首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
For countries with OIE status, FMD free country where vaccination is not practised, vaccinate‐to‐live policies have a significant economic disincentive as the trade restriction waiting period is double that of vaccinate‐to‐die policies. The disposal of healthy vaccinated animals strictly for the purpose of regaining markets with debatable scientific justification is a global concern. The feasibility of aligning the waiting periods to facilitate vaccinate‐to‐live is explored. The first article of this two‐part review (Barnett et al., 2015) explored the qualities of higher potency Foot‐and‐Mouth Disease (FMD) vaccines, performance of differentiating infected from vaccinated animals (DIVA) diagnostic assays particularly in vaccinates and carriers, as well as aspects of current limitations of post‐outbreak surveillance. Here, the history behind the OIE waiting periods for FMD free status is reviewed as well as whether the risk of vaccinated animals and their subsequent products differ appreciably at 3 versus 6 months. It is concluded that alignment is feasible for vaccinate‐to‐live using higher potency FMD vaccines within the current OIE waiting period framework of 3 and 6 months blocks of time. These waiting periods reflect precedence, historical practicalities and considered expert opinion rather than a specific scientific rationale. The future lies in updated epidemiological and diagnostic technology to establish an acceptable level of statistical certainty for surveillance or target probability of freedom of FMDV (infection or circulation) not time restricted waiting periods. The OIE Terrestrial Code limits trade from a FMD free country where vaccination is not practiced to animal products and live non‐vaccinated animals. The risk of FMDV in products derived from higher potency vaccinated animals is appreciably less than for countries with infected FMD status or even from a FMD free country where vaccination is practised for which the Code has Articles with guidelines for safe trade with time restrictions of 3 months or less. All these presume that key requirements in the implementation of emergency vaccination including appropriate vaccine match, vaccine application, susceptible population coverage, etc. are addressed.  相似文献   

2.
Foot‐and‐mouth disease (FMD) vaccines are routinely used as effective control tools in large regions worldwide and to limit outbreaks during epidemics. Vaccine‐induced protection in cattle has been largely correlated with the FMD virus (FMDV)‐specific antibodies. Genetic control of cattle immune adaptive responses has been demonstrated only for peptide antigens derived from FMDV structural proteins. Here, we quantify the heterogeneity in the antibody response of cattle primo‐vaccinated against FMD and study its association with the genetic background in Holstein and Jersey sires. A total of 377 FMDV‐seronegative calves (122 and 255 calves from 16 and 15 Holstein and Jersey sires, respectively) were included in the study. Samples were taken the day prior to primo‐vaccination and 45 days post‐vaccination (dpv). Animals received commercial tetravalent FMD single emulsion oil vaccines formulated with inactivated FMDV. Total FMDV‐specific antibody responses were studied against three viral strains included in the vaccine, and antibody titres were determined by liquid‐phase blocking ELISA. Three linear hierarchical mixed regression models, one for each strain, were formulated to assess the heterogeneity in the immune responses to vaccination. The dependent variables were the antibody titres induced against each FMDV strain at 45 dpv, whereas sire's ‘breed’ was included as a fixed effect, ‘sire’ was included as a random effect, and ‘farm’ was considered as a hierarchical factor to account for lack of independence of within herd measurements. A significant association was found between anti‐FMDV antibody responses and sire's breed, with lower immune responses found in the Jersey sires’ offspring compared with those from Holstein sires. No significant intrabreed variation was detected. In addition, farm management practices were similar in this study, and results of the serological assays were shown to be repeatable. It therefore seems plausible that differences in the immune response may be expected in the event of a mass vaccination campaigns.  相似文献   

