共查询到20条相似文献,搜索用时 15 毫秒
1.
Kopec AK D'Souza ML Mets BD Burgoon LD Reese SE Archer KJ Potter D Tashiro C Sharratt B Harkema JR Zacharewski TR 《Toxicology and applied pharmacology》2011,256(2):154-167
Interactions between environmental contaminants can lead to non-additive effects that may affect the toxicity and risk assessment of a mixture. Comprehensive time course and dose-response studies with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), non-dioxin-like 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) and their mixture were performed in immature, ovariectomized C57BL/6 mice. Mice were gavaged once with 30 μg/kg TCDD, 300 mg/kg PCB153, a mixture of 30 μg/kg TCDD with 300 mg/kg PCB153 (MIX) or sesame oil vehicle for 4,12, 24,72 or 168 h. In the 24 h dose-response study, animals were gavaged with TCDD (0.3,1, 3, 6, 10, 15, 30, 45 μg/kg), PCB153 (3,10, 30, 60, 100, 150, 300, 450 mg/kg), MIX (0.3 + 3, 1 + 10, 3 + 30, 6 + 60, 10 + 100, 15 + 150, 30 + 300, 45 μg/kg TCDD + 450 mg/kg PCB153, respectively) or vehicle. All three treatments significantly increased relative liver weights (RLW), with MIX eliciting significantly greater increases compared to TCDD and PCB153 alone. Histologically, MIX induced hepatocellular hypertrophy, vacuolization, inflammation, hyperplasia and necrosis, a combination of TCDD and PCB153 responses. Complementary lipid analyses identified significant increases in hepatic triglycerides in MIX and TCDD samples, while PCB153 had no effect on lipids. Hepatic PCB153 levels were also significantly increased with TCDD co-treatment. Microarray analysis identified 167 TCDD, 185 PCB153 and 388 MIX unique differentially expressed genes. Statistical modeling of quantitative real-time PCR analysis of Pla2g12a, Serpinb6a, Nqo1, Srxn1, and Dysf verified non-additive expression following MIX treatment compared to TCDD and PCB153 alone. In summary, TCDD and PCB153 co-treatment elicited specific non-additive gene expression effects that are consistent with RLW increases, histopathology, and hepatic lipid accumulation. 相似文献
2.
Synergistic interactions of 2,3,7,8-TCDD and 2,2',4,4',5,5'-hexachlorobiphenyl in C57BL/6J and DBA/2J mice: role of the Ah receptor 总被引:2,自引:0,他引:2
Treatment of C57BL/6J mice with 2,2',4,4',5,5'-hexachlorobiphenyl (HCBP, 500 mumol/kg) elevated hepatic cytosolic Ah receptor levels 82-107% for up to 14 days. Scatchard analysis of the [3H]2,3,7,8-TCDD (TCDD)-Ah receptor saturation binding curves from corn oil and HCBP treated rats gave KD values of 0.80 and 0.90 nM, respectively and confirmed that treatment with HCBP did not significantly alter receptor-radioligand affinities. Administration of HCBP to DBA/2J mice did not result in detectable hepatic cytosolic Ah receptor levels. Cotreatment of C57BL/6J mice with HCBP (500 mumol/kg) at a dose level of TCDD (1 nmol/kg) which elicited less than 10% of the maximum induction response resulted in significant synergistic induction of hepatic EROD and AHH [compared to animals treated only with TCDD (1 nmol/kg)]. In contrast, cotreatment of C57BL/6J mice with HCBP (500 mumol/kg) and maximally inducing dose levels of TCDD (100 or 500 nmol/kg) resulted in either a slight or no difference in the induction of AHH or EROD compared to the induction responses observed in mice treated only with TCDD. In contrast, cotreatment of DBA/2J mice with TCDD and HCBP (500 mumol/kg) resulted in significant synergistic induction of AHH and EROD at both submaximal (10-500 nmol/kg) and maximal (5000 nmol/kg) induction levels of TCDD. The only significant interactive effect of HCBP (500 mumol/kg) on the toxicity of TCDD in C57BL/6J and DBA/2J was protection from body weight loss observed after cotreatment of HCBP and TCDD in DBA/2J mice. 相似文献
3.
