首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:利用蒙特卡罗模拟探究空气间隙对点扫描质子治疗的剂量影响。方法:利用通用蒙特卡罗程序Geant4平台构建使用射程移位器的治疗头末端的点扫描质子束流模型,并进行验证。模拟计算不同能量、不同射程移位器、不同束斑尺寸、不同束斑数目在不同空气间隙条件下的质子束流在水模体中的剂量沉积,并通过获得的积分深度剂量生成剂量修正因子对剂量的差异进行比较。结果:不同空气间隙会造成剂量损失,随空气间隙增大而增大,随水模体中深度增加而减小。对于能量更高的射束和使用水等效厚度更薄的射程移位器,剂量损失越大。束斑尺寸改变和束斑数目增加较少时造成的剂量损失与同条件下单一束流无显著差别。结论:当使用射程移位器、肿瘤位置较浅、空气间隙较大时,建议建立剂量修正因子数据库应用于治疗计划系统对剂量进行修正。  相似文献   

2.
目的:针对激光等离子体加速的质子束流特性,设计用于剂量递送的新型紧凑治疗头系统,并通过模拟计算验证该方法的有效性与适用性。方法:基于实验上已实现的激光质子束流参数,利用散射体设计软件NEU(Nozzles with Everything Upstream)进行流线型散射体设计。通过散角选择和能散调制进一步优化剂量递送效率,并利用蒙特卡罗模拟计算软件TOPAS(TOol for PArticle Simulation)及底层的Geant4(GEometry ANd Tracking)计算引擎分析并验证激光质子通过此剂量递送方法后水模体中的剂量分布。结果:在直径6 cm、高5 cm的圆柱形靶区内,深度剂量分布平坦度在±1%以内,横向剂量分布在±3%以内。结论:此剂量递送方法及系统适用于现阶段激光质子束流特性,水模体靶区内剂量递送均匀、高效且稳定。  相似文献   

3.
目的:使用质子束激发热声信号对质子束的布拉格峰定位,分析其在质子治疗中应用的可行性。方法:通过Kwave工具包模拟质子束在水中的传播过程,使用放置的传感器接收质子束激发产生的γ波走时数据,再将走时数据进行反演得到布拉格峰位置的修正量,从而完成对布拉格峰定位。结果:在均匀介质中,当初始的布拉格峰位置在目标布拉格峰位置5 cm范围内,使用Kwave模拟得到的走时数据进行定位,无噪声的情况下,定位误差在1.3 mm以内,对其进行加噪处理后,定位误差仍在3 mm以内。使用波前扩展的线性走时插值射线追踪算法得到的走时数据进行反演,能完成零误差定位。结论:使用质子束激发热声信号,仅需要少量的传感器就能对质子束的布拉格峰进行实时定位,走时数据的准确性对定位算法有一定的影响。但是通过加噪实验发现,本算法具有较好的稳定性和收敛性。  相似文献   

4.
目的:分析磁场作用下质子束在模体中的剂量分布,为核磁共振引导的质子放疗提供数据参考。方法:采用蒙特卡罗软件TOPAS计算治疗用质子束在核磁共振横向磁场影响下水体模中的剂量分布。同时采用水-空气-水模型研究磁场下的电子回转效应对不同介质交界处质子剂量分布的影响。结果:在均匀水体模中,当磁场强度在0.5 T以内,质子能量在150 MeV以下时,质子布拉格峰位置沿深度方向偏移在1 mm以内,但与束流入射方向平行的XZ面的高剂量区横向侧移在4 mm左右;当磁场强度达到1.5 T时,150 MeV的质子布拉格峰位置偏移在1 mm以内,但横向侧移达10 mm以上。研究结果还发现在磁场作用下,质子在水与空气交界处的剂量无明显变化。结论:利用蒙特卡罗方法可以准确分析磁场下的质子辐射剂量。横向磁场的存在对质子在深度方向的剂量影响较小,但对横向剂量侧移影响较大,且与能量、磁场强度成正比,而电子回转效应对质子在水与空气交界处的剂量影响近似可以忽略。  相似文献   