3.
Effective control and monitoring of foot‐and‐mouth disease (FMD ) relies upon rapid and accurate disease confirmation. Currently, clinical samples are usually tested in reference laboratories using standardized assays recommended by The World Organisation for Animal Health (OIE ). However, the requirements for prompt and serotype‐specific diagnosis during FMD outbreaks, and the need to establish robust laboratory testing capacity in FMD ‐endemic countries have motivated the development of simple diagnostic platforms to support local decision‐making. Using a portable thermocycler, the T‐COR ™ 8, this study describes the laboratory and field evaluation of a commercially available, lyophilized pan‐serotype‐specific real‐time RT ‐PCR (rRT ‐PCR ) assay and a newly available FMD virus (FMDV) typing assay (East Africa‐specific for serotypes: O, A, Southern African Territories [SAT ] 1 and 2). Analytical sensitivity, diagnostic sensitivity and specificity of the pan‐serotype‐specific lyophilized assay were comparable to that of an OIE ‐recommended laboratory‐based rRT ‐PCR (determined using a panel of 57 FMDV ‐positive samples and six non‐FMDV vesicular disease samples for differential diagnosis). The FMDV ‐typing assay was able to correctly identify the serotype of 33/36 FMDV ‐positive samples (no cross‐reactivity between serotypes was evident). Furthermore, the assays were able to accurately detect and type FMDV RNA in multiple sample types, including epithelial tissue suspensions, serum, oesophageal–pharyngeal (OP ) fluid and oral swabs, both with and without the use of nucleic acid extraction. When deployed in laboratory and field settings in Tanzania, Kenya and Ethiopia, both assays reliably detected and serotyped FMDV RNA in samples (n  = 144) collected from pre‐clinical, clinical and clinically recovered cattle. These data support the use of field‐ready rRT ‐PCR platforms in endemic settings for simple, highly sensitive and rapid detection and/or characterization of FMDV.  相似文献   

4.
An antiviral containment strategy for foot‐and‐mouth disease (FMD) outbreaks could support or replace current contingency plans in case of an outbreak in Europe and could spare many healthy animals from being pre‐emptively culled. Recently, substantial progress has been made towards the development of small molecule drugs that inhibit FMD virus (FMDV) replication in vitro. For the initial in vivo evaluation of antiviral lead molecules, a refined FMDV‐infection model in guinea pigs (GP) is herewith described. This GP model was validated by demonstrating the antiviral effect of T‐1105 (an influenza virus inhibitor with reported activity against FMDV). Sixteen animals were orally administered with T‐1105 twice daily (400 mg/kg/day) for five consecutive days and inoculated intraplantarly with 100 GPID50 of the GP‐adapted FMDV strain O1 Manisa 1 h after the first administration. The efficacy of T‐1105 was compared with that of prophylactic vaccination with a highly potent double‐oil emulsion‐inactivated O1 Manisa vaccine. Ten animals received a single, full (2 ml) cattle vaccine dose and were inoculated 3 weeks later. Fourteen T‐1105‐treated and all vaccinated GP were completely protected from generalization of vesicular lesions. At 2 dpi, viral RNA was detected in serum of 9/16 T‐1105‐treated and of 6/10 vaccinated animals. At 4 dpi, viral RNA was detected in serum, organs and oral swabs of half of the T‐1105‐treated animals and only in the serum of 1/10 of the vaccinated animals. Mean viral RNA levels in serum and organs of T‐1105‐treated and vaccinated animals were reduced compared to untreated controls (P < 0.01). T‐1105 conferred a substantial clinical and virological protection against infection with O1 Manisa, similar to the protection afforded by vaccination. These results validate the suitability of the enhanced GP model for the purpose of initial evaluation of inhibitors of FMDV replication and illustrate the potential of selective inhibitors of viral replication to control FMD outbreaks.  相似文献   

