首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Viruses exploit cellular SUMOylation machinery to favour their own propagation. We show that NS5A is a target protein of small ubiquitin‐like modifier (SUMO) and is SUMOylated at lysine residue 348. We demonstrated that SUMOylation increased protein stability of NS5A by inhibiting ubiquitylation, and SUMOylation was also required for protein interaction with NS5B. These data imply that SUMO modification may contribute to HCV replication. Indeed, silencing of UBC9 impaired HCV replication in Jc1‐infected cells, and HCV replication level was also significantly reduced in SUMO‐defective subgenomic replicon cells. Taken together, these data indicate that HCV replication is regulated by SUMO modification of NS5A protein. We provide evidence for the first time that HCV exploits host cellular SUMO modification system to favour its own replication.  相似文献   

3.
BACKGROUND AND AIMS: Recent evidence suggests that toll-like receptors (TLRs) recognize certain viruses. We reported that hepatitis C virus (HCV) core and nonstructural 3 (NS3) proteins activate inflammatory pathways in monocytes. The aim of this study was to investigate the role of TLRs in innate immune cell activation by core and NS3 proteins. METHODS: Human monocytes, human embryonic kidney cells transfected with TLR2, and peritoneal macrophages from TLR2, MyD88 knockout, and wild-type mice were studied to determine intracellular signaling and proinflammatory cytokine induction by HCV proteins. RESULTS: HCV core and NS3 proteins triggered inflammatory cell activation via the pattern recognition receptor TLR2 and failed to activate macrophages from TLR2 or MyD88-deficient mice. HCV core and NS3 induced interleukin (IL)-1 receptor-associated kinase (IRAK) activity, phosphorylation of p38, extracellular regulated (ERK), and c-jun N-terminal (JNK) kinases and induced AP-1 activation. Activation of nuclear factor-kappaB by core and NS3 was associated with increased IkappaBalpha phosphorylation. TLR2-mediated cell activation was dependent on the conformation of core and NS3 proteins and required sequences in the regions of aa 2-122 in core and aa 1450-1643 in NS3. Although cellular uptake of core and NS3 proteins was independent of TLR2 expression, cell activation required TLR2. HCV core protein and TLR2 showed intracellular colocalization. The hyper-elevated TNF-alpha induction by TLR2 ligands in monocytes of HCV-infected patients was not due to increased TLR2 expression. CONCLUSIONS: HCV core and NS3 proteins trigger inflammatory pathways via TLR2 that may affect viral recognition and contribute to activation of the innate immune system.  相似文献   

4.
BACKGROUND/AIMS: Antiviral therapy such as combination interferon and ribavirin can eradicate hepatitis C virus (HCV) RNA by up to 40-50%. However, many patients still remain non-responders to this treatment for various reasons. The aim of this study was to evaluate the effect of interferon or ribavirin treatment on subgenomic HCV RNA replication in 'non-hepatic' HeLa cells. METHODOLOGY: Huh-7 or HeLa cells harboring HCV replicon were constructed by using cellular RNA of Huh-7 harboring HCV replicon RNAs, named as C13-3 cells. We also tested whether interferon or ribavirin can suppress HCV RNA in HeLa cells. RESULTS: Huh-7 or HeLa cells harboring HCV replicon RNAs were constructed by using cellular RNA of C13-3 cells than using in vitro-transcribed RNA. Ribavirin at 1 microg/mL or 10 microg/mL did not suppress colony formation in HeLa cells, but at 100 microg/mL suppression was observed. Interferon-alpha 2b suppressed HCV replication even at 1 U/mL. CONCLUSIONS: HeLa cells harboring HCV replicon RNAs also might be useful for the development of antiviral drugs.  相似文献   