5.
目的:针对具有录像功能的闪烁体探测器Lynx-PT和笔形束扫描(PBS)质子放疗系统,设计一种质子束斑测量与分析方法,为PBS质子放疗系统的临床调试、束流建模和周期性质控测量提供可靠、高效的解决方案。方法:配置PBS质子放疗系统和Lynx-PT的相关参数,设计数据预处理和束斑分析流程,将两种数据处理流程嵌入自研软件(SpotCheck),实现从束斑采集到数据预处理再到束斑特性分析的全流程自动化。结果:SpotCheck输出的束斑尺寸结果与现有商业化软件(myQA, 比利时IBA公司)以及厂商的现场验收测量结果均保持一致,能成功识别所有束斑录像文件的数据质量问题,并将质子束流占用时间从4 d缩短至0.5 d。结论:本文方法的束斑尺寸计算结果准确、束斑采集速度快、数据处理流程自动化程度高,极大提升了PBS质子放疗系统临床调试和束流建模的效率。  相似文献   

6.
目的:提供一种权重适配的布拉格峰展宽(SOBP)方法,得到平滑的展宽布拉格峰。 方法:通过重新拟合质子能量-射程的关系(盖格法则),找出适配函数的函数形式,并对权重进行重新适配,通过求敏感参数k,得到平滑的SOBP,最后用蒙特卡洛程序FLUKA进行验证。 结果:SOBP的形状对参数k比参数P更加敏感,拟合得到4~32 cm的SOBP,中间平坦区偏差不超过±2%,并解决中间区坍塌的问题。 结论:蒙特卡洛模拟检验了权重适配的SOBP方法的有效性。  相似文献   

7.
目的:基于佛罗里达大学质子放疗中心(University of Florida Health Proton Therapy Institute, UFHPTI)质子加速器在笔形束扫描模式下的临床实验数据,在DeepPlan中构建相应模型,验证模型构建的准确性并初步应用于临床前列腺癌的剂量计算。方法:在DeepPlan质子模块中建立UFHPTI质子加速器的笔形束计算模型,并将剂量计算结果与临床实验数据进行对比,包括30组积分深度剂量(Integrated Depth Dose, IDD)、30组空气中质子束斑发散大小、1组多能量多点照射下的纵向扩展布拉格峰(Spread Out Bragg Peak, SOBP)和横向剂量分布,以此验证模型构建的准确性。最后以UFHPTI的两个前列腺癌临床放疗计划为指导,将DeepPlan计算结果与商用放疗计划系统RayStation计算结果通过PTW公司的VeriSoft软件进行gamma分析。结果:DeepPlan质子模块计算产生的30组IDD与UFHPTI加速器的临床实验数据平均相对误差为0.01%,最大相对误差为0.23%;30组空气质子束斑发散大小与临床实验数据平均相对误差为0.15%,最大相对误差为1.14%。在多能量多点照射下,DeepPlan质子模块计算产生的SOBP与临床实验数据平均相对误差为1.07%,最大相对误差为3.91%;横向剂量分布和临床实验数据平均相对误差为1.92%,最大相对误差为4.09%。针对两个前列腺癌的放疗计划,DeepPlan质子模块与RayStation计算的三维剂量结果在以3 mm/3%的标准下每个子野的gamma通过率都达到95%以上,其中病例1两个子野(270°和90°方向)的gamma通过率分别为96.4%和97.5%,病例2两个子野(270°和90°方向)的gamma通过率分别为99.3%和98.9%。结论:在DeepPlan中构建了与UFHPTI质子加速器相匹配的笔形束模型,该模型可初步应用于临床前列腺癌的剂量计算。  相似文献   

