the BDNF antibody treated group were dramatically longer than those of the control (F=13.3, p<0.001). The rats treated with control IgG swam for a significantly longer distance in the P quadrant (where the escape plane had been placed) compared with the other three quadrants (p<0.05). In contrast, anti-BDNF-treated rats swam an equivalent distance in all four quadrants. The average percentage of swimming distance in the P quadrant by anti-BDNF-treated rats was much less than that by control IgG treated rats (p<0.001). These results suggest that endogenous BDNF is required for spatial learning and memory in adult rats.  相似文献   

7.
It has been proposed that long-term potentiation (LTP), a form of activity-dependent modification of synaptic efficacy, may be a synaptic mechanism for certain types of learning. Recent studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that tetanic stimulation of the basolateral nucleus of the amygdala (Bla) induce an N-methyl-D-aspartate (NMDA) dependent LTP in the IC of adult rats in vivo. Here we present experimental data showing that intracortical administration of the NMDA receptor competitive antagonists CPP (-3(-2 carboxipiperazin-4-yl)-propyl-1-phosphonic acid, 0.03 microg per hemisphere) and AP-5 (D(-)-2-amino-5-phosphonopentanoic, 2.5 microg per hemisphere) disrupt the acquisition of conditioned taste aversion, as well as IC-LTP induction in vivo. In contrast, administration of the metabotropic glutamate receptor antagonist MCPG ((RS)-alpha-methyl-4-carboxyphenylglycine, 2.5 microg per hemisphere) does not disrupt the acquisition of CTA nor IC-LTP induction. These findings are of particular interest since they provide support for the view that the neural mechanisms underlying NMDA-dependent neocortical LTP constitute a possible mechanism for the learning-related functions performed by the IC.  相似文献   

8.
Sui L  Wang F  Li BM 《Brain research》2006,1096(1):53-60
Thyroid hormones are critical for the maturation and function of the central nervous system. Insufficiency of thyroid hormones in the adulthood causes a wide range of cognitive dysfunctions, including deficits in learning and memory. The present study investigated whether adult-onset hypothyroidism would alter synaptic functions in the dorsal hippocampo-medial prefrontal cortex (mPFC) pathway, a neural pathway important for learning and memory. Adult hypothyroidism was induced by oral administration of 1% (g/l) antithyroid acting drug 6-n-propyl-2-thiouracil (PTU) to adult male Sprague-Dawley rats for 4 weeks. Postsynaptic potentials (PSP) were recorded in the mPFC by stimulating the dorsal hippocampal CA1 region in vivo. Basal synaptic transmission was evaluated by comparing input-output relationships. Paired-pulse facilitation and long-term potentiation were recorded to examine short- and long-term synaptic plasticity. Adult-onset hypothyroidism did not change the basal synaptic transmission, but significantly reduced paired-pulse facilitation and long-term potentiation of PSP. These inhibitions can be restored by thyroid hormone replacement. The results suggest that such alterations in synaptic plasticity of the dorsal hippocampo-mPFC pathway might contribute to understanding basic mechanisms underlying learning and memory deficits associated with adult-onset hypothyroidism.  相似文献   

9.
Stress has been reported to disrupt the induction of synaptic plasticity in different fimbria target structures. The aim of the present study was to investigate whether chronic mild stress may also affect synaptic plasticity in the medial prefrontal cortex, a fimbria target structure. Fimbria tetanus (100 Hz) did not produce any changes in medial prefrontal cortex synaptic efficacy in non-stressed rats. Rats exposed to chronic mild stress, however, developed significant long-term potentiation. Treatment with fluoxetine (10 mg/kg, intraperitoneal) suppressed long-term potentiation induction in the chronic mild stress group. These data demonstrate that stress not only inhibits long-term potentiation development, as often demonstrated, but can also facilitate long-term potentiation development in certain brain circuits.  相似文献   

10.
Brain-derived neurotrophic factor (BDNF) is reported to enhance synaptic transmission and to play a role in long-term potentiation in hippocampus and neocortex. If so, a shortage or blockade of BDNF might lead to another form of synaptic plasticity, long-term depression (LTD). To test this possibility and to elucidate mechanisms if it is the case, EPSCs evoked by test stimulation of layer IV were recorded from layer II/III neurons in visual cortical slices of young rats in the whole-cell voltage-clamp mode. LTD was induced by low-frequency stimulation (LFS) at 1 Hz for 10-15 min if each pulse of the LFS was paired with depolarization of neurons to -30 mV but was not induced if their membrane potentials were kept at -70 mV. Such an LTD was blocked by exogenously applied BDNF, probably through presynaptic mechanisms. Suppression of endogenous BDNF activity by the anti-BDNF antibody or an inhibitor for BDNF receptors made otherwise ineffective stimuli (LFS without postsynaptic depolarization) effective for LTD induction, suggesting that endogenous BDNF may prevent low-frequency inputs from inducing LTD in the developing visual cortex.  相似文献   