6-Methyl-1,3,8-trichlorodibenzofuran (MCDF), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and TCDD plus MCDF were administered to C57BL/6 mice and their effects on several aryl hydrocarbon (Ah) receptor-mediated responses including hepatic microsomal aryl hydrocarbon hydroxylase (AHH) and ethoxyresorufin O-deethylase (EROD) induction, immunotoxicity and teratogenicity were determined. MCDF did not induce hepatic microsomal AHH and EROD at doses up to 500 mumol/kg, however, co-administration of MCDF (50 mumol/kg) with a dose of TCDD which elicited a submaximal induction response (i.e. ED80-100, 15 nmol/kg) resulted in some small but significant inhibition of the induction of hepatic microsomal AHH and EROD (14 and 17%, respectively) compared to that observed with TCDD alone. Co-administration of TCDD and other doses of MCDF (10, 100, 200 or 500 mumol/kg) did not effect the induction response. These results were in contrast to the effectiveness of MCDF as an antagonist of the induction of AHH and EROD by TCDD in the rat (up to 50% inhibition of monooxygenase induction). Administration of MCDF (4, 20 and 40 mumol/kg) to C57BL/6 mice caused some inhibition of the splenic plaque-forming cell response to sheep erythrocytes only at the highest dose (26% decrease); the interaction of MCDF (4, 20 and 40 mumol/kg) and an immunotoxic dose of TCDD (3.7 nmol/kg) resulted in significant protection from the immunotoxic effects of TCDD at the 2 higher dose levels of MCDF. Similarly, MCDF (400 mumol/kg) did not cause cleft palate in mice but at this dose level MCDF afforded some protection from TCDD (20 micrograms/kg)-mediated cleft palate in mice. However, studies utilizing [3H]TCDD suggested that the protective effects may be due to modulation of TCDD reaching the palate in the co-treated animals (MCDF plus TCDD). Although both MCDF and Aroclor 1254 were both weak Ah receptor agonists in C57BL/6 mice, the former compound was much less effective as a TCDD antagonist. The observed species-specific effects for these 2 TCDD antagonists may be related species-dependent differences in receptor structure and receptor-ligand (i.e. agonist or antagonist) interactions. 相似文献
4.
5.
Newborn infants are susceptible to bleeding disorders caused by a vitamin K deficiency, so called 'haemorrhagic disease of the newborn' (HDN). These bleedings often occur in infants after medication of the mother with antiepileptics, such as phenobarbital or phenytoin. It has been suggested that an increase in the late type of HDN in exclusively breast-fed infants might be related to the presence of cytochrome P450-inducing polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in human milk. In order to study this possible mechanistic relationship 5-week-old, germfree, female WAG/Rij-rats were exposed to a single oral dose of either 1 microgram 2,3,7,8-tetrachlorodibenzo-p-dioxin/kg body weight (TCDD) or 30 mg 2,2',4,4',5,5'-hexachlorobiphenyl/kg body weight (HxCB), representing cytochrome P-450 1A (3-methylcholanthrene type) and 2B (phenobarbital type) inducers. During the experiment blood coagulation time from each rat was measured. Also, hepatic 7-ethoxy-(EROD) and 7-pentoxyresorufin O-dealkylating (PROD) activities and total cytochrome P450 content were measured. Blood coagulation time (Thrombotest) in the HxCB-treated rats was significantly prolonged and positively correlated to PROD activity and total P450 content. No clear effect of TCDD on coagulation time could be observed under these experimental conditions. These results suggest involvement of P450 2B isoenzymes in vitamin K metabolism. 相似文献
6.