8.
目的:通过比较医用质子加速器两种不同束流引出方式的X/γ射线感生放射性辐射剂量差异,从而采取相应措施降低治疗室的环境辐射水平,减少医用质子加速器工作人员的累积辐射剂量。方法:模拟患者治疗的肿瘤辐射野,分别在质子加速器扩展束流治疗室和笔形束流治疗室进行15 CGE的质子射线照射,射线停止60 s后,进入治疗室利用两台Neutron RAE II检测仪同时对射线输出窗口和治疗床等中心这两个位置进行X/γ射线感生放射性辐射剂量测量,并记录数据。按以上出束条件和测量步骤,重复测量3次,每次间隔30 min。结果:扩展束流射线输出窗的3次测量值依次为32.3、63.2、70.1μSv/h,在治疗床等中心的3次测量值依次为4.5、5.6、7.7μSv/h,两个测量点的感生放射性辐射剂量率均随着测量次序依次增加。笔形束流射线输出窗的3次测量值依次为3.2、2.3、2.1μSv/h,在治疗床等中心的3次测量值依次为0.21、0.18、0.18μSv/h,两个测量点的感生放射性辐射剂量率均与测量次序无关。在输出窗位置,扩展束流的测量平均值是笔形束流测量平均值的21.8倍;在治疗床等中心位置,扩展束流的测量平均值是笔形束流测量平均值的31.2倍。结论:在出束剂量和时间相同的情况下,笔形束流的感生辐射剂量较小,其机房环境辐射水平远远低于扩展束流机房,对工作人员有更好的保护作用。  相似文献   

9.
质子治疗的物理与生物学基础   总被引:2,自引:0,他引:2  
近几十年来质子治疗在临床上取得了巨大成就,这是因为质子束在物理学和生物学上具有独特的优势。在肿瘤治疗学上质子比常规射线(^60Co、X射线、电子)有两个主要优势:(1)可根据肿瘤在体内的深度,使质子束精确地定位在肿瘤病灶处,以使肿瘤受到最大的照射剂量而不伤害健康组织,从而达到适形治疗。(2)可根据肿瘤的形状改变质子在微观尺度能量沉积的形状,实现辐射生物学效应的改变。基于此,对于形状较复杂的大实体瘤,质子治疗比常规治疗有更高的精度。质子的这些在治疗学上特异的可能性是由其剂量学和辐射生物学特性决定的。剂量学的性质与能量在宏观尺度的沉积特征有关,作为带电粒子,质子在介质中有确定的射程和相对小的散射歧离,此外在射程前端剂量相对较小,而到射程末端剂量达到最大,形成一个尖锐的Bragg峰,基于这屿特点使得肿瘤受到高剂量的照射而周围的健康组织受到很小的伤害;相对生物学效应与能量在微观尺度的沉积特征有关,与重离子相比虽然质子属于低LET射线,但就其能量在微观尺度沉积的性质与常规射线相比质子足致密电离辐射,因此目前已有实验证实质子治疗比常规射线治疗增加了相对生物学效应,然而目前对能量的微观沉积与生物学效应关系的原理仍需要进一步从理论上和实验上研究证明。文中分析了质子与介质的作用过程、以及传能线密度(LET)、相对生物学效应(RBE)、氧增比(OER)等放射治疗学的一般概念,讨论了质子用于肿瘤治疗的物理学与生物学性质。  相似文献   

10.
目的:探索一种新型的基于超强脉冲激光的医用质子辐射束,为研制基于小型化的超短超强激光质子加速器的激光质子刀进行肿瘤治疗奠定基础。方法:在超强脉冲激光装置SILEX-I上研究医用高能质子辐射束特性。利用CR39核径迹探测器测量质子束的束密度、产额,并采用Thomson离子谱仪和HD810型号辐射变色膜片在固体靶背表面法线方向分别测量能谱及空间分布。结果:质子束空间分布呈现圆盘状、成丝和环状分布。质子束与入射激光方向无关,沿着靶背表面法线方向发射,质子束发射存在较小立体角。对于复合靶,若保持前表面的Al厚度不变,随着后表面C8H8层厚度的增加,质子束流减小。质子束发射在一定能量处出现截止,截止能量与靶厚度和靶材料密切相关。截止能量的大小随靶厚度的增加而减小;在靶厚度相同的情况下,Al薄膜靶的质子截止能量高于Cu薄膜靶。结论:本实验结果为激光质子加速器治疗装置的小型化研制及肿瘤放射治疗提供了一些重要参考依据。  相似文献   

