首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
目的:探讨基于GAMOS的蒙特卡罗(MC)方法模拟电子线放疗的剂量精确性。方法:运用GAMOS MC程序,建立Varian Rapidarc加速器3档能量(6、9和12 MeV)及3种限光筒[(6×6)、(10×10)和(15×15) cm2]的束流模型,模拟束流在水模体中的剂量分布,并与测量得到的百分深度剂量和等平面剂量分布比较,评估GAMOS软件模拟电子线照射的精确性和运算效率。结果:模拟的粒子数越多,模拟与测量结果的误差越小;当模拟粒子的数量达到5×108时,各个能量的电子线射程(Rp)和50%剂量深度(R50)的模拟结果与测量结果一致;除建成区外,百分深度剂量模拟和测量的结果误差在2%以内;等平面剂量分布模拟和测量的结果误差也在2%以内,模拟的照射野大小与测量结果一致。运算效率中,能量越大,限光筒尺寸越大,并行同步模拟所用的时间越多,模拟时间的变化越大。结论:基于GAMOS的MC方法可准确地模拟放疗电子线照射剂量的分布,粒子数的增加可提高模拟的精确性,并行同步计算可提高模拟的效率。  相似文献   

2.
Geant4是基于C++编写的开源蒙特卡洛模拟软件,提供多种包含中子与物质相互作用的物理列表。本研究采用Geant4提供的几种物理列表,对沿中子束方向的总吸收剂量、硼剂量和非硼剂量深度分布进行计算,并与FLUKA进行比较,模拟中子能量从0.025 3 eV到10 MeV。对于整个模拟中子能段,结果显示添加S(α, β)热模型的高精度中子物理列表(Geant4_HP_T)在总吸收剂量、硼剂量和非硼剂量深度分布上均与FLUKA符合很好,初步验证了Genat4能应用于硼中子俘获治疗(BNCT)相关研究。对于低能中子(<1 MeV),S(α, β)热模型对BNCT剂量深度分布的影响较大,QBBC和QGSP_BERT不适用于BNCT剂量分布计算。  相似文献   

3.
目的:人体模型主要用于放疗过程中的剂量学研究,包括新技术的开发与验证、治疗方案的验证与测量等;使用计算机化的人体模型替代实体模型是当前的研究热点。方法:构建符合中国人解剖生理数据的辐射仿真人体模型-“NHMAN-ADAM”(男性)和“NHMAN-EVA”(女性);使用蒙特卡罗方法程序MCNP模拟0.3MeV和1.0MeV单能平行宽束外照射条件下,六种不同照射方向照射时,放射性粒子在人体组织或器官中的输运过程,并计算得到男女人体模型中的有效剂量。结果:分别得到光子能量为0.3MeV和1.0MeV时,AP照射,PA照射,LAT照射方式下的男性与女性全身有效剂量,以及光子外照射时人体皮肤等器官剂量分布,有效剂量计算值与ICRP51推荐值基本吻合,误差约为4%。结论:NHMAN辐射仿真人体模型能很好地应用于辐射剂量的计算;并且由计算数据可知,女性的辐射危险性普遍高于男性,在医学成像与放射治疗时应更加注重防护措施。  相似文献   

4.
目的:定量分析剂量计算网格尺寸(DCGS)对宫颈癌放疗中物理剂量和生物剂量的影响。方法:选取Pinnacle3治疗计划系统中宫颈癌的治疗方案12例,取默认值DCGS=4.0 mm的计算网格,优化调整宫颈癌治疗方案,再改变DCGS(1.0~7.0 mm),重新计算靶区和危及器官(OAR)的剂量,探讨靶区和OAR的物理剂量和生物剂量随DCGS的变化情况。结果:靶区和OAR的物理剂量随DCGS的变大而减小,在体积剂量直方图上表现出曲线整体向低剂量区平移。除左右股骨头外,靶区的肿瘤控制概率(TCP)和OAR的正常组织并发症概率(NTCP)也随DCGS增大而缓慢降低。PGTVnd的TCP下降率约为0.7%/mm,PTV的TCP下降率约为0.6%/mm,而膀胱和直肠的NTCP下降速度相对较快,膀胱NTCP下降率最大值为15.0%,直肠NTCP下降率最大值为13.5%。结论:宫颈癌放疗中物理剂量和生物剂量随DCGS变大而减少,靶区和OAR的物理剂量在体积剂量直方图上表现出整体向低剂量区平移,这种变化趋势会诱导研究者低估靶区的TCP及OAR的NTCP。  相似文献   