Hemopoietic progenitor cells are sensitive targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin in C57BL/6J mice. 总被引:4,自引:0,他引:4
Treatment of adult C57BL6J mice with tetrachlorodibenzo-p-dioxin (TCDD) elicits altered bone marrow hemopoietic cellular potentials and markedly reduced T-lymphoid-reconstituting activity. The latter has been hypothesized to play a role in TCDD-induced thymic atrophy. To investigate cellular targets responsible for reduced prothymocyte capacity, bone marrow cells from TCDD-treated C57BL/6J mice were assessed for hemopoietic alterations within the lineage-negative (lin-) compartment by the examination of Sca-1 and c-Kit levels. Lin- hemopoietic cells from C57BL/6J mice, treated with 30 microg/kg of TCDD, were assessed for phenotypic alterations following 24 h through 31 days. The responses of lin- cells to TCDD doses ranging from 0.3 to 30 microg/kg were also assessed at 2 days following TCDD treatment. The data reveal increases in the number of bone marrow lin- Sca-1+ c-Kit+ cells, relative to control, over 24 h through 31 days following treatment, as well as dose-dependent increases in this population when examined at 2 days. Increases in lin- Sca-1+ c-Kit- cells occurred on a more transient basis and were also dependent upon TCDD dose. These data suggest that proliferation and/or differentiation processes of hemopoietic stem cells are affected by TCDD and that these effects contribute to a reduced capacity of bone marrow to generate pro-T lymphocytes. 相似文献
7.
Dose-related effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in C57BL/6J and DBA/2J mice 总被引:1,自引:0,他引:1
The dose-related effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were studied in B6D2F1/J (B6D), C57BL/6J (C57), and DBA/2J (DBA) mice. A 14-fold difference in lethality was observed in C57 and DBA mice, based upon 30-day LD50 values of 182 and 2570 micrograms TCDD/kg body wt, respectively. The 30-day LD50 for B6D mice was 296 micrograms TCDD/kg body wt. A progressive loss of body weight in all strains of mice was observed during the 30-day LD50 studies, with maximal weight losses of 24.7, 34.0, and 33.4% prior to death of C57, B6D, and DBA mice, respectively. In separate experiments, it was found that decreased feed consumption did not contribute to weight loss in C57 mice exposed to lethal or sublethal doses of TCDD until the animals were moribund. Time-course studies in C57 mice treated with 200 micrograms TCDD/kg body wt indicated that decreases in serum glucose and triglyceride concentrations and increases in hepatic triglyceride content occurred within 4 to 8 days of exposure, and were maximally altered within 17 to 21 days postexposure, concomitant with a 25% body weight loss. C57 mice fasted for 24 to 96 hr lost 18% of body weight and also exhibited alterations in glucose and lipid parameters; however, these changes were substantially different than the effects of TCDD exposure. In concert, these observations demonstrate that decreased feed consumption (hypophagia) does not account for weight loss and changes in carbohydrate and lipid metabolism in TCDD-treated C57 mice. Dose-response experiments resulted in comparable changes in glucose and lipid parameters when DBA mice were exposed to 10-fold higher doses of TCDD than C57 mice. Parallel LD50 responses and parallel changes in carbohydrate and lipid metabolism, at 10- to 15-fold differences in dose range, are indicative of a common mechanism of toxicity in TCDD-treated C57 and DBA mice. 相似文献
8.
A five-compartment physiologically based pharmacokinetic (PB-PK) model was developed to describe the time course of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the tissues of both C57BL/6J and DBA/2J mice. The PB-PK model included binding in blood and two hepatic binding sites, one in the cytosol and the other in the microsomes. First-order metabolism occurred in the liver. Model simulations were compared to literature results for the disposition of a single intraperitoneal dose of 10 micrograms/kg of [3H]TCDD, reported by Gasiewicz et al. [Drug Metab. Dispos. 11 (1983) 397-403]. In contrast to previous speculation, the greater accumulation of TCDD in the liver of the C57BL/6J mouse, as compared to the DBA/2J mouse, was not attributable to the higher fat content in the DBA/2J mouse. Instead, the disposition of TCDD in these mice was more dependent on the affinity of the microsomal binding proteins than on fat content. The microsomal dissociation constant in the C57BL/6J mouse estimated by the PB-PK model was about one-third its value in the DBA/2J mouse (20 versus 75 nM), i.e. there is more avid microsomal binding in the liver of the C57BL/6J mouse. In the concentration range covered in these time-course studies, the cytosolic receptor, with its low capacity and very high affinity binding characteristics, does not play a major role in determining the overall tissue distribution pattern. The concentration and affinity of the microsomal binding protein in the liver appear to be primarily responsible for explaining the differences in the liver/fat concentration ratios between various strains and species of laboratory animals. 相似文献
9.