11.
目的:探讨基于GAMOS的蒙特卡罗(MC)方法模拟电子线放疗的剂量精确性。方法:运用GAMOS MC程序,建立Varian Rapidarc加速器3档能量(6、9和12 MeV)及3种限光筒[(6×6)、(10×10)和(15×15) cm2]的束流模型,模拟束流在水模体中的剂量分布,并与测量得到的百分深度剂量和等平面剂量分布比较,评估GAMOS软件模拟电子线照射的精确性和运算效率。结果:模拟的粒子数越多,模拟与测量结果的误差越小;当模拟粒子的数量达到5×108时,各个能量的电子线射程(Rp)和50%剂量深度(R50)的模拟结果与测量结果一致;除建成区外,百分深度剂量模拟和测量的结果误差在2%以内;等平面剂量分布模拟和测量的结果误差也在2%以内,模拟的照射野大小与测量结果一致。运算效率中,能量越大,限光筒尺寸越大,并行同步模拟所用的时间越多,模拟时间的变化越大。结论:基于GAMOS的MC方法可准确地模拟放疗电子线照射剂量的分布,粒子数的增加可提高模拟的精确性,并行同步计算可提高模拟的效率。  相似文献   

12.
目的:使用蒙特卡洛方法模拟在碳离子放疗过程中产生的次级中子对人体主要器官的吸收剂量和当量剂量。方法:基于中国科学院近代物理研究所(IMP)的重离子深层肿瘤治疗的束流配送系统治疗头,使用MCNPX对该系统的初级准直器、脊型过滤器、射程移位器以及多叶准直器进行建模,模拟计算400 Me V/u碳离子均匀照射野经过IMP被动式束流配送系统,入射到RPI-Adult男性体模后,统计全身主要器官内的次级中子能谱和吸收剂量与当量剂量。结果:当脑垂体瘤接受治疗并给予50 Gy处方剂量时,不同器官内的中子能谱显示所产生的次级中子能量范围比较大,最大能量高达几百Me V;而且脑部部分器官的中子当量剂量相对比较高,大脑、头盖骨和眼晶体当量剂量为53.18、32.43、33.20 m Sv;离脑部较远的器官,如胸部、肺以及前列腺剂量很低,都小于0.4 m Sv。结论:利用蒙特卡洛方法和计算机仿真人体模型模拟了碳离子放疗过程,并统计了全身大部分器官内次级中子能谱和受到的剂量。本研究计算的结果和结论,再结合相关资料,可以为临床上研究碳离子放疗的远期效应提供参考。  相似文献   

13.
目的:探讨GATE在核医学成像SPECT和PET、光子和质子放射治疗中的蒙特卡洛模拟,并利用GATE平台研究碳纤维床板对光子放疗时剂量的影响。方法:首先模拟运行GATE V6.1提供的三个例子,分别对应于SPECT、PET和RT,其中RT又分为光子治疗和质子治疗。对SPECT和PET模拟中光子的散射情况进行统计分析,详细比较RT模拟中光子束和质子束在水模体中的能量沉积特性。然后在GATE平台上编程模拟了光子治疗束分别在有碳纤维床板和无床板时射入水模体中,比较并分析这两种情况下水模体中的剂量分布差异。结果:GATE V6.1的三个例子模拟中,SPECT中的未散射光子稳定在36%左右,PET中未散射的真符合计数稳定在44.5%左右,RT模拟中质子相比于光子在深度方向上有明显的剂量分布优势,而光子在横向方向的剂量分布稍好于质子。在碳纤维床板对光子放疗时剂量影响的模拟中,有碳纤维床板相对于无床板时,水模体的表层剂量有明显的提高。结论:GATE能够稳定准确的对核医学成像SPECT和PET及放射治疗过程进行蒙特卡洛模拟。它可以为放射治疗剂量验证、临床放射治疗计划以及核医学成像引导放射治疗的研究提供强大帮助。  相似文献   