5.
目的:提供一种权重适配的布拉格峰展宽(SOBP)方法,得到平滑的展宽布拉格峰。 方法:通过重新拟合质子能量-射程的关系(盖格法则),找出适配函数的函数形式,并对权重进行重新适配,通过求敏感参数k,得到平滑的SOBP,最后用蒙特卡洛程序FLUKA进行验证。 结果:SOBP的形状对参数k比参数P更加敏感,拟合得到4~32 cm的SOBP,中间平坦区偏差不超过±2%,并解决中间区坍塌的问题。 结论:蒙特卡洛模拟检验了权重适配的SOBP方法的有效性。  相似文献   

6.
目的:研究CT-相对电子密度转换曲线误差对调强放射治疗(IMRT)计划剂量计算结果的影响。方法:随机选取南方医科大学顺德医院IMRT治疗的宫颈癌患者10例,在Eclipse治疗计划系统中对IMRT计划引入CT-电子密度转换曲线误差(±0.5%、±1.0%、±1.5%、±2.0%和±3.0%),重新计算剂量分布,每例患者得到10个带有误差的新计划并与原计划进行比较。分析转换曲线误差对剂量计算结果的影响,包括靶区相关剂量参数、适形度指数(Conformal Index, CI)、均匀性指数(Homogeneity Index, HI)和脊髓、肾脏、小肠、膀胱、直肠等危及器官体积剂量参数。分析不同转换曲线误差和各剂量参数偏差值之间的关系。结果:转换曲线引入正误差时计划剂量参数降低,引入负误差时计划剂量参数升高,引入的误差越大剂量变化越大。当转换曲线误差为1.5%时,靶区平均覆盖率为94.73%±1.86%,误差继续增大,带来的影响超出临床可接受范围。CI和HI在不同误差的计划之间没有统计学意义(P>0.05)。不同转换曲线误差和各剂量参数偏差值之间存在显著性负相关性(P均<0.001),并利用Matlab得到不同转换曲线误差和各剂量参数偏差值之间的相关公式。结论:当转换曲线误差大于1.5%时,剂量偏差无法满足临床要求。计划系统建模时需建立正确的CT-相对电子密度转换曲线,对CT模拟机要定期QA,以保证治疗计划剂量计算的精度。  相似文献   

7.
目的:用蒙特卡罗模拟评估放射治疗剂量计算使用的各向异性分析算法(Anisotropic Analytical Algorithm,AAA)在小野条件下肺介质中的计算精度。材料与方法:建立一包含肺介质的水模体,分别用AAA算法、笔形束卷积算法(Pencil Beam Convolution,PBC算法)(作为对比)和蒙特卡罗(Monte Carlo,MC)模拟计算2cm×2cm到8cm×8cm射野条件下该模体中的深度剂量和离轴比,并以MC模拟为标准比较深度剂量。用一维伽马分析对离轴比进行分析。结果:AAA算法在2cmx2cm射野肺介质区域高估了深度剂量,其它情况均低估了深度剂量,剂量偏差范围为-0.24%-2.66%.PBC算法在肺介质区域高估了深度剂量,剂量偏差的范围为1.18%~14.55%。AAA算法计算的离轴比和MC模拟,在射野剂量平坦区相对内收,在剂量跌落区向两侧发散,但AAA算法略高估了射野边缘的剂量,一维伽马分析(与MC相比)通过率为100%(3mm/3%)。PBC算法在射野剂量平坦区相对发散,而在剂量跌落区向两侧内收。一维伽马分析通过率范围为51%~88%。结论:在肺介质中,AAA剂量计算的结果与MC模拟的一致性较好,与PBC算法相比,剂量计算的精度较高。  相似文献   