11.
Brain-derived neurotrophic factor (BDNF) rapidly enhances excitatory synaptic transmission in cortical slices. To date, however, a question of how long such an action persists remains unanswered as it is hard to record synaptic responses longer than several hours in slice preparations. To address this question and to investigate possible age-dependency of the action, we analysed effects of a brief application of BDNF and nerve growth factor (NGF) on field potentials of visual cortex in rats of postnatal days 13-17 and 19-24 and in the adulthood for 10-24 h. Evoked potentials to stimulation of the lateral geniculate nucleus were recorded simultaneously from two cortical sites into which the neurotrophin and control solution were injected. An application of BDNF induced a slowly developing increase in the field potential amplitude in young rats. The amplitude attained a plateau level 3-4 h after the infusion; 139 +/- 26% (mean +/- SD) and 132 +/- 21% of the baseline in the rats at P13-17 and P19-24, respectively. This potentiation remained stable from 4 to 8 h, then gradually decreased to the baseline 15-16 h after the infusion. NGF applied in the same way did not induce potentiation. An inhibitor of BDNF receptors blocked the potentiation when it was applied immediately after the BDNF application, but was not effective about 2 h later. In the adults, BDNF did not potentiate field potentials. These results indicate that BDNF induces synaptic potentiation lasting for several hours only in the developing cortex through processes downstream of receptor activation.  相似文献   

12.
Cultured hippocampal neurons and immature organotypic slice cultures overcome temporal limitations of acute hippocampal slices and have been useful for investigating long-lasting plasticity. Difficulties with culturing adult neurons have restricted such studies to preparations from embryonic, perinatal, and juvenile tissue. By improving the methods for culturing and maintaining hippocampal-entorhinal cortex slices obtained from mature rats (P25-30), we show that their use in long-term electrophysiological investigations is feasible. Our cultured slices maintained an intact and functional trisynaptic cascade, normal synaptic function, and reliable long-term recording stability for at least 14 days in vitro. The electrophysiological properties and, in particular, the induction of long-term potentiation (LTP) in our mature organotypic slices were highly sensitive to dissection and tissue culture techniques. We present data describing the extracellular stimulation requirements for LTP-induction and its long-lasting maintenance (>4 h) at the Schaffer-collateral-CA1 synapse, and show that such changes in synaptic efficiency are NMDA receptor dependent. Our hippocampal-entorhinal cortex cultures from mature tissue can retain the electrophysiological properties required for long-term plasticity for several weeks in vitro.  相似文献   

13.
The neurotrophin brain-derived neurotrophic factor (BDNF) plays an important role in neuronal survival, axonal and dendritic growth and synapse formation. BDNF has also been reported to mediate visual cortex plasticity. Here we studied the cellular mechanisms of BDNF-mediated changes in synaptic plasticity, excitatory synaptic transmission and long-term potentiation (LTP) in the visual cortex of heterozygous BDNF-knockout mice (BDNF(+/-)). Patch-clamp recordings in slices showed an approximately 50% reduction in the frequency of miniature excitatory postsynaptic currents (mEPSCs) compared to wild-type animals, in the absence of changes in mEPSC amplitudes. A presynaptic impairment of excitatory synapses from BDNF(+/-) mice was further indicated by decreased paired-pulse ratio and faster synaptic fatigue upon prolonged repetitive stimulation at 40 Hz. In accordance, presynaptic theta-burst stimulation (TBS) failed to induce LTP at layer IV to layers II-III synapses during extracellular field-potential recordings in BDNF(+/-) animals. Changes in postsynaptic function could not be detected, as no changes were observed in either the amplitudes of evoked EPSCs, the ratios of AMPA : NMDA currents or the kinetics of evoked AMPA and NMDA EPSCs. In line with this observation, an LTP pairing paradigm that relies on direct postsynaptic depolarization under patch-clamp conditions could be induced successfully in BDNF(+/-) animals. These data suggest that a chronic reduction in the expression of BDNF to nearly 50% attenuates the efficiency of presynaptic glutamate release in response to repetitive stimulation, thereby impairing presynaptically evoked LTP in the visual cortex.  相似文献   