5.
AIM: To address the effect of heat-shock protein 90(HSP90) inhibitors on the release of the hepatitis C virus(HCV), a cell culture-derived HCV(JFH1/HCVcc) from Huh-7 cells was examined.METHODS: We quantified both the intracellular and extracellular(culture medium) levels of the components(RNA and core) of JFH-1/HCVcc. The intracellular HCV RNA and core levels were determined after the JFH1/HCVcc-infected Huh-7 cells were treated with radicicol for 36 h. The extracellular HCV RNA and core protein levels were determined from the medium of the last 24 h of radicicol treatment. To determine the possible role of the HSP90 inhibitor in HCV release, we examined the effect of a combined application of low doses of the HSP90 inhibitor radicicol and the RNA replication inhibitors cyclosporin A(Cs A) or interferon. Finally, we statistically examined the combined effect of radicicoland Cs A using the combination index(CI) and graphical representation proposed by Chou and Talalay.RESULTS: We found that the HSP90 inhibitors had greater inhibitory effects on the HCV RNA and core protein levels measured in the medium than inside the cells. This inhibitory effect was observed in the presence of a low level of a known RNA replication inhibitor(Cs A or interferon-α). Treating the cells with a combination of radicicol and cyclosporin A for 24 h resulted in significant synergy(CI 1) that affected the release of both the viral RNA and the core protein. CONCLUSION: In addition to having an inhibitory effect on RNA replication, HSP90 inhibitors may interfere with an HCV replication step that occurs after the synthesis of viral RNA, such as assembly and release.  相似文献   

6.
目的构建含增强型绿色荧光蛋白(EGFP)报告基因的HCV复制子表达载体,并实现其在细胞中的复制表达。方法用分子生物学基因克隆技术对HCV 2a型复制子的基因进行改造,用EGFP基因替代HCV基因组中的包膜基因(E1和E2)体外构建重组单顺反子HCV亚基因组复制子真核表达质粒pcDNA-JFH1-EGFP,经限制性内切酶酶切分析和测序鉴定;脂质体介导转染人肝癌细胞系Huh-7细胞,用荧光显微镜观察EGFP表达,采用半定量RT-PCR方法检测重组复制子的HCV RNA负链,采用Western blot检测HCV NS3蛋白的复制表达,并观察IFN-α对重组质粒表达的HCV RNA复制的抑制作用。结果构建的4个重组质粒酶切分析与预期相符,HCV亚基因复制子表达载体中未发生EGFP和HCV编码区读码框架改变,转染重组载体Huh-7细胞检测到HCV负链及EGFP和HCV NS3蛋白表达。转染后48h,1 000IU/ml和2 000IU/ml IFN-α处理的细胞HCV RNA表达水平分别为未处理组的20.0%和7.6%。结论含EGFP报告基因的单顺反子HCV亚基因组复制子表达载体pcDNA-JFH1-EGFP构建成功,在Huh-7细胞中能有效复制表达,为进一步研究HCV提供了实验平台。  相似文献   

7.
BACKGROUND/AIMS: Hepatitis C infection induces hepatic oxidative stress. Heme oxygenase (HO), the rate-controlling enzyme of heme catabolism, plays a key role as a protector against oxidative, and other stresses. Other recent work has implicated Bach1, a heme binding protein that represses gene expression, in the regulation of HO-1 gene expression. METHODS: We investigated the effects of HCV polyprotein expression on expression of HO-1 and Bach1 genes in human hepatoma cells (Huh-7 cells). RESULTS: HO-1 was up-regulated in the cell line expressing HCV proteins from core up to the aminoterminal domain of NS3. Addition of increasing concentrations of N-acetylcysteine (NAC) led to down-regulation of HO-1 in cells expressing HCV proteins. In contrast, Bach1 was significantly down-regulated in these cells. Sodium arsenite, a strong inducer of oxidative stress and HO-1, reduced Bach1 expression in wild type Huh-7 cells, and NAC partially abrogated this decrease. CONCLUSIONS: Huh-7 cells expressing HCV proteins show significant up-regulation of the HO-1 gene, and reciprocal down-regulation of the Bach1 gene. Exogenous oxidative stressors and anti-oxidants can modulate expression of these genes. These and other results suggest a key role of down-regulation of Bach1 and up-regulation of HO-1 in diminishing cytotoxic effects of HCV proteins in human hepatocytes.  相似文献   