8.
目的:基于佛罗里达大学质子放疗中心(University of Florida Health Proton Therapy Institute, UFHPTI)质子加速器在笔形束扫描模式下的临床实验数据,在DeepPlan中构建相应模型,验证模型构建的准确性并初步应用于临床前列腺癌的剂量计算。方法:在DeepPlan质子模块中建立UFHPTI质子加速器的笔形束计算模型,并将剂量计算结果与临床实验数据进行对比,包括30组积分深度剂量(Integrated Depth Dose, IDD)、30组空气中质子束斑发散大小、1组多能量多点照射下的纵向扩展布拉格峰(Spread Out Bragg Peak, SOBP)和横向剂量分布,以此验证模型构建的准确性。最后以UFHPTI的两个前列腺癌临床放疗计划为指导,将DeepPlan计算结果与商用放疗计划系统RayStation计算结果通过PTW公司的VeriSoft软件进行gamma分析。结果:DeepPlan质子模块计算产生的30组IDD与UFHPTI加速器的临床实验数据平均相对误差为0.01%,最大相对误差为0.23%;30组空气质子束斑发散大小与临床实验数据平均相对误差为0.15%,最大相对误差为1.14%。在多能量多点照射下,DeepPlan质子模块计算产生的SOBP与临床实验数据平均相对误差为1.07%,最大相对误差为3.91%;横向剂量分布和临床实验数据平均相对误差为1.92%,最大相对误差为4.09%。针对两个前列腺癌的放疗计划,DeepPlan质子模块与RayStation计算的三维剂量结果在以3 mm/3%的标准下每个子野的gamma通过率都达到95%以上,其中病例1两个子野(270°和90°方向)的gamma通过率分别为96.4%和97.5%,病例2两个子野(270°和90°方向)的gamma通过率分别为99.3%和98.9%。结论:在DeepPlan中构建了与UFHPTI质子加速器相匹配的笔形束模型,该模型可初步应用于临床前列腺癌的剂量计算。  相似文献   

9.
目的:通过模体实验对PTW Octavius 1600SRS三维剂量验证系统进行临床应用前性能测试,评估其对立体定向放射治疗(SBRT)计划进行剂量验证的可行性。方法:选用PTW Octavius 1600SRS体模的CT图像,模拟勾画7个球形靶区,中心靶区(PTV0)直径大小为3 cm,其余各靶区直径大小分别为1.0 cm(2个)、1.5 cm(2个)和2.0 cm(2个),各靶区中心点距PTV0中心点距离为3~6 cm。设置PTV0的中心点为计划中心,在治疗计划系统中制定SBRT计划(Plan0),处方剂量为8 Gy×3 F。实验分别对Plan0引入临床常见偏差,包括叶片MLC位置偏差(1、2、3 mm)、计划中心点(ISO)位置偏差(1、2、3 mm)和机架位置偏差(0.5°、1.0°、2.0°),并生成相应的偏差计划。使用1600SRS验证系统分别对原计划和偏差计划进行测量,比较两者γ通过率和靶区覆盖率的差别,以评估系统对放疗剂量偏差的敏感性。另外,对6例临床SBRT计划进行治疗前剂量验证,并与EPID验证结果进行比较,以评估其临床计划验证性能。结果:1600SRS验证系统对MLC偏差检测非常敏感,当MLC出现1 mm偏差时,其γ通过率与各靶区覆盖率均出现显著下降,且随着MLC偏差变大,其下降越明显。当MLC出现3 mm偏差时,(3 mm/3%)和(2 mm/3%)的γ通过率分别从99.6%和98.0%下降至92.8%和81.7%,7个靶区体积的覆盖率(V98%)平均下降(58.8±6.8)%。1600SRS对机架旋转偏差和ISO平移误差检测亦敏感,在机架旋转出现2°偏差或ISO出现3 mm偏差时,其(2 mm/2%)的γ通过率分别从95.1%下降至89.5%或86.2%。另外,6例临床SBRT放疗计划的(2 mm/3%)γ通过率平均为(95.5±1.5)%。结论:Octavius 1600SRS能敏感地检测出SBRT计划中MLC到位偏差、机架旋转角度偏差与ISO偏差,能较好地应用于SBRT计划的治疗前剂量验证。  相似文献   