14.
目的:利用蒙特卡罗方法分析透射平面上散射光子的物理性质以及非均匀模体厚度对散射核的影响,为基于电子射野影像设备(EPID)的在体剂量验证研究提供基础。方法:利用EGSnrc建立笔形束散射核模型,并模拟获得X射线穿过非均匀模体(水肺水/水骨水模体)以及相应等效厚度水模后30 cm处透射平面上的多种散射线能量注量分布,并分析水肺水/水骨水模体与其等效厚度水模体在散射线能量注量分布上的差异。结果:散射核中一阶康普顿散射线最大能量注量在1×10-4 MeV·cm-2数量级,当离轴距离为8~12 cm时下降至最大值的一半,而散射核中其它散射线能量注量最大值在1×10-5 MeV·cm-2数量级附近或以下。对于水肺水/水骨水模体,散射核能量注量相对偏差变化为±1.2%~±11.5%,且随模体非均匀层厚度增大而增大。结论:散射核中一阶康普顿散射线占比最大,同时也贡献了大部分能量注量相对偏差,在通过散射核来重建非均匀模体后EPID平面上的射线分布时,应着重考虑一阶康普顿散射线对重建结果的影响,并对其进行有效的修正。  相似文献   

15.
目的:利用蒙特卡罗方法研究医用直线加速器产生的6 MV-X射线在有均整器和无均整器状态下,光子能谱和空间分布的差异。方法:使用Geant4蒙特卡罗模拟程序计算医用加速器射野大小分别为5 cm×5 cm、10 cm×10 cm、15 cm×15 cm和20 cm×20 cm的6 MV-X射线在具备均整器和移除均整器条件下,初始光子的能谱和空间分布。结果:均整器移除后光子能谱光子注量变大,且随着射野的增大,射野内光子通量比值都明显减小,而且平均能量明显降低。此外,均整器的移除改变光子的相对分布,射野外光子数在整个相空间平面内光子中所占份额明显减少,而且与射野大小有关,5cm×5 cm时减少6.00%,10 cm×10 cm时减少4.42%,15 cm×15 cm时减少3.48%,20 cm×20 cm时减少2.28%,这表明移除均整器对于尺寸较小的射野意义重大。结论:均整器的移除可以优化射野的能谱分布,特别是对于调强放射治疗无均整器模式成为更有益模式。但是,由于均整器移除后导致的高剂量率在提高治疗增益的同时也带来了治疗风险,因此需要更进一步的研究和论证。  相似文献   

16.
质子和其他放射治疗肿瘤的比较   总被引:1,自引:0,他引:1  
质子加速器是目前世界上最先进的放射治疗设备。本文对质子和目前各国常用的常规射线(兆伏特级的光子和电子),在肿瘤的放射治疗方面进行了比较。并复习了世界各国用质子治疗肿瘤的经验,介绍质子治疗肿瘤的优点、发展历史以及发展前景。质子束进入人体组织时,其大量的能量集中在接近射程终点,称为Bragg峰。放射治疗医生可以通过调节质子加速器能量的方式,使高能量区集中在病人体内一定的区域;在此高量区的后方,放射剂量骤降为零。因此,医生可以使放射线的高剂量区集中在靶区(肿瘤区),避免周围正常组织部受到照射。而用常规射线照射时,周围正常组织仍受到较高量的照射。用目前先进的三维适形放射治疗和调强放射治疗技术,只需用少数的照射野,即可达到非常满意的放射剂量分布。到2004年2月,世界上已有11个国家正在开展质子治疗工作;已用质子治疗病人35838例。所治疗的肿瘤有眼葡萄膜黑色素瘤、中枢神经系统肿瘤、颅底肿瘤、前列腺癌、非小细胞肺癌、胃肠道肿瘤、鼻咽癌、乳腺癌和官颈癌等,均取得较好的效果。目前已引起世界各国放射治疗学界的重视。  相似文献   

