首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents indoor air pollutant concentrations and allergen levels collected from the homes of 100 Baltimore city asthmatic children participating in an asthma intervention trial. Particulate matter (PM), NO2, and O3 samples were collected over 72 h in the child's sleeping room. Time-resolved PM was also assessed using a portable direct-reading nephelometer. Dust allergen samples were collected from the child's bedroom, the family room, and the kitchen. The mean PM10 concentration, 56.5+/-40.7 microg/m3, is 25% higher than the PM2.5 concentration (N=90), 45.1+/-37.5 microg/m3. PM concentrations measured using a nephelometer are consistent and highly correlated with gravimetric estimates. Smoking households' average PM2.5 and PM10 concentrations are 33-54 microg/m3 greater than those of nonsmoking houses, with each cigarette smoked adding 1.0 microm/m3 to indoor PM2.5 and PM10 concentrations. Large percentages of NO2 and O3 samples, 25% and 75%, respectively, were below the limit of detection. The mean NO2 indoor concentration is 31.6+/-40.2 ppb, while the mean indoor O3 concentration in the ozone season was 3.3+/-7.7 ppb. The levels of allergens are similar to those found in other inner cities. Results presented in this paper indicate that asthmatic children in Baltimore are exposed to elevated allergens and indoor air pollutants. Understanding this combined insult may help to explain the differential asthma burden between inner-city and non-inner-city children.  相似文献   

2.
BACKGROUND: Evidence for environmental causes of asthma is limited, especially among African Americans. To look for systematic differences in early life domestic exposures between inner-city preschool children with and without asthma, we performed a study of home indoor air pollutants and allergens. METHODS: Children 2-6 years of age were enrolled in a cohort study in East Baltimore, Maryland. From the child's bedroom, air was monitored for 3 days for particulate matter 0.05]. Settled dust allergen levels (cat, dust mite, cockroach, dog, and mouse) were also similar in bedrooms of asthmatic and control children. CONCLUSIONS: Exposures to common home indoor pollutants and allergens are similar for inner-city preschool children with and without asthma. Although these exposures may exacerbate existing asthma, this study does not support a causative role of these factors for risk of developing childhood asthma.  相似文献   

3.
BACKGROUND: Recent studies indicate that the composition of fine particulate matter [PM 相似文献   

4.
We report on the research conducted by the Community Action Against Asthma (CAAA) in Detroit, Michigan, to evaluate personal and community-level exposures to particulate matter (PM) among children with asthma living in an urban environment. CAAA is a community-based participatory research collaboration among academia, health agencies, and community-based organizations. CAAA investigates the effects of environmental exposures on the residents of Detroit through a participatory process that engages participants from the affected communities in all aspects of the design and conduct of the research; disseminates the results to all parties involved; and uses the research results to design, in collaboration with all partners, interventions to reduce the identified environmental exposures. The CAAA PM exposure assessment includes four seasonal measurement campaigns each year that are conducted for a 2-week duration each season. In each seasonal measurement period, daily ambient measurements of PM2.5 and PM10 (particulate matter with a mass median aerodynamic diameter less than 2.5 microm and 10 microm, respectively) are collected at two elementary schools in the eastside and southwest communities of Detroit. Concurrently, indoor measurements of PM2.5 and PM10 are made at the schools as well as inside the homes of a subset of 20 children with asthma. Daily personal exposure measurements of PM10 are also collected for these 20 children with asthma. Results from the first five seasonal assessment periods reveal that mean personal PM10 (68.4 39.2 microg/m(3)) and indoor home PM10 (52.2 30.6 microg/m(3)) exposures are significantly greater (p < 0.05) than the outdoor PM10 concentrations (25.8 11.8 microg/m(3)). The same was also found for PM2.5 (indoor PM2.5 = 34.4 21.7 microg/m(3); outdoor PM2.5 = 15.6 8.2 microg/m(3)). In addition, significant differences (p < 0.05) in community-level exposure to both PM10 and PM2.5 are observed between the two Detroit communities (southwest PM10 = 28.9 14.4 microg/m(3)), PM2.5 = 17.0 9.3 microg/m(3); eastside PM10 = 23.8 12.1 microg/m(3), PM2.5 = 15.5 9.0 microg/m(3). The increased levels in the southwest Detroit community are likely due to the proximity to heavy industrial pollutant point sources and interstate motorways. Trace element characterization of filter samples collected over the 2-year period will allow a more complete assessment of the PM components. When combined with other project measures, including concurrent seasonal twice-daily peak expiratory flow and forced expiratory volume at 1 sec and daily asthma symptom and medication dairies for 300 children with asthma living in the two Detroit communities, these data will allow not only investigations into the sources of PM in the Detroit airshed with regard to PM exposure assessment but also the role of air pollutants in exacerbation of childhood asthma.  相似文献   