14.
Brain-derived neurotrophic factor (BDNF) regulates both short-term synaptic functions and activity-dependent synaptic plasticity such as long-term potentiation. In the present study, we investigated the role of BDNF in the spatial reference and working memory in a radial arm maze test. The radial arm maze training resulted in a significant increase in the BDNF mRNA expression in the hippocampus, although the expression in the frontal cortex did not change. When spatial learning was inhibited by treatment with 7-nitroindazole, an inhibitor of brain nitric oxide synthase, the increase in the hippocampal BDNF mRNA did not occur. To clarify the causal relation between BDNF mRNA expression and spatial memory formation, we examined the effects of antisense BDNF treatment on spatial learning and memory. A continuous intracerebroventricular infusion of antisense BDNF oligonucleotide resulted in an impairment of spatial learning, although the sense oligonucleotide had no effect. Treatment with antisense, but not sense, BDNF oligonucleotide was associated with a significant reduction of BDNF mRNA and protein levels in the hippocampus. Furthermore, treatment with antisense BDNF oligonucleotide in rats, which had previously acquired spatial memory by an extensive training, impaired both reference and working memory. There were no differences in locomotor activity, food consumption, and body weight between the antisense and sense oligonucleotide-treated rats. These results suggest that BDNF plays an important role not only in the formation, but also in the retention and/or recall, of spatial memory.  相似文献   

15.
Although neurotrophins are critical for neuronal survival and differentiation, recent studies suggest that they also regulate synaptic plasticity. Brain-derived neurotrophic factor (BDNF) rapidly increases synaptic transmission in hippocampal neurons, and enhances long-term potentiation (LTP), a cellular and molecular model of learning and memory. Loci and precise mechanisms of BDNF action remain to be defined: evidence supports both pre- and postsynaptic sites of action. To help elucidate the synaptic mechanisms of BDNF action, we used antisera directed against the extracellular and intracellular domains of trkB receptors, anti-trkBout and anti-trkBin, respectively, to localize the receptors in relation to synapses. Synaptic localization of BDNF was examined in parallel using anti-BDNF antisera. By light microscopy, trkBin and trkBout immunoreactivities were localized to hippocampal neurons and all layers of the overlying visual cortex. Immunoelectron microscopic analysis of the cerebral cortex revealed that trkB and BDNF localize discretely to postsynaptic densities (PSD) of axo-spinous asymmetric synaptic junctions, that are the morphological correlates of excitatory, glutamatergic synapses. TrkB immunoreactivity was also detected in the nucleoplasm by light and electron microscopy. Western blot analysis indicated that both anti-trkBout and anti-trkBin antisera react with a protein band in the PSD corresponding to the molecular weight expected for trkB; however, molecular species distinct from that for trkB were recognized in the nuclear fraction by both anti-trkBin and anti-trkBout antisera, indicating that the nuclear immunoreactivity, seen by immunocytochemistry, reflects cross-reactivity with proteins closely related to, but distinct from, trkB. The PSD localization of both BDNF and trkB supports the contention that this receptor/ligand pair participates in postsynaptic plasticity.  相似文献   

16.
We previously demonstrated in the dentate gyrus (DG) of anesthetized and freely behaving rats that both acute as well as chronic administration of corticosterone produces a suppression in long-term potentiation (LTP). In subsequent studies we showed, again in the DG, that activation of the two types of adrenal steroid receptors (mineralocorticoid (MR) and glucocorticoid (GR)) produce biphasic effects on synaptic plasticity; activation of MR produces an enhancement while activation of GR produces a suppression in LTP. In a separate study, we further demonstrated in rats administered the specific GR agonist RU 28362 that high-frequency stimulation, which normally produces LTP, instead produced long-term depression (LTD) in these animals. In the present study we investigated the effects of MR and GR activation by adrenal steroids on synaptic plasticity of the hippocampal CA1 field, but we studied this ex vivo, in a slice preparation. The results indicate that, as in our studies in the DG, adrenal steroids produce biphasic effects: in ADX rats, aldosterone (a specific MR agonist) enhanced while RU 28362 suppressed synaptic plasticity. Unlike the in vivo preparation, however, rarely was LTD observed in the animals receiving RU 28362. Also, ADX itself did not produce noticeable effects on synaptic plasticity. The present results are in agreement with previous studies showing that elevations in corticosterone or an acute episode of experimentally induced stress in vivo causes a suppression in LTP in the hippocampal CA1 field, in vitro.  相似文献   