Metabolism of 2,2',3,3',6,6'-hexachlorobiphenyl and 2,2',4,4',5,5'-hexachlorobiphenyl by human hepatic microsomes 总被引:1,自引:0,他引:1
Since the metabolism of polychlorinated biphenyls (PCBs) is the critical factor that determines whether or not they accumulate in adipose tissue, we have studied the metabolism of two hexachlorobiphenyls (HCBs), 2,2'3,3',6,6'-hexachlorobiphenyl (236-HCB) and 2,2'4,4',5,5'-hexachlorobiphenyl (245-HCB), by human hepatic microsomes. Human microsomes were isolated from patients undergoing liver resection and were found to have cytochrome P-450 levels (0.28 nmoles/mg microsomal protein) and cytochrome P-450-dependent enzymatic activities similar to those reported by other workers. 245-HCB was not metabolized by human microsomes under various conditions, while 236-HCB was metabolized with an apparent Km of 8.8 microM and a Vmax of 5.1 pmoles/mg microsomal protein/min. Two major metabolites were formed and identified by gas chromatography-mass spectrometry as 2,2',3,3',6,6'-hexachloro-4-biphenylol and 2,2',3,3'6,6'-hexachloro-5-biphenylol. [14C]236-HCB equivalents were found to covalently bind to microsomal protein. Addition of 1 or 5 mM reduced glutathione decreased the degree of covalent binding. These data suggest that HCBs are metabolized through an arene oxide. The fact that 245-HCB was not metabolized explains why it is the predominant PCB found in human adipose tissue. 相似文献
10.
Retinoic acid and 2,3,7,8-tetrachlorodibenzo-p-dioxin selectively enhance teratogenesis in C57BL/6N mice 总被引:2,自引:0,他引:2
L S Birnbaum M W Harris L M Stocking A M Clark R E Morrissey 《Toxicology and applied pharmacology》1989,98(3):487-500
TCDD is one of the most toxic man-made compounds and an extremely potent teratogen in mice. Many of its toxic symptoms resemble those seen during vitamin A deficiency. Vitamin A and its derivatives, such as alltrans-retinoic acid (RA), are also teratogenic in mice, as well as many other species. Both TCDD and RA produce cleft palate in susceptible strains of mice. However, while TCDD produces hydronephrosis, RA does not, and TCDD does not produce limb bud defects while RA does. To determine whether TCDD and RA would enhance or antagonize the teratogenic effects of the other compound, C57BL/6N dams were treated po on Gestation Day (gd) 10 or 12 with 10 ml corn oil/kg containing TCDD (0-18 micrograms/kg), RA (0-200 mg/kg), or combinations of the two chemicals. Dams were killed on gd 18 and toxicity and teratogenicity assessed. Coadministration of TCDD and RA had no effect on maternal or fetal toxicity beyond what would be expected by either compound alone. Cleft palate was induced by RA at lower doses on gd 10 than on gd 12, but by TCDD at lower doses on gd 12 than on gd 10. Sensitivity to TCDD-induced hydronephrosis was similar on both gd 10 and 12. The limb bud defects were only observed when RA was administered on gd 10, not when given on gd 12. No other soft tissue or skeletal malformations were related to administration of TCDD or RA. No effect of TCDD was observed on the incidence or severity of limb bud defects induced by RA, nor did RA influence the incidence or severity of hydronephrosis induced by TCDD. However, the incidence of cleft palate was dramatically enhanced by coadministration of the xenobiotic and vitamin. On both gd 10 and 12, the dose-response curves for cleft palate induction were parallel, suggesting some similarities in mechanism between the two compounds. However, combination treatment resulted in a synergistic response that varied with the stage of development and was tissue specific. 相似文献
11.