5.
6.
目的探讨室内大气PM_(10)、PM_(2.5)、PM1污染对儿童哮喘的影响。方法采用1∶1成组病例-对照研究,于2015年10月—2016年5月对石河子市80名哮喘儿童和80名健康对照儿童进行问卷调查与室内颗粒物浓度检测,分析儿童哮喘的危险因素。结果两组合计160名儿童的室内PM_(10)、PM_(2.5)、PM1浓度范围分别为26.57~507.30、12.66~159.00、4.53~77.08μg/m~3,其中PM_(10)超标率为61.9%,PM_(2.5)超标率为6.9%。病例组室内空气中的PM_(10)、PM_(2.5)、PM1浓度中位数均高于对照组,差异有统计学意义(P0.01)。多因素logistic回归分析结果显示,儿童有过敏史(OR=5.171)、有环境烟草烟雾(ETS)暴露(OR=2.429)、PM_(2.5)浓度高于中位数(OR=3.459)是儿童哮喘的危险因素,母乳喂养(OR=0.454)是儿童哮喘的保护因素,均有统计学意义(P0.05)。结论儿童有过敏史、ETS暴露和PM_(2.5)暴露可能增加儿童哮喘风险,同时应提倡母乳喂养,以保护儿童呼吸系统健康。  相似文献   

7.
Personal exposure to particles in Banská Bystrica, Slovakia   总被引:1,自引:0,他引:1  
Epidemiological studies have associated adverse health impacts with ambient concentrations of particulate matter (PM), though these studies have been limited in their characterization of personal exposure to PM. An exposure study of healthy nonsmoking adults and children was conducted in Banska Bystrica, Slovakia, to characterize the range of personal exposures to air pollutants and to determine the influence of occupation, season, residence location, and outdoor and indoor concentrations on personal exposures. Twenty-four-hour personal, at-home indoor, and ambient measurements of PM10, PM2.5, sulfate (SO4(2-)) and nicotine were obtained for 18 office workers, 16 industrial workers, and 15 high school students in winter and summer. Results showed that outdoor levels of pollutants were modest, with clear seasonal differences: outdoor PM10 summer/winter mean = 35/45 microg/m3; PM2.5 summer/winter mean = 22/32 microg/m3. SO4(2-) levels were low (4-7 microg/m3) and relatively uniform across the different sample types (personal, indoor, outdoor), areas, and occupational groups. This suggests that SO4(2-) may be a useful marker for combustion mode particles of ambient origin, although the relationship between personal exposures and ambient SO4(2-) levels was more complex than observed in North American settings. During winter especially, the central city area showed higher concentrations than the suburban location for outdoor, personal, and indoor measures of PM10, PM2.5, and to a lesser extent for SO4(2-), suggesting the importance of local sources. For PM2.5 and PM10, ratios consistent with expectations were found among exposure indices for all three subject groups (personal>indoor>outdoor), and between work type (industrial>students>office workers). The ratio of PM2.5 personal to indoor exposures ranged from 1.0 to 3.9 and of personal to outdoor exposures from 1.6 to 4.2. The ratio of PM10 personal to indoor exposures ranged from 1.1 to 2.9 and the ratio of personal to outdoor exposures from 2.1 to 4.1. For a combined group of office workers and students, personal PM10/PM2.5 levels were predicted by statistically significant multivariate models incorporating indoor (for PM2.5) or outdoor (for PM10) PM levels, and nicotine exposure (for PM10). Small but significant fractions of the overall variability, 15% for PM2.5 and 17% for PM10, were explained by these models. The results indicate that central site monitors underpredict actual human exposures to PM2.5 and PM10. Personal exposure to SO4(2-) was found to be predicted by outdoor or indoor SO4(2-) levels with 23-71% of the overall variability explained by these predictors. We conclude that personal exposure measurements and additional demographic and daily activity data are crucial for accurate evaluation of exposure to particles in this setting.  相似文献   