8.
BACKGROUND AND AIMS: Addition of ribavirin to interferon alfa treatment has substantially increased sustained virologic response rates in patients with chronic hepatitis C (CHC). Ribavirin acts as an RNA virus mutagen in vitro, thereby leading to error catastrophe. However, data in CHC are controversial. METHODS: The nonstructural (NS) 5B quasi-species heterogeneity was analyzed in Huh7 cells harboring a subgenomic hepatitis C virus (HCV) replicon system treated with ribavirin or levovirin. Accordingly, NS5B quasi-species were studied in 14 patients with CHC who received ribavirin alone or combined with pegylated interferon alfa both at baseline and during the first weeks of therapy. Analysis of NS3 quasi-species served as control. RESULTS: Cultivation of HCV replicon cells with ribavirin led to higher NS5B mutational frequencies compared with levovirin-treated or untreated cells (P < .05). Patients receiving ribavirin monotherapy showed higher overall mutational frequencies within NS3 and NS5B during therapy as compared with baseline (P < .01). Proportions of ribavirin-specific G-to-A and C-to-T transitions increased (P < .01). Paired analysis confirmed significant mean increases of mutational frequencies of approximately 5%. Ribavirin serum concentrations were positively correlated with mutational frequency changes (P < .05). In patients receiving combination therapy, a decrease of NS5B mutational frequencies ( approximately 10%) and lower proportions of G-to-A and T-to-C mutations (P < .01) were detectable. CONCLUSIONS: Ribavirin, but not its L-enantiomer levovirin, is a mutagen in HCV replicon cells. In patients with CHC, ribavirin monotherapy exhibits a moderate mutagenic effect early during therapy that is not detectable in combination with pegylated interferon alfa.  相似文献   

9.
10.
The mechanisms by which alcohol exacerbates liver injury in patients with hepatitis C are unknown. We used the hepatitis C virus (HCV) subgenomic replicon cell system to evaluate the effect of ethanol on HCV replication and viral protein synthesis. Our results demonstrate that alcohol stimulates HCV replicon expression at both HCV-RNA and protein levels. Furthermore, we observed that ethanol treatment showed an additive effect in cyclooxygenase-2 (COX-2) protein expression and activity already induced by HCV viral proteins, and in turn increased HCV viral expression. Our results suggest that COX-2 activity is involved in ethanol-induced HCV-RNA and NS5A protein expression, because acetylsalicylic acid (ASA), a COX-1/2 inhibitor, blocked this induction and downregulated COX-2 protein expression and activity. Therefore, we suggest that ethanol increases HCV replication expression, at least in part, by upregulating a key cellular regulator of oxidative stress pathway known as COX-2 or its products.  相似文献   

11.
BACKGROUND & AIMS: The pathogenesis of chronic hepatitis C is poorly understood. This study examines the ability of hepatitis C virus (HCV) to infect, replicate in, and produce progeny virus from perihepatic lymph nodes in vivo. METHODS: Lymph node (LN) biopsy specimens were taken from 20 patients with HCV genotype 1 infection and end-stage liver disease and 20 noninfected negative controls. Sections were probed with HCV RNA strand-specific riboprobes and antibodies specific for HCV core and nonstructural region 3 antigens plus B-cell (CD20) and T-cell (CD2) antigens. In a selected case, HCV quasispecies in serum, peripheral blood mononuclear cells, liver, and perihepatic lymph nodes were analyzed by clonal frequency analysis and sequencing. RESULTS: HCV infection was confirmed in 17 of 20 (85%) of lymph node specimens by in situ hybridization, and HCV replication was confirmed in 50% of cases by detection of HCV replicative intermediate RNA. HCV core and nonstructural 3 antigens were detected in lymph nodes by immunocytochemistry. Infected cell phenotypes were primarily CD20 B cells, although other cell types were positive for HCV replication markers. Quasispecies analysis in one case indicated that 68% of variants circulating in serum were also present in lymphoid tissues, and only 40% of serum variants were identified in liver, documenting a major contribution of lymphoid replication to HCV viremia. CONCLUSIONS: HCV lymphotropism provides new insights into the complex pathobiology of chronic hepatitis C in humans. We demonstrate for the first time a major contribution of extrahepatic HCV replication to circulating virus in serum (viremia).  相似文献   