Biphasic response for hepatic microsomal enzyme induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin in C57BL/6J and DBA/2J mice 总被引:1,自引:0,他引:1
The induction of the murine hepatic microsomal cytochrome P-450 monooxygenase system by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was studied over a wide range of doses, including those associated with acute toxicity. Studies were conducted in two inbred strains of mice which vary at the Ah receptor and at a number of other genetic loci. C57BL/6J mice possess a high-affinity Ah receptor and are responsive to enzyme inductive effects of TCDD, whereas DBA/2J mice do not possess a high-affinity receptor and are less responsive to TCDD. In a dose-response study, 7-ethoxyresorufin O-deethylase (EROD) activity appeared to be maximally induced in C57BL/6J and DBA/2J mice at 7 days following exposure to 3 and 30 micrograms of TCDD/kg respectively. Very similar results were reported previously for the induction of aryl hydrocarbon hydroxylase activity in these strains of mice. However, at higher doses of TCDD (at least 45 micrograms/kg for C57BL/6J and 300 micrograms/kg for DBA/2J), EROD activity was further increased (2-fold) from the apparent maximal (plateau) level, resulting in an unusual biphasic log dose-response relationship. EROD activity remained at these elevated rates in both strains for doses approaching and exceeding the respective LD50 values for each strain. To further characterize this biphasic induction phenomenon, cytochrome P-450 content, benzo[a]pyrene metabolism, and EROD and NADPH-cytochrome P-450 reductase activities were measured 1, 3 and 7 days after TCDD administration to C57BL/6J (3 and 150 micrograms/kg) and DBA/2J (30 and 600 micrograms/kg) mice. Maximal responses occurred in both strains at 3 days for all doses. In both strains, TCDD produced a dose-dependent increase in cytochrome P-450 content, EROD, and benzo[a]pyrene metabolism. Furthermore, a 2-fold induction of reductase activity was observed in each strain following exposure to the respective high doses. Induction of cytochrome P1-450 and P3-450 was also measured by Western immunoblot, using antisera raised against the homologous rat isozymes. In both strains, TCDD produced a dose-related increase in two protein-staining bands recognized by anti-P-450BNF-B (P1-450) and anti-P-450BNF/ISF-G (P3-450) respectively. The extended induction of hepatic microsomal monooxygenase activities at the respective high doses of TCDD appears to be due, in part, to increases in NADPH-cytochrome P-450 reductase activity and cytochromes P1-450 and P3-450 content. Significant alterations in the expression of the cytochrome P-450 monooxygenase system following exposure to high doses of TCDD may be associated, in part, with the delayed acute toxicity reported at this level of exposure. 相似文献
12.
The polychlorinated biphenyl congener 2,2',4,4',5,5'-hexachlorobiphenyl can be photoactivated by brief high-intensity ultraviolet irradiation. Photoactivated intermediates are bound to neighboring biological macromolecules. Properties and stability of hexachlorobiphenyl photobinding were examined with bovine serum albumin, a protein known to strongly bind lipophilic compounds. Photobinding to cultured human Chang liver cells was a function of ligand and cell protein concentration as well as of irradiation time. Binding increased with incubation time, in support of the time course of uptake previously measured in the same system by alternative methods. Separation of cell proteins by gel electrophoresis showed that the distribution pattern of photobinding changed at different rates for different proteins. Photobinding to major cell lipid groups and to individual phospholipids likewise reflected uptake of the compound. Notably, photobinding to phosphatidyl choline was elevated relative to phosphatidyl ethanolamine. Thus, the presented method is suitable to follow up transport and intracellular equilibrium distribution of photoactivatable ligands. As a particular advantage, artefactual redistribution of persistent lipophilic compounds during cell fractionation can be avoided. 相似文献
13.