8.
住宅室内空气颗粒物污染状况及其与大气浓度关系的初探   总被引:5,自引:0,他引:5  
目的了解当前住宅室内空气PM2.5和PM10的污染水平及其与室外大气浓度的关系。方法选择10户市区常住家庭,采用单孔多段冲击式颗粒物采样仪进行室内外空气PM2.5、PM10浓度的同时监测。结果非采暖期室内空气PM2.5和PM10的浓度范围分别为27.0~272.9μgm3和42.9~309.6μgm3;采暖期分别为20.7~251.4μgm3和34.0~283.9μgm3。PM2.5与PM10浓度之间呈良好的直线相关关系。室内外颗粒物浓度的相关关系在非采暖期和采暖期有所不同。结论住宅室内空气颗粒物污染比较严重,今后应进一步研究室内颗粒物的污染规律,探讨颗粒物对人群健康的影响。  相似文献   

9.
Most air pollution and health studies conducted in recent years have examined how a health outcome is related to pollution concentrations from a fixed outdoor monitor. The pollutant effect estimate in the health model used indicates how ambient pollution concentrations are associated with the health outcome, but not how actual exposure to ambient pollution is related to health. In this article, we propose a method of estimating personal exposures to ambient PM(2.5) (particulate matter less than 2.5 microm in diameter) using sulfate, a component of PM(2.5) that is derived primarily from ambient sources. We demonstrate how to use regression calibration in conjunction with these derived values to estimate the effects of personal ambient PM(2.5) exposure on a continuous health outcome, forced expiratory volume in 1 s (FEV(1)), using repeated measures data. Through simulation, we show that a confidence interval (CI) for the calibrated estimator based on large sample theory methods has an appropriate coverage rate. In an application using data from our health study involving children with moderate to severe asthma, we found that a 10 microg/m3 increase in PM(2.5) was associated with a 2.2% decrease in FEV(1) at a 1-day lag of the pollutant (95% CI: 0.0-4.3% decrease). Regressing FEV(1) directly on ambient PM(2.5) concentrations from a fixed monitor yielded a much weaker estimate of 1.0% (95% CI: 0.0-2.0% decrease). Relatively small amounts of personal monitor data were needed to calibrate the estimate based on fixed outdoor concentrations.  相似文献   

10.
An extensive PM monitoring study was conducted during the 1998 Baltimore PM Epidemiology-Exposure Study of the Elderly. One goal was to investigate the mass concentration comparability between various monitoring instrumentation located across residential indoor, residential outdoor, and ambient sites. Filter-based (24-h integrated) samplers included Federal Reference Method Monitors (PM2.5-FRMs), Personal Environmental Monitors (PEMs), Versatile Air Pollution Samplers (VAPS), and cyclone-based instruments. Tapered element oscillating microbalances (TEOMs) collected real-time data. Measurements were collected on a near-daily basis over a 28-day period during July-August, 1998. The selected monitors had individual sampling completeness percentages ranging from 64% to 100%. Quantitation limits varied from 0.2 to 5.0 microg/m3. Results from matched days indicated that mean individual PM10 and PM2.5 mass concentrations differed by less than 3 microg/m3 across the instrumentation and within each respective size fraction. PM10 and PM2.5 mass concentration regression coefficients of determination between the monitors often exceeded 0.90 with coarse (PM10-2.5) comparisons revealing coefficients typically well below 0.40. Only one of the outdoor collocated PM2.5 monitors (PEM) provided mass concentration data that were statistically different from that produced by a protoype PM2.5 FRM sampler. The PEM had a positive mass concentration bias ranging up to 18% relative to the FRM prototype.  相似文献   