10.
光子辐射输运中次级效应对辐射剂量深度分布的影响   总被引:2,自引:1,他引:1  
目的:模拟光子输运的过程,记录各相互作用和次级粒子对剂量计算的贡献,总结分析其对剂量贡献的大小.方法:PENELOPE程序包提供了模拟光子和电子输运的基本MC模块.基于所关心的物理问题本文对PENELOPE程序包进行二次编程,以在模拟过程中追踪光子输运详细过程,记录各相互作用及次级粒子对剂量的贡献.结果:首先研究在相同照射条件下,4种能量(10 keV,100keV,1 MeV,10MeV)的光子产生的中心轴剂量分布,次级粒子的软碰撞和硬碰撞产生的中心轴剂量分布,以及各级次级粒子的中心轴剂量分布;然后研究在相同照射条件下,4种能量(30keV,40keV,50keV,60keV)的光子产生的次级康普顿效应和次级光电效应对中心轴剂量分布.结论:不同能量下,次级电子软碰撞对于中心轴剂量的贡献起主要作用,次级光电效应对中心轴剂量的贡献随能量的增加而减小,而第一代次级粒子对于中心轴剂量的贡献大于其它代粒子的贡献.  相似文献   

11.
To estimate the physical dose at the center of spread-out Bragg peaks (SOBP) for various conditions of the irradiation system, a semiempirical approach was applied. The dose at the center of the SOBP depends on the field size because of large-angle scattering particles in the water phantom. For a small field of 5 x 5 cm2, the dose was reduced to 99.2%, 97.5%, and 96.5% of the dose used for the open field in the case of 290, 350, and 400 MeV/n carbon beams, respectively. Based on the three-Gaussian form of the lateral dose distributions of the carbon pencil beam, which has previously been shown to be effective for describing scattered carbon beams, we reconstructed the dose distributions of the SOBP beam. The reconstructed lateral dose distribution reproduced the measured lateral dose distributions very well. The field-size dependencies calculated using the reconstructed lateral dose distribution of the therapeutic carbon beam agreed with the measured dose dependency very well. The reconstructed beam was also used for irregularly shaped fields. The resultant dose distribution agreed with the measured dose distribution. The reconstructed beams were found to be applicable to the treatment-planning system.  相似文献   

12.
We describe a method to calculate the relative biological effectiveness in mixed radiation fields of therapeutic ion beams based on the modified microdosimetric kinetic model (modified MKM). In addition, we show the procedure for integrating the modified MKM into a treatment planning system for a scanned carbon beam. With this procedure, the model is fully integrated into our research version of the treatment planning system. To account for the change in radiosensitivity of a cell line, we measured one of the three MKM parameters from a single survival curve of the current cells and used the parameter in biological optimization. Irradiation of human salivary gland tumor cells was performed with a scanned carbon beam in the Heavy Ion Medical Accelerator in Chiba (HIMAC), and we then compared the measured depth-survival curve with the modified MKM predicted survival curve. Good agreement between the two curves proves that the proposed method is a candidate for calculating the biological effects in treatment planning for ion irradiation.  相似文献   

13.
Basic research related to heavy-ion cancer therapy has been done at the Institute of Modern Physics (IMP), Chinese Academy of Sciences since 1995. Now a plan of clinical trial with heavy ions has been launched at IMP. First, superficially placed tumor treatment with heavy ions is expected in the therapy terminal at the Heavy Ion Research Facility in Lanzhou (HIRFL), where carbon ion beams with energy up to 100 MeV/u can be supplied. The shallow-seated tumor therapy terminal at HIRFL is equipped with a passive beam delivery system including two orthogonal dipole magnets, which continuously scan pencil beams laterally and generate a broad and uniform irradiation field, a motor-driven energy degrader and a multi-leaf collimator. Two different types of range modulator, ripple filter and ridge filter with which Guassian-shaped physical dose and uniform biological effective dose Bragg peaks can be shaped for therapeutic ion beams respectively, have been designed and manufactured. Therefore, two-dimensional and three-dimensional conformal irradiations to tumors can be performed with the passive beam delivery system at the earlier therapy terminal. Both the conformal irradiation methods have been verified experimentally and carbon-ion conformal irradiations to patients with superficially placed tumors have been carried out at HIRFL since November 2006.  相似文献   

14.
The model of Bortfeld and Schlegel (1996 Phys. Med. Biol. 41 1331-9) for determining the weights of proton beams required to create a spread-out Bragg peak (SOBP) gives a significantly tilted SOBP. However, by arbitrarily varying its parameter p, which relates the range of protons to their energy, we have been able to create satisfactory SOBPs. MCNPX Monte Carlo calculations have been carried out to determine p, demonstrating the success of this modification. Optimal values of p are tabulated for various combinations of maximum beam energy E(0) (50, 100, 150, 200 and 250 MeV) and SOBP width χ (15%, 20%, 25%, 30%, 35% and 40%), as well as for a correction factor needed to calculate the SOBP dose. An example shows the application of these results to analyzing the dose deposited by deuterons and alpha particles in broad proton beams.  相似文献   