17.
The present study examined the effects of prenatal morphine exposure on NMDA-dependent seizure susceptibility in the entorhinal cortex (EC), and on activity-dependent synaptic plasticity at Schaffer collateral and perforant path synapses in the hippocampus. During perfusion with Mg(2+)-free ACSF, an enhancement of epileptiform discharges was found in the EC of slices from prenatally morphine-exposed male rats. A submaximal tetanic stimulation (2x50 Hz/1 s) in control slices elicited LTP at the Schaffer collateral-CA1 synapses, but neither LTP nor LTD was evoked at the perforant path-DG synapses. In slices from prenatally morphine-exposed adult male rats, long-term potentiation of synaptic transmission was not observed at Schaffer collateral-CA1 synapses, while the submaximal tetanus now elicited frank LTD of synaptic EPSPs at perforant path synapses. These data suggest that prenatal morphine exposure enhances the susceptibility of entorhinal cortex to the induction of epileptiform activity, but shifts long-term plasticity of hippocampal synapses in favor of LTD.  相似文献   

18.
Cyclooxygenase (COX), which is present in two isoforms (COX1 and 2), synthesizes prostaglandins from arachidonic acid; it plays a crucial role in inflammation in both central and peripheral tissues. Here, we describe its role in synaptic plasticity and spatial learning in vivo via an effect on brain-derived neurotrophic factor (BDNF) and prostaglandin E2 (PGE2; both measured by Elisa). We found that broad-spectrum COX inhibition (BSCI) inhibits the induction of long-term potentiation (LTP; the major contemporary model of synaptic plasticity), and causes substantial and sustained deficits in spatial learning in the watermaze. Increases in BDNF and PGE2 following spatial learning and LTP were also blocked. Importantly, 4 days of prior exercise in a running wheel increased endogenous BDNF levels sufficiently to reverse the BSCI of LTP and spatial learning, and restored a parallel increase in LTP and learning-related BDNF and PGE2. In control experiments, we found that BSCI had no effect on baseline synaptic transmission or on the nonhippocampal visible-platform task; there was no evidence of gastric ulceration from BSCI. COX2 is inhibited by glucorticoids; there was no difference in blood corticosterone levels as measured by radioimmunoassay in any condition. Thus, COX plays a previously undescribed, permissive role in synaptic plasticity and spatial learning via a BDNF-associated mechanism.  相似文献   

19.
Long-term potentiation (LTP) and long-term depression are thought to mediate activity-dependent brain plasticity but their role in the development of the thalamocortical auditory system in vivo has not been investigated. In adult urethane-anaesthetized rats, theta-burst stimulation of the medial geniculate nucleus produced robust LTP (40% amplitude enhancement) of field post-synaptic evoked potentials recorded in the superficial layers of the primary auditory cortex. Low-frequency (1-Hz) stimulation resulted in transient depression ( approximately 40%) of field post-synaptic evoked potential amplitude. Both LTP and synaptic depression were found to be dependent on cortical N-methyl-d-aspartate receptors. Thalamocortical plasticity was also assessed after continuous white noise exposure, thought to arrest auditory cortex maturation when applied during the critical period of post-natal primary auditory cortex development. Rats housed in continuous white noise for the first 50 days of post-natal life exhibited greater LTP ( approximately 80%) than controls reared in unaltered acoustic environments. The protocol used to elicit depression also resulted in substantial LTP ( approximately 50%) in white noise-reared animals. Adults housed in white noise for the same length of time exhibited normal LTP but displayed greater and persistent levels of synaptic depression ( approximately 70%). Thus, the absence of patterned auditory stimulation during early post-natal life appears to retard sensory-dependent thalamocortical synaptic strengthening, as indicated by the preferential readiness for synaptic potentiation over depression. The fact that the same auditory manipulation in adults results in synapses favouring depression demonstrates the critical role of developmental stage in determining the direction of synaptic modification in the thalamocortical auditory system.  相似文献   

20.
《Brain research bulletin》2010,83(5-6):284-288
β-Adrenergic receptor stimulation can significantly facilitate synaptic potentiation in the hippocampus and enhance memory processes, but its effect on neocortical plastic mechanisms is less conclusive. In the present study we determined the effect of propranolol, a β-adrenoceptor antagonist, on long-term potentiation (LTP) induced in vivo in rat occipital cortex by tetanizing stimulation of corpus callosum and observed a dose-dependent inhibition of LTP. We further administered propranolol through mini-osmotic pumps during 3 days, and observed the performance of rats in a complex operant conditioning learning paradigm and assessed the expression of brain-derived neurotrophic factor (BDNF) in the occipital cortex. Propranolol exposure depressed both the number of reinforced responses in the operant conditioning task and BDNF expression in occipital cortex. Taken together, our results suggest that propranolol impairs memory formation by inhibiting cortical LTP induction and associated BDNF expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号