Distribution, excretion, and metabolism of 2,3,7,8-tetrachlorodibenzo-p-dioxin in C57BL/6J, DBA/2J, and B6D2F1/J mice 总被引:3,自引:0,他引:3
The strains of mice, C57BL/6J, DBA/2J, and B6D2F1/J, have been used as models to study the mechanism of action of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The distribution, excretion, and metabolism of this compound was studied in male C57BL/6J, DBA/2J, and B6D2F1/J mice following the intraperitoneal administration of radiolabeled TCDD at a dose of 10 micrograms/kg. In all strains, the liver and adipose tissue were the major sites for the accumulation of 3H-TCDD, with more 3H-TCDD being distributed to the livers of the C57BL/6J and B6D2F1/J strains as compared to the DBA/2J strain. While in all strains the feces were the major route of elimination, the total amount of 3H-TCDD-derived radioactivity excreted in the feces amounted to approximately 72% of the original dose in the C57BL/6J and B6D2F1/J strains whereas this was only 54% in the DBA/2J strain. The half-lives for the cumulative excretion of radioactivity in the feces were similar in all strains. The half-life for the excretion of radioactivity in the urine was considerably greater in the DBA/2J strain as compared to the C57BL/6J and B6D2F1/J strains. The estimated half-lives for the total cumulative excretion of 3H-TCDD-derived radioactivity by all routes was 11.0, 24.4, and 12.6 days for the C57BL/6J, DBA/2J, and B6D2F1/J strains, respectively. Greater than 85% of the total radioactivity excreted in urine, bile, and feces from all three mouse strains was present as metabolites of TCDD. 相似文献
14.
TCDD is the prototype and most potent member of the highly lipophilic polyhalogenated aromatic hydrocarbons (PHAHs), which are persistent and ubiquitous environmental contaminants. In both acute and subchronic animal studies, there is a specific accumulation of TCDD in liver greater than in adipose tissue. The inducible hepatic binding protein responsible for this hepatic sequestration of TCDD and its congeners has been shown by our laboratory to be CYP1A2 (J. J. Diliberto, D. Burgin, and L. S. Birnbaum, 1997, Biochem. Biophys. Res. Commun. 236, 431-433). The present study was conducted using knockout (KO) mice lacking expression of CYP1A2 (CYP1A2-/-) in order to investigate the role of CYP1A2 gene on the disposition of TCDD, 4-PeCDF (a dioxin-like PHAH), and PCB 153 (a nondioxin-like PCB) in KO (CYP1A2-/-) mice and age-matched parental mice strains (C57BL/6N: CYP1A2+/+, Ah(b/b) and 129/Sv: CYP1A2+/+, Ah(d/d)). Mice were dosed (25 microgram [(3)H]TCDD/kg, 300 microgram [(14)C]4-PeCDF/kg, or 35.8 mg [(14)C]PCB 153/kg bw in a corn oil vehicle) orally and terminated after 4 days. Residues of administered compounds in collected tissues and daily excreta were quantitated using (3)H or (14)C activity. Results demonstrated differential effects in disposition for the various treatments within the three genetically different groups of mice. In KO mice, TCDD, 4-PeCDF, and PCB 153 had very little hepatic localization of chemical, and the major depot was adipose tissue. In contrast, parental strains demonstrated hepatic sequestration of TCDD and 4-PeCDF, whereas disposition of PCB 153 in parental strains was similar to that in KO mice. Another difference between KO mice and parental strains was the enhanced urinary excretion of 4-PeCDF. This study demonstrates the importance of CYP1A2 in pharmacokinetic behavior and mechanistic issues for TCDD and related compounds. 相似文献
15.
The toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was examined by clinical chemistry and liver histopathology in Ah-responsive C57BL/6J (C57) and Ah-nonresponsive DBA/2J (DBA) mice. Hepatotoxicity was assessed at 1, 3, and 7 d following a single ip injection of TCDD at doses that maximally induce hepatic aryl hydrocarbon hydroxylase (AHH) activity (3 micrograms/kg for C57 and 30 micrograms/kg for DBA mice) and at doses approaching the LD50 (150 micrograms/kg for C57 and 600 micrograms/kg for DBA mice). Histological examination of liver sections was found to be a more sensitive detection method for TCDD-induced hepatic changes than clinical chemistry analyses. Dramatic differences in the development and type of liver injury were observed between TCDD-treated C57 and DBA mice. C57 mice given 3 micrograms TCDD/kg developed mild to moderate hepatic lipid accumulation in the absence of both inflammation and necrosis. Severe fatty change and mild inflammation and necrosis occurred in C57 mice that received 150 micrograms TCDD/kg. In contrast, DBA mice exposed to 30 micrograms TCDD/kg developed hepatocellular necrosis and inflammation without any fatty change. Only slight hepatic lipid accumulation occurred with some necrosis and inflammation in DBA mice given 600 micrograms TCDD/kg. The Ah locus may play a role in determining the sensitivity of C57 mice to the steatotic effects of TCDD. 相似文献
16.