12.
Phytochemicals exert antiviral activity and may play a potential therapeutic role in hepatitis C virus (HCV) infection. In this work, we aimed to isolate NS3 inhibitors from traditional Indian medicinal plants that were found, in our earlier study, to inhibit HCV NS3 protease activity and to evaluate their potential to inhibit HCV replication. A potent inhibitory effect of NS3 catalytic activity was obtained with Embelia ribes plant extracts. Quercetin, a ubiquitous plant flavonoid, was identified as the active substance in the fractioned extract. It was found to inhibit NS3 activity in a specific dose-dependent manner in an in vitro catalysis assay. Quercetin inhibited HCV RNA replication as analysed in the subgenomic HCV RNA replicon system. It also inhibited HCV infectious virus production in the HCV infectious cell culture system (HCVcc), as analysed by the focus-forming unit reduction assay and HCV RNA real-time PCR. The inhibitory effect of quercetin was also obtained when using a model system in which NS3 engineered substrates were introduced in NS3-expressing cells, providing evidence that inhibition in vivo could be directed to the NS3 and do not involve other HCV proteins. Our work demonstrates that quercetin has a direct inhibitory effect on the HCV NS3 protease. These results point to the potential of quercetin as a natural nontoxic anti-HCV agent reducing viral production by inhibiting both NS3 and heat shock proteins essential for HCV replication.  相似文献   

13.
Hepatitis C virus (HCV) is a main cause of chronic liver disease, which may lead to the development of liver cirrhosis and hepatocellular carcinoma. Therapeutic options are still limited in a significant proportion of patients. Small interfering RNAs (siRNAs) are an efficient tool to inhibit gene expression by RNA interference. As HCV RNA replicates in the cytoplasm of liver cells without integration into the genome, RNA-directed antiviral strategies are likely to successfully block its replication cycle. In this study, a panel of siRNAs was used to target various important regions of the HCV genome [5' untranslated region (UTR), NS3, NS4A, NS4B, NS5B, 3' UTR]. Convergent opposing human H1 and U6 polymerase III promoters were used to generate siRNAs. Target genes in sense and antisense orientation were attached to a luciferase reporter system to test the inhibitory efficiency of both siRNA strands. Our data revealed effective RNA interference against the HCV(+)-strand, the HCV(-)-strand or both strands simultaneously up to 65%. Subsequently, active siRNAs were tested in HCV subgenomic replicon cells and suppression of HCV RNA and NS5B protein levels up to 75% was confirmed. Interestingly, siRNAs that were effective against the sense as well as the antisense strand revealed the greatest inhibitory effects on HCV subgenomic replicons. Additionally, combinations of siRNAs induced a greater inhibition of HCV subgenomic replication of up to 90% proving the potential of this combined antiviral approach.  相似文献   

14.
Summary. The hepatitis C virus (HCV) nonstructural protein 4B (NS4B) is assumed to function as a membrane anchor and protein hub for the viral replication complex. The aim of the current work was to modulate HCV replication efficacy in the subgenomic Con1 replicon by mutations of specific sites within the aminoterminal‐located basic leucine zipper (bZIP), a candidate motif for protein–protein interactions involving NS4B. Mutational sites and amino acid substitutes were determined by in‐silico sequence analyses of the NS4B‐bZIP motif in 357 isolates of HCV genotype 1b from the euHCVdB and LosAlamos database and consecutive analysis of conserved physico‐chemical properties at bZIP specific positions. Mutants with predicted minor, medium or major reduction of replication efficacy were tested in the pFKI389neo/NS3‐3′/ET plasmid replicon model. Four sites (L25, T29, V39 and W43) of crucial importance for bZIP‐mediated protein interaction with predicted apolarity of respective amino acid positions were selected for mutational studies. Substitutes with physico‐chemical properties matching the predicted requirements either well (T29A), moderately (L25W, V39W), or insufficiently (T29E, W43E) were associated with slightly improved, moderate and marked decreased replication efficacy, respectively. Spontaneous (T29G) and adaptive (A28G, E40G) mutations occurred in the T29E mutation isolate only and were associated with marked reduction of replication efficacy. The bZIP motif region of NS4B is crucial for RNA replication in the subgenomic Con1 replicon system. RNA replication efficacy can be modulated by site‐directed mutagenesis at specific bZIP functional sites. New adaptive amino acid mutations were identified within the HCV NS4B protein.  相似文献   