11.
目的探讨室内大气颗粒物对儿童哮喘的影响。方法于2012—2013年采用病例-对照研究方法,对武汉市82名儿童居室内环境污染情况等进行问卷调查,对室内颗粒物浓度进行检测。结果病例组儿童室内PM_(10)平均浓度高于对照组(P0.05)。将两种颗粒物质量浓度划分为0μg/m~3~、100μg/m~3~、150μg/m~3~、200μg/m~3~不同等级,以0μg/m~3~为参照组,随着污染物浓度的升高,儿童哮喘发生的OR值逐渐升高;在调整混杂因素后,其OR值仍呈增加趋势,尤其是PM_(10)浓度在200μg/m~3以上时,调整后OR值为27.05(95%CI:1.52~482.94)。结论室内PM_(2.5)和PM_(10)对儿童哮喘有影响,且存在剂量-反应关系。  相似文献   

12.
We measured fractional exhaled nitric oxide (FE(NO)), spirometry, blood pressure, oxygen saturation of the blood (SaO2), and pulse rate in 16 older subjects with asthma or chronic obstructive pulmonary disease (COPD) in Seattle, Washington. Data were collected daily for 12 days. We simultaneously collected PM10 and PM2.5 (particulate matter < or = 10 microm or < or = 2.5 microm, respectively) filter samples at a central outdoor site, as well as outside and inside the subjects' homes. Personal PM10 filter samples were also collected. All filters were analyzed for mass and light absorbance. We analyzed within-subject associations between health outcomes and air pollution metrics using a linear mixed-effects model with random intercept, controlling for age, ambient relative humidity, and ambient temperature. For the 7 subjects with asthma, a 10 microg/m3 increase in 24-hr average outdoor PM10 and PM2.5 was associated with a 5.9 [95% confidence interval (CI), 2.9-8.9] and 4.2 ppb (95% CI, 1.3-7.1) increase in FE(NO), respectively. A 1 microg/m3 increase in outdoor, indoor, and personal black carbon (BC) was associated with increases in FE(NO) of 2.3 ppb (95% CI, 1.1-3.6), 4.0 ppb (95% CI, 2.0-5.9), and 1.2 ppb (95% CI, 0.2-2.2), respectively. No significant association was found between PM or BC measures and changes in spirometry, blood pressure, pulse rate, or SaO2 in these subjects. Results from this study indicate that FE(NO) may be a more sensitive marker of PM exposure than traditional health outcomes and that particle-associated BC is useful for examining associations between primary combustion constituents of PM and health outcomes.  相似文献   