17.
目的:减少直线加速器commission过程的工作量,对加速器出束信息进行建模,使用蒙特卡罗方法进行剂量计算,并验证模型的准确性。方法:将光子束区分为初始光子束和散射光子束,分别用数学公式描述其能量和方向,建立虚拟源模型,使用蒙特卡罗方法计算在水中的剂量分布,与水箱中的测量数据比较。使用源模型计算病例计划,与商用TPS计算结果比较。结果:计算得到的PDD误差基本在1.0%以内,OAR误差在2.0%以内。在1例前列腺病例计划中,本方法计算得到的DVH曲线与不同TPS计算得到的结果基本一致。结论:本虚拟源模型方法可以很好地模拟直线加速器的出束信息,计算单个病例时间在40 s量级,可以实现病人治疗前实时的剂量验证,且有用于直线加速器自动commission过程的潜力。  相似文献   

18.
【摘要】质子治疗过程容易受射程偏差、摆位偏差、患者解剖结构改变等不确定因素的影响,质子调强放疗的鲁棒性优化是将这些不确定因素考虑进计划的制定过程中,增加治疗计划鲁棒性的一种方法,在临床中有广泛的应用。鲁棒性优化的方法主要有4种:(1)概率法;(2)最差剂量法;(3)添加约束项;(4)多CT优化。本文综述了这4种方法的原理、优缺点和临床应用情况。同时,还介绍了治疗计划鲁棒性的评估方法。虽然目前剂量体积直方图束是最常用的评估治疗计划鲁棒性的方法,但是,剂量体积直方图束不能反映质子调强放疗计划对解剖结构改变的鲁棒性,因此,还急需建立一个简单易用并能被广泛接受的鲁棒性评估方法,方便质子调强放疗计划的对比和评估。  相似文献   

19.
目的:为C7神经移位椎管内吻合腰神经前根重建截瘫患者屈髋伸膝功能提供解剖学基础。方法:在20例成人尸体标本上,观测L1阶段椎管内L1~4神经前根排列及纤维数、C7神经转移路径距离及坐骨神经可切取长度及远端纤维数。结果:一侧C7神经经椎体前通路跨越椎体中线的长度为(2.4±0.58)cm,可与对侧C7神经编织成束。在L1节段,L1~4神经前支可辨认并能编织成束供吻合。胫神经和腓总神经可切取长度(52.35±2.60)cm,(48.20±2.37)cm能够满足C7至L1段椎管的距离(48.35±3.36)cm。一侧胫神经和腓总神经远端纤维数(26856±112),(25700±156)大于一侧腰L1~4神经前支纤维数(20766±354)。结论:坐骨神经可选择为颈7神经移位重建截瘫下肢功能的桥接神经,双侧C7神经可经椎体前通路编织成束作为动力神经源,在L1阶段椎管内吻合L1~4腰神经前根的具有可行性。  相似文献   

20.
目的:为应用肱二头肌短头肌腱转位修复肩锁关节脱位提供解剖学基础和术式设计。方法:在31侧经动脉内灌注红色乳胶的成人尸体标本上,对肱二头肌短头肌腱的形态、血管及喙突的局部结构进行解剖学观察、摹拟手术设计并应用于临床11例。结果:肱二头肌短头肌腱长8.7±1.5cm,上部宽0.9±0.4cm,中部宽1.2±0.4cm,下部宽1.4±0.4cm,喙突尖至肩峰的距离4.7±0.5cm,喙突尖至锁骨肩峰端4.3±0.4cm。应用肱二头肌短头肌腱转位修复肩锁关节脱位疗效满意。结论:应用肱二头肌短头肌腱移位重建喙锁韧带、肩锁韧带及修复肩锁关节脱位,是一种行之有效的新术式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号