Association of the PCB congener 2,2',4,4',5,5'-hexachlorobiphenyl (6-CB) with cell nuclei has been studied in cultured monolayer human Chang liver cells. Photo-induced formation of covalent bonds determined 6-CB binding to protein of cell nuclei and to DNA. Nuclear binding of 6-CB approached equilibrium after approximately 30 min of incubation. Photo-induced binding in vitro to purified Chang liver cell DNA substantiated direct interaction of the PCB congener with DNA. In monolayer cells, low levels of photo-induced 6-CB DNA adducts could be detected using the very sensitive 32P-postlabeling method. Adduct formation was dependent on 6-CB concentration as well as on incubation time. Highest adduct levels were in the range of 2 X 10(-8). Model reactions in vitro showed photo-induced binding of 6-CB to individual purine deoxyribonucleotide-3'-phosphates. The results demonstrate rapid intracellular movement of the PCB congener into the cell nucleus. The vast majority is associated with nuclear protein, minute amounts of 6-CB are found proximate to the DNA helix as evidenced by photo-induced adducts of purine nucleotides. 相似文献
17.
Gary M. Decad Linda S. Birnbaum H.B. Matthews 《Toxicology and applied pharmacology》1981,59(3):564-573
The distribution and excretion of the toxic pollutant, 2,3,7,8-tetrachlorodibenzofuran (TCDF), was studied in male C57BL/6J and DBA/2J mice (22–29 g). [14C]TCDF was administered iv at a dose of 0.1 μmmol/kg. The liver was the major site of TCDF accumulation, with more TCDF in the livers of C57BL/6J mice compared to DBA/2J mice. TCDF had a half-life of approximately 1.8 days in the livers of both strains. At 7 hr and 1 day, respectively, radioactivity was redistributed to adipose tissue of C57BL/6J mice and DBA/2J mice. The terminal of TCDF in adipose tissue of C57BL/6J mice was 1.1 days, whereas it was 6.8 days in DBA/2J mice; the sixfold longer half-life in DBA/2J mice may be related to the approximately 36% greater adipose tissue content of this strain which may sequester more TCDF. More than 80 and 55% of the dose was excreted in the feces of C57BL/6J and DBA/2J mice, respectively, within 10 days as polar metabolites. The whole body half-life of TCDF was 2 days in C57BL/6J and 4 days in DBA/2J mice. Thus, DBA/2J mice sequester more of the TCDF dose in adipose tissue, accounting for a relatively slower rate of clearance and lower concentrations of TCDF at the putative target site(s) for toxic action. 相似文献
18.
Long-term pharmacokinetics of 2,2',4,4',5,5'-hexachlorobiphenyl (6-CB) in rats with constant adipose tissue mass 总被引:2,自引:0,他引:2
Long-term (280 days) pharmacokinetics of 2,2',4,4',5,5'-hexachlorobiphenyl (6-CB) was studied in rats with constant adipose tissue mass. This was achieved by feeding the animals 50% of their mean ad libitum food intake. 6-CB was administered as a single iv injection of 0.6 mg/kg. Tissues and excreta were analyzed at various time points from 4 to 280 days. After the redistribution phase, all tissue concentrations declined with terminal half-lives of 431-478 days, and concentration in adipose tissue was 1000 times higher than in blood. The corresponding ratios were: for skin 40, lung 30, liver 25, brain 10, and muscle 10. From day 4 on only adipose tissue, skin, and muscle contained significant amounts of 6-CB. Between 2 and 4 weeks adipose tissue and skin reached a maximum corresponding to 68 and 15% of the dose, respectively. After 280 days these values declined to 38 and 7% of the dose. Fecal excretion during this period was 43% of the dose with a terminal half-life of 478 days. Polar metabolites (1.5% of dose) were detectable in urine only. Extrapolation of fecal excretion kinetics yields a total excretion value of 99% of the dose at infinite time. Thus, in the rat with constant adipose tissue mass, 6-CB shows first order kinetics with reversible storage and total excretion. This is in sharp contrast with the situation of increasing adipose tissue, i.e. ad libitum feeding, which is characterized by irreversible storage in adipose tissue and limited excretion. 相似文献
19.