5.
6.
Foot‐and‐mouth disease (FMD ) is endemic in Bangladesh, and the implementation of a control programme for this disease is at an early stage, according to the FAO ‐ and OIE ‐proposed Progressive Control Pathway for FMD (PCP ‐FMD ) Roadmap. To develop an effective control programme, understanding of foot‐and‐mouth disease virus (FMDV ) serotypes, even subtypes within the serotypes is essential. The present investigation aims at viral VP 1 coding region sequence‐based analysis of FMD samples collected from 34 FMD outbreaks during 2012–2016 in Bangladesh. Foot‐and‐mouth disease virus (FMDV ) serotype O was responsible for 82% of the outbreaks in Bangladesh, showing its dominance over serotype A and Asia1. The VP 1 phylogeny revealed the emergence of two novel sublineages of serotype O, named as Ind2001BD 1 and Ind2001BD 2, within the Ind2001 lineage along with the circulation of Ind2001d sublineage in Bangladesh, which was further supported by the multidimensional scaling with distinct clusters for each sublineage. The novel sublineages had evident genetic variability with other established sublineages within Ind2001 lineage. Ten mutations with three or more amino acid variations were detected within B‐C loop, G‐H loop and C‐terminal region of the VP 1 protein of FMDV serotype O viruses isolated exclusively from Bangladesh. Furthermore, two amino acid substitutions at positions 197 and 198 within the VP 1 C‐terminal region are unique to the novel sublineages. The existence of widespread genetic variations among circulatory FMDV serotype O viruses makes the FMD control programme complex in Bangladesh. Adequate epidemiological data, disease reporting, animal movement control, appropriate vaccination and above all stringent policies of the government are necessary to combat FMD in Bangladesh.  相似文献   

7.
Control of foot‐and‐mouth disease (FMD) in Uganda by ring vaccination largely depends on costly trivalent vaccines, and use of monovalent vaccines could improve the cost effectiveness. This, however, requires application of highly specific diagnostic tests. This study investigated outbreaks of FMD in seven Ugandan districts, during 2011, using the PrioCHECK® FMDV NS ELISA, solid‐phase blocking ELISAs (SPBEs) and virus neutralization tests (VNTs), together with virological analyses for characterization of the responsible viruses. Two hundred and eighteen (218) cattle and 23 goat sera as well as 82 oropharyngeal fluid/epithelial tissue samples were collected. Some 50% of the cattle and 17% of the goat sera were positive by the PrioCHECK® FMDV NS ELISA, while SPBEs identified titres ≥80 for antibodies against serotype O FMD virus (FMDV) in 51% of the anti‐NSP positive cattle sera. However, 35% of the anti‐NSP positive cattle sera had SPBE titres ≥80 against multiple serotypes, primarily against serotypes O, SAT 1 and SAT 3. Comparison of SPBEs and VNTs for the detection of antibodies against serotypes O, SAT 1 and SAT 3 in 72 NSP positive cattle sera showed comparable results against serotype O (= 0.181), while VNTs detected significantly fewer samples positive for antibodies against SAT 1 and SAT 3 than the SPBEs (< 0.001). Detection of antibodies against serotype O was consistent with the isolation of serotype O FMDVs from 13 samples. Four of these viruses were sequenced and belonged to two distinct lineages within the East Africa‐2 (EA‐2) topotype, each differing from the currently used vaccine strain (EA‐1 topotype). The relationships of these lineages to other serotype O viruses in the Eastern Africa region are discussed. To enhance the control of FMD in Uganda, there is need to improve the specificity of the SAT‐SPBEs, perform vaccine matching and implement improved regional FMD control.  相似文献   

8.
Foot‐and‐mouth disease (FMD) virus affects livestock worldwide. There are seven different serotypes, each with a diversity of topotypes, genetic lineages and strains. Some lineages have different properties that may contribute to sporadic spread beyond their recognized endemic areas. The objective of this study was to review the most significant FMD epidemiological events that took place worldwide between 2007 and 2014. Severe epidemics were caused by FMD virus (FMDV) lineage O/Asia/Mya‐98 in Japan and South Korea in 2010, both previously free of disease. In India, where FMD is endemic, the most important event was the re‐emergence of lineage O/ME‐SA/Ind‐2001 in 2008. Notably, this lineage, normally restricted to India, Bangladesh, Nepal and Bhutan, was also found in Saudi Arabia and Libya in 2013 and has caused several outbreaks in Tunisia and Algeria in 2014–2015. In January 2011, FMDV‐positive wild boars were found in Bulgaria, where the disease last occurred in 1996, followed by 12 outbreaks in livestock infected with FMDV O/ME‐SA/PanAsia2. In 2012, FMDV SAT2 caused outbreaks in Egypt and the Palestinian Autonomous Territories. Another significant event was the emergence of FMDV Asia1 Sindh‐08 in the Middle East. In South America, one outbreak of FMDV serotype O, topotype Euro‐SA was reported in Paraguay in 2011, which was recognized as FMD‐free with vaccination at the time. Lessons learned from past events, point out the need for an integrated strategy that comprises coordinated global and regional efforts for FMDV control and surveillance. Specific local characteristics related to host, environment and virus that condition FMD occurrence should be carefully considered and incorporated to adapt appropriate strategies into local plans. In this review, we compiled relevant epidemiological FMD events to provide a global overview of the current situation. We further discussed current challenges present in different FMD areas.  相似文献   