15.
The dose distribution delivered in charged particle therapy is due to both primary and secondary particles. The secondaries, originating from non-elastic nuclear interactions, are of interest for three reasons. First, if fast Monte Carlo treatment planning is envisaged, the question arises whether all nuclear interaction products deliver a significant contribution to the total dose and, hence, need to be tracked. Second, there could be an enhanced relative biological effectiveness (RBE) due to low energy and/or heavy secondaries. Third, neutrons originating from nuclear interactions may deliver dose outside the target volume. The particle yield from different nuclear interaction channels as a function of proton penetration depth was studied theoretically for different proton beam energies. Three-dimensional dose distributions from primary and secondary particles were simulated for an unmodulated 160 MeV proton beam with and without including a slice of bone material and for a spread-out Bragg peak (SOBP) of 3 x 3 x 3 cm3 in water. Secondary protons deliver up to 10% of the total dose proximal to the Bragg peak of an unmodulated proton beam and they affect the flatness of the SOBP. Furthermore, they cause a dose build-up due to forward emission of secondary particles from nuclear interactions. The dose deposited by d, t, 3He and alpha-particles was found to contribute less than 0.1% of the total dose. The dose distal to the target volume caused by liberated neutrons was studied for four proton beam energies in the range of 160-250 MeV and found to be below 0.05% (2 cm distal to SOBP) of the prescribed target dose for a 3 x 3 x 3 cm3 target. RBE values relative to 60Co were calculated proximal to and within the SOBP. The RBE proximal to the Bragg peak (100% dose) is influenced by secondary particles (mainly protons and a-particles) with a strong dose dependency resulting in RBE values up to 1.2 (2 Gy; inactivation of V79). Depending on the endpoint considered, secondary particles cause a shift in RBE by up to 8% at 2 Gy. In contrast, the RBE in the Bragg peak is almost entirely determined by primary protons due to a decreasing secondary particle fluence with depth. RBE values up to 1.3 (2 Gy; inactivation of V79) at 1 cm distal to the Bragg peak maximum were found. The inactivations of human skin fibroblasts and mouse lymphoma cells were also analysed and reveal a substantial tissue dependency of the total RBE. The outcome of this study shows that elevated RBE values occur not only at the distal edge of the SOBP. Although the variations are modest, and in most cases might have no observable clinical effect, they might have to be considered in certain treatment situations. The biological effect downstream of the target caused by neutrons was analysed using a radiation quality factor of 10. The biological dose was found to be below 0.5% of the prescribed target dose (for a 3 x 3 x 3 cm3 SOBP) but depends on the size of the SOBP. This dose should not be significant with respect to late effects, e.g. cancer induction.  相似文献   

16.
We have developed a novel design method of ridge filters for carbon-ion therapy using a broad-beam delivery system to improve the flatness of a biologically effective dose in the spread-out Bragg peak (SOBP). So far, the flatness of the SOBP is limited to about ±5% for carbon beams since the weight control of component Bragg curves composing the SOBP is difficult. This difficulty arises from using a large number of ridge-bar steps (e.g. about 100 for a SOBP width of 60 mm) required to form the SOBP for the pristine Bragg curve with an extremely sharp distal falloff. Instead of using a single ridge filter, we introduce a ripple filter to broaden the Bragg peak so that the number of ridge-bar steps can be reduced to about 30 for SOBP with of 60 mm for the ridge filter designed for the broadened Bragg peak. Thus we can manufacture the ridge filter more accurately and then attain a better flatness of the SOBP due to well-controlled weights of the component Bragg curves. We placed the ripple filter on the same frame of the ridge filter and arranged the direction of the ripple-filter-bar array perpendicular to that of the ridge-filter-bar array. We applied this method to a 290 MeV u(-1) carbon-ion beam in Heavy Ion Medical Accelerator in Chiba and verified the effectiveness by measurements.  相似文献   