The dose-response relationship of cytochrome P4501b1 (Cyp1b1) and Cyp1a1 induction in livers of TCDD-treated female C57BL/6J
and DBA/2J mice are described. The animals were treated i.p. with 0.001, 0.01, 0.1, 1, 10 and 50 μg TCDD/kg for 24 h, and
Cyp1b1 and Cyp1a1 mRNA expression was analyzed by RT-PCR. In the livers of both mouse strains, the Cyp1b1 and Cyp1a1 mRNA
content was increased after TCDD exposure in a dose-dependent manner. These effects were more pronounced in TCDD-responsive
C57BL/6J mice than in the less responsive DBA/2J mice, although Cyp1a1 was more responsive to TCDD than Cyp1b1 in both strains.
The calculated ED50 values for Cyp1b1 and Cyp1a1 induction in livers of TCDD-treated C57BL/6J mice were 1.3 and 0.08 μg TCDD/kg, respectively.
The corresponding values for half-maximal induction response in livers of DBA/2J mice were 3.4 μg TCDD/kg for Cyp1b1 and 1.5 μg
TCDD/kg for Cyp1a1. These results show that Cyp1b1 mRNA expression is less inducible by TCDD than Cyp1a1. Both genes are highly
inducible in TCDD-responsive C57BL/6J mice expressing the high affinity arylhydrocarbon receptor (Ah receptor), suggesting
that Cyp1b1, like Cyp1a1, is a potential Ah receptor-regulated gene.
Received: 8 December 1995/Accepted: 6 February 1996 相似文献
20.
Kaoru Inouye Tomohiro Ito Hidekazu Fujimaki Yoshimasa Takahashi Toshitada Takemori Xiaoqing Pan Chiharu Tohyama Keiko Nohara 《Toxicological sciences》2003,74(2):315-324
In the humoral immune response to an invasion of foreign antigens, B cells differentiate into low-affinity antibody-forming cells (AFCs) that mainly secrete IgM or, through germinal center (GC) formation, into high-affinity AFCs that secrete IgG-class antibodies with a higher affinity for the antigen. Previous studies have established the suppressive effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on low-affinity antibody responses to antigens. However, whether and how TCDD affects the high-affinity antibody response to antigens has not yet been clarified. In this paper we investigate the effects of TCDD on GC formation, high-affinity AFC generation, and high-affinity antibody production in the primary humoral immune response. C57BL/6 mice were orally administered 0 or 20 microg/kg of TCDD and subsequently immunized with alum-precipitated ovalbumin (OVA) on day 0. Then the GC formation in the spleen and OVA-specific antibodies in the plasma, was evaluated until day 14 postimmunization. TCDD exposure reduced the production of OVA-specific IgG1 on days 10 and 14. GC formation in the spleen was also suppressed by TCDD exposure, and the suppression persisted from day 7 until day 14. In TCDD-administered mice, on day 7, cellular proliferation in the GCs was significantly suppressed, although apoptosis was not markedly affected. In order to measure high-affinity antibody and high-affinity AFCs, the mice were administered TCDD followed by immunization with alum-precipitated (4-hydroxy-3-nitrophenyl) acetyl linked to chicken gamma-globulin (NP-CG). The frequency of high-affinity NP-specific AFCs that bind to low-haptenated antigen was clearly shown to be reduced in the spleen on days 10 and 14. Furthermore, the high-affinity anti-NP IgG1 levels on days 10 and 14 postimmunization were significantly reduced by TCDD exposure. Taken together, the results of this paper demonstrate that TCDD exposure inhibits the generation of high-affinity AFCs and high-affinity antibody production during the primary humoral immune response and suggest that these alterations were caused by the suppression of antigen-responding B-cell proliferation induced by TCDD during GC formation. 相似文献