13.
As part of a large panel study in Seattle, Washington, we measured levels of exhaled nitric oxide (eNO) in children's homes and fixed-site particulate matter with aerodynamic diameters of 2.5 micro m or less (PM(2.5)) outside and inside the homes as well as personal PM(2.5) during winter and spring sessions of 2000-2001. Nineteen subjects 6-13 years of age participated; 9 of the 19 were on inhaled corticosteroid (ICS) therapy. Exhaled breath measurements were collected offline into a Mylar balloon for up to 10 consecutive days. Mean eNO values were 19.1 (SD +/- 11.4) ppb in winter sessions and 12.5 +/- 6.6 ppb in spring sessions. Fixed-site PM(2.5) mean concentrations were 10.1 +/- 5.7 microg/m(3) outside homes and 13.3 +/- 1.4 inside homes; the personal PM(2.5) mean was 13.4 +/- 3.2 microg/m(3). We used a linear mixed-effects model with random intercept and an interaction term for medications to test for within-subject-within-session associations between eNO and various PM(2.5) values. We found a 10 microg/m(3) increase in PM(2.5) from the outdoor, indoor, personal, and central-site measurements that was associated with increases in eNO in all subjects at lag day zero. The effect was 4.3 ppb [95% confidence interval (CI), 1.4-7.29] with the outdoor monitor, 4.2 ppb (95% CI, 1.02-7.4) for the indoor monitor, 4.5 ppb (95% CI, 1.02-7.9) with the personal monitor, and 3.8 ppb (95% CI, 1.2-6.4) for the central monitors. The interaction term for medication category (ICS users vs. nonusers) was significant in all analyses. These findings suggest that eNO can be used as an assessment tool in epidemiologic studies of health effects of air pollution.  相似文献   

14.
Most particulate matter (PM) health effects studies use outdoor (ambient) PM as a surrogate for personal exposure. However, people spend most of their time indoors exposed to a combination of indoor-generated particles and ambient particles that have infiltrated. Thus, it is important to investigate the differential health effects of indoor- and ambient-generated particles. We combined our recently adapted recursive model and a predictive model for estimating infiltration efficiency to separate personal exposure (E) to PM2.5 (PM with aerodynamic diameter < or = 2.5 microm) into its indoor-generated (Eig) and ambient-generated (Eag) components for 19 children with asthma. We then compared Eig and Eag to changes in exhaled nitric oxide (eNO), a marker of airway inflammation. Based on the recursive model with a sample size of eight children, Eag was marginally associated with increases in eNO [5.6 ppb per 10-microg/m3 increase in PM2.5; 95% confidence interval (CI), -0.6 to 11.9; p = 0.08]. Eig was not associated with eNO (-0.19 ppb change per 10 microg/m3). Our predictive model allowed us to estimate Eag and Eig for all 19 children. For those combined estimates, only Eag was significantly associated with an increase in eNO (Eag: 5.0 ppb per 10-microg/m3 increase in PM2.5; 95% CI, 0.3 to 9.7; p = 0.04; Eig: 3.3 ppb per 10-microg/m3 increase in PM2.5; 95% CI, -1.1 to 7.7; p = 0.15). Effects were seen only in children who were not using corticosteroid therapy. We conclude that the ambient-generated component of PM2.5 exposure is consistently associated with increases in eNO and the indoor-generated component is less strongly associated with eNO.  相似文献   

15.
BACKGROUND: Experimental data suggest that asthma exacerbation by ambient air pollutants is enhanced by exposure to endotoxin and allergens; however, there is little supporting epidemiologic evidence. METHODS: We evaluated whether the association of exposure to air pollution with annual prevalence of chronic cough, phlegm production, or bronchitis was modified by dog and cat ownership (indicators of allergen and endotoxin exposure). The study population consisted of 475 Southern California children with asthma from a longitudinal cohort of participants in the Children's Health Study. We estimated average annual ambient exposure to nitrogen dioxide, ozone, particulate matter < 10, 2.5, and 10-2.5 microm in aerodynamic diameter (PM10, PM2.5, and PM10-2.5, respectively), elemental and organic carbon, and acid vapor from monitoring stations in each of the 12 study communities. Multivariate models were used to examine the effect of yearly variation of each pollutant. Effects were scaled to the variability that is common for each pollutant in representative communities in Southern California. RESULTS: Among children owning a dog, there were strong associations between bronchitic symptoms and all pollutants examined. Odds ratios ranged from 1.30 per 4.2 microg/m3 for PM10-2.5 [95% confidence interval (CI), 0.91-1.87) to 1.91 per 1.2 microg/m3 for organic carbon (95% CI, 1.34-2.71). Effects were somewhat larger among children who owned both a cat and dog. There were no effects or small effects with wide CIs among children without a dog and among children who owned only a cat. CONCLUSION: Our results suggest that dog ownership, a source of residential exposure to endotoxin, may worsen the relationship between air pollution and respiratory symptoms in asthmatic children.  相似文献   