15.
Cellular cofactors affecting hepatitis C virus infection and replication   总被引:15,自引:1,他引:14  
Recently identified hepatitis C virus (HCV) isolates that are infectious in cell culture provide a genetic system to evaluate the significance of virus-host interactions for HCV replication. We have completed a systematic RNAi screen wherein siRNAs were designed that target 62 host genes encoding proteins that physically interact with HCV RNA or proteins or belong to cellular pathways thought to modulate HCV infection. This includes 10 host proteins that we identify in this study to bind HCV NS5A. siRNAs that target 26 of these host genes alter infectious HCV production >3-fold. Included in this set of 26 were siRNAs that target Dicer, a principal component of the RNAi silencing pathway. Contrary to the hypothesis that RNAi is an antiviral pathway in mammals, as has been reported for subgenomic HCV replicons, siRNAs that target Dicer inhibited HCV replication. Furthermore, siRNAs that target several other components of the RNAi pathway also inhibit HCV replication. MicroRNA profiling of human liver, human hepatoma Huh-7.5 cells, and Huh-7.5 cells that harbor replicating HCV demonstrated that miR-122 is the predominant microRNA in each environment. miR-122 has been previously implicated in positively regulating the replication of HCV genotype 1 replicons. We find that 2'-O-methyl antisense oligonucleotide depletion of miR-122 also inhibits HCV genotype 2a replication and infectious virus production. Our data define 26 host genes that modulate HCV infection and indicate that the requirement for functional RNAi for HCV replication is dominant over any antiviral activity this pathway may exert against HCV.  相似文献   

16.
17.
AIM: To examine the effect of hepatitis C virus (HCV) structural mimics of regulatory regions of the genome on HCV replication.METHODS: HCV RNA structural mimics were constructed and tested in a HCV genotype 1b aBB7 replicon,and a Japanese fulminant hepatitis-1 (JFH-1) HCV genotype 2a infection model.All sequences were computer-predicted to adopt stem-loop structures identical to the corresponding elements in full-length viral RNA.Huh7.5 cells bearing the BB7 replicon or infected with JFH-1 virus were trans...  相似文献   

18.
19.
Aim: The hepatitis C virus (HCV) strain JFH‐1 was cloned from a patient with fulminant hepatitis. A JFH‐1 subgenomic replicon and full‐length JFH‐1 RNA efficiently replicate in cultured cells. In this study, an infectious, selectable HCV replicon containing full‐length JFH‐1 cDNA was constructed. Methods: The full‐genome replicon was constructed using the neomycin‐resistant gene, EMCV IRES and wild‐type JFH‐1 cDNA. Huh7 cells were transfected with RNA synthesized in vitro, and then cultured with G418. Independent colonies were cloned to establish cell lines that replicate the full‐length HCV replicon. Results: HCV RNA replication was detected in each isolated cell line. HCV proteins and HCV RNA were secreted into culture medium, and exhibited identical density profiles. Interestingly, culture supernatants of the replicon cells were infectious for naïve Huh7 cells. Long‐term culture did not affect replication of replicon RNA in the replicon cells, but it reduced core protein secretion and infectivity of culture supernatant. Culture supernatant obtained after serial passage of replicon virus was infectious for Huh7 cells. Conclusions: Selectable infection was established using HCV replicon containing full‐length genotype 2a JFH‐1 cDNA. This system might be useful for HCV research.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号