17.
A model was developed to calculate the response of films to heavy ion irradiation as a function of particle type and energy. It is based on the local effect model and was extended to be applied to the non-homogeneous target of photographic emulsions. The calculation was performed for protons and carbon ions in the energy range from 2 to 430 MeV u(-1). The calculated film responses are in very good agreement with experimental data. Based on this model calculation a data base of film responses was set up. This enables a three-dimensional dose verification with films in the heavy ion tumour therapy project at GSI, Darmstadt.  相似文献   

18.
The calibration coefficients of a parallel plate ionization chamber are examined by comparing the coefficients obtained through three methods: a calculation from a 60Co calibration coefficient, N(D, omega, 60Co), a cross-calibration of a parallel plate ionization chamber using a cylindrical ionization chamber at the plateau region of a mono-energetic beam and a cross-calibration of the chamber using a cylindrical chamber at the middle of the SOBP of the therapeutic beams. This paper also examines reference conditions for determining absorbed dose to water in the cases of therapeutic carbon and proton beams. In the dose calibration procedure recommended by IAEA, irradiation fields should be larger than 10 cm in diameter and the water phantom should extend by at least 5 cm beyond each side of the field. These recommendations are experimentally verified for proton and carbon beams. For proton beams, the calibration coefficients obtained by these three methods approximately agreed. For carbon beams, the calibration coefficients obtained by the second method were about 1.0% larger than those obtained by the third method, and the calibration coefficients obtained by cross-calibration using 290 MeV/u beams were 0.5% lower than those obtained using 400 MeV/u beams. The calibration coefficient obtained by the first method agreed roughly with the results obtained by SOBP beams.  相似文献   

19.
Microdosimetric single event spectra were determined as a function of depth in an acrylic phantom for the carbon beam at HIMAC using a tissue equivalent proportional counter (TEPC) coupled to a scintillation counter system. The fragments produced by the carbon beam were identified by the deltaE-time of flight distribution obtained from two scintillation counters which were positioned at the up- and down-stream of the TEPC. Lineal energy distribution for the carbon beam and its five fragments, namely, proton, helium, lithium, beryllium, and boron ions, were measured in the lineal-energy range of 5-1000 keV/microm at five phantom depths between 0 and 230 mm. The dose distribution for the carbon beam and its fragments were obtained separately. The relative biological effectiveness (RBE) of the carbon beam in the phantom was calculated using a response function. The maximum RBE for the carbon beam was found to be about 5 near the Bragg peak. It was observed to rapidly decrease for Bragg peaks occurring at deeper positions in the phantom. The dose from the beam fragments accounted for about 30% to the total dose, however, its contribution to the RBE was less than 17%.  相似文献   

20.
Total skin electron therapy (TSET) is a complex technique which requires non-standard measurements and dosimetric procedures. This paper investigates an essential first step towards TSET Monte Carlo (MC) verification. The non-standard 6 MeV 40 x 40 cm2 electron beam at a source to surface distance (SSD) of 100 cm as well as its horizontal projection behind a polymethylmethacrylate (PMMA) screen to SSD = 380 cm were evaluated. The EGS4 OMEGA-BEAM code package running on a Linux home made 47 PCs cluster was used for the MC simulations. Percentage depth-dose curves and profiles were calculated and measured experimentally for the 40 x 40 cm2 field at both SSD = 100 cm and patient surface SSD = 380 cm. The output factor (OF) between the reference 40 x 40 cm2 open field and its horizontal projection as TSET beam at SSD = 380 cm was also measured for comparison with MC results. The accuracy of the simulated beam was validated by the good agreement to within 2% between measured relative dose distributions, including the beam characteristic parameters (R50, R80, R100, Rp, E0) and the MC calculated results. The energy spectrum, fluence and angular distribution at different stages of the beam (at SSD = 100 cm, at SSD = 364.2 cm, behind the PMMA beam spoiler screen and at treatment surface SSD = 380 cm) were derived from MC simulations. Results showed a final decrease in mean energy of almost 56% from the exit window to the treatment surface. A broader angular distribution (FWHM of the angular distribution increased from 13 degrees at SSD = 100 cm to more than 30 degrees at the treatment surface) was fully attributable to the PMMA beam spoiler screen. OF calculations and measurements agreed to less than 1%. The effect of changing the electron energy cut-off from 0.7 MeV to 0.521 MeV and air density fluctuations in the bunker which could affect the MC results were shown to have a negligible impact on the beam fluence distributions. Results proved the applicability of using MC as a treatment verification tool for complex radiotherapy techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号