16.
BACKGROUND: Numerous epidemiologic studies report associations between outdoor concentrations of particles and adverse health effects. Because personal exposure to particles is frequently dominated by exposure to nonambient particles (those originating from indoor sources), we present an approach to evaluate the relative impacts of ambient and nonambient exposures. METHODS: We developed separate estimates of exposures to ambient and nonambient particles of different size ranges (PM2.5, PM10-2.5 and PM10) based on time-activity data and the use of particle sulfate measurements as a tracer for indoor infiltration of ambient particles. To illustrate the application of these estimates, associations between cardiopulmonary health outcomes and the estimated exposures were compared with associations computed using measurements of personal exposures and outdoor concentrations for a repeated-measures panel study of 16 patients with chronic obstructive pulmonary disease conducted in the summer of 1998 in Vancouver. RESULTS: Total personal fine particle exposures were dominated by exposures to nonambient particles, which were not correlated with ambient fine particle exposures or ambient concentrations. Although total and nonambient particle exposures were not associated with any of the health outcomes, ambient exposures (and to a lesser extent ambient concentrations) were associated with decreased lung function, decreased systolic blood pressure, increased heart rate, and increased supraventricular ectopic heartbeats. Measures of heart rate variability showed less consistent relationships among the various exposure metrics. CONCLUSIONS: These results demonstrate the usefulness of separating total personal particle exposures into their ambient and nonambient components. The results support previous epidemiologic findings using ambient concentrations by demonstrating an association between health outcomes and ambient (outdoor origin) particle exposures but not with nonambient (indoor origin) particle exposures.  相似文献   

17.
BACKGROUND: Research has shown associations between pediatric asthma outcomes and airborne particulate matter (PM). The importance of particle components remains to be determined. METHODS: We followed a panel of 45 schoolchildren with persistent asthma living in Southern California. Subjects were monitored over 10 days with offline fractional exhaled nitric oxide (FeNO), a biomarker of airway inflammation. Personal active sampler exposures included continuous particulate matter < 2.5 microm in aerodynamic diameter (PM2.5), 24-hr PM2.5 elemental and organic carbon (EC, OC), and 24-hr nitrogen dioxide. Ambient exposures included PM2.5, PM2.5 EC and OC, and NO2. Data were analyzed with mixed models controlling for personal temperature, humidity and 10-day period. RESULTS: The strongest positive associations were between FeNO and 2-day average pollutant concentrations. Per interquartile range pollutant increase, these were: for 24 microg/m3 personal PM2.5, 1.1 ppb FeNO [95% confidence interval (CI), 0.1-1.9]; for 0.6 microg/m3 personal EC, 0.7 ppb FeNO (95% CI, 0.3-1.1); for 17 ppb personal NO2, 1.6 ppb FeNO (95% CI, 0.4-2.8). Larger associations were found for ambient EC and smaller associations for ambient NO2. Ambient PM2.5 and personal and ambient OC were significant only in subjects taking inhaled corticosteroids (ICS) alone. Subjects taking both ICS and antileukotrienes showed no significant associations. Distributed lag models showed personal PM2.5 in the preceding 5 hr was associated with FeNO. In two-pollutant models, the most robust associations were for personal and ambient EC and NO2, and for personal but not ambient PM2.5. CONCLUSION: PM associations with airway inflammation in asthmatics may be missed using ambient particle mass, which may not sufficiently represent causal pollutant components from fossil fuel combustion.  相似文献   

18.
In this article we present results from a 2-year comprehensive exposure assessment study that examined the particulate matter (PM) exposures and health effects in 108 individuals with and without chronic obstructive pulmonary disease (COPD), coronary heart disease (CHD), and asthma. The average personal exposures to PM with aerodynamic diameters < 2.5 microm (PM2.5) were similar to the average outdoor PM2.5 concentrations but significantly higher than the average indoor concentrations. Personal PM2.5 exposures in our study groups were lower than those reported in other panel studies of susceptible populations. Indoor and outdoor PM2.5, PM10 (PM with aerodynamic diameters < 10 microm), and the ratio of PM2.5 to PM10 were significantly higher during the heating season. The increase in outdoor PM10 in winter was primarily due to an increase in the PM2.5 fraction. A similar seasonal variation was found for personal PM2.5. The high-risk subjects in our study engaged in an equal amount of dust-generating activities compared with the healthy elderly subjects. The children in the study experienced the highest indoor PM2.5 and PM10 concentrations. Personal PM2.5 exposures varied by study group, with elderly healthy and CHD subjects having the lowest exposures and asthmatic children having the highest exposures. Within study groups, the PM2.5 exposure varied depending on residence because of different particle infiltration efficiencies. Although we found a wide range of longitudinal correlations between central-site and personal PM2.5 measurements, the longitudinal r is closely related to the particle infiltration efficiency. PM2.5 exposures among the COPD and CHD subjects can be predicted with relatively good power with a microenvironmental model composed of three microenvironments. The prediction power is the lowest for the asthmatic children.  相似文献   

19.
Health effects of particles in ambient air   总被引:2,自引:0,他引:2  
A summary of a critical review by a working group of the German commission on Air Pollution Prevention of VDI and DIN of the actual data on exposure and health effects (excluding cancer) of fine particulate air pollution is presented. EXPOSURE: Typical ambient particle concentrations for PM10 (PM2.5) in Germany are in the range of 10-45 (10-30) microg/m3 as annual mean and 50-200 (40-150) microg/m3 as maximum daily mean. The ratio of PM2.5/PM10 generally amounts between 0.7 and 0.9. HEALTH EFFECTS: During the past 10 years many new epidemiological and toxicological studies on health effects of particulate matter (PM) have been published. In summary, long-term exposure against PM for years or decades is associated with elevated total, cardiovascular, and infant mortality. With respect to morbidity, respiratory symptoms, lung growth, and function of the immune system are affected. Short-term studies show consistant associations of exposure to daily concentrations of PM with mortality and morbidity on the same day or the subsequent days. Patients with asthma, COPD, pneumonia, and other respiratory diseases as well as patients with cardio-vascular diseases and diabetes are especially affected. The strongest associations are found for PM2.5 followed by PM10, with no indication of a threshold value for the health effects. The data base for ultra fine particles is too small for final conclusions. The available toxicological data support the epidemiological findings and give hints as to the mechanisms of the effects. CONCLUSION: The working group concludes that a further reduction of the limit values proposed for 2005 will substantially reduce health risks due to particulate air pollution. Because of the strong correlation of PM10 with PM2.5 at most German sites there is no specific need for limit values of PM2.5 for Germany in addition to those of PM10.  相似文献   

20.
We examined the relationship between particulate matter (PM) <10 and <2.5 microns in diameter (PM10 and PM2.5) generated by vegetation fires and daily health outcomes in 251 adults and children with asthma over a 7-month period. Data were analysed using generalized estimating equations adjusted for potential environmental confounders, autocorrelation, weekends and holidays. PM10 ranged from 2.6 - 43.3 microg m-3and was significantly associated with onset of asthma symptoms, commencing oral steroid medication, the mean daily symptom count and the mean daily dose of reliever medication. Similar results were found for PM2.5. No associations were found with the more severe outcomes of asthma attacks, increased health care attendances or missed school/work days. These results help fill a gap in the evidence about the population health impacts of lower levels of pollution characteristic of deliberate landscape burning to control fuel loads versus the better documented risks of more intense and severely polluting wildfires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号