9.
Under‐reporting of foot‐and‐mouth disease (FMD) masks the true prevalence in parts of the world where the disease is endemic. Laboratory testing for the detection of FMD virus (FMDV) is usually reliant upon the collection of vesicular epithelium and fluid samples that can only be collected from acutely infected animals, and therefore animals with sub‐clinical infection may not be identified. Milk is a non‐invasive sample type routinely collected from dairy farms that has been utilized for surveillance of a number of other diseases. The aim of this study was to examine the application of milk as an alternative sample type for FMDV detection and typing, and to evaluate milk as a novel approach for targeted surveillance of FMD in East Africa. FMDV RNA was detected in 73/190 (38%) individual milk samples collected from naturally infected cattle in northern Tanzania. Furthermore, typing information by lineage‐specific rRT‐PCR assays was obtained for 58% of positive samples, and corresponded with the virus types identified during outbreak investigations in the study area. The VP1‐coding sequence data obtained from milk samples corresponded with the sequence data generated from paired epithelial samples collected from the same animal. This study demonstrates that milk represents a potentially valuable sample type for FMDV surveillance and might be used to overcome some of the existing biases of traditional surveillance methods. However, it is recommended that care is taken during sample collection and testing to minimize the likelihood of cross‐contamination. Such approaches could strengthen FMDV surveillance capabilities in East Africa, both at the individual animal and herd level.  相似文献   

10.
Emergency vaccination with live marker vaccines represents a promising control strategy for future classical swine fever (CSF) outbreaks, and the first live marker vaccine is available in Europe. Successful implementation is dependent on a reliable accompanying diagnostic assay that allows differentiation of infected from vaccinated animals (DIVA). As induction of a protective immune response relies on virus‐neutralizing antibodies against E2 protein of CSF virus (CSFV), the most promising DIVA strategy is based on detection of Erns‐specific antibodies in infected swine. The aim of this study was to develop and to evaluate a novel Erns‐specific prototype ELISA (pigtype CSFV Erns Ab), which may be used for CSF diagnosis including application as an accompanying discriminatory test for CSFV marker vaccines. The concept of a double‐antigen ELISA was shown to be a solid strategy to detect Erns‐specific antibodies against CSFV isolates of different genotypes (sensitivity: 93.5%; specificity: 99.7%). Furthermore, detection of early seroconversion is advantageous compared with a frequently used CSFV E2 antibody ELISA. Clear differences in reactivity between sera taken from infected animals and animals vaccinated with various marker vaccines were observed. In combination with the marker vaccine CP7_E2alf, the novel ELISA represents a sensitivity of 90.2% and a specificity of 93.8%. However, cross‐reactivity with antibodies against ruminant pestiviruses was observed. Interestingly, the majority of samples tested false‐positive in other Erns‐based antibody ELISAs were identified correctly by the novel prototype Erns ELISA and vice versa. In conclusion, the pigtype CSFV Erns Ab ELISA can contribute to an improvement in routine CSFV antibody screening, particularly for analysis of sera taken at an early time point after infection and is applicable as a DIVA assay. An additional Erns antibody assay is recommended for identification of false‐positive results in a pig herd immunized with the licensed CP7_E2alf marker vaccine.  相似文献   

11.
The goal of this study was to characterize the properties and duration of the foot‐and‐mouth disease (FMD ) carrier state and associated serological responses subsequent to vaccination and naturally occurring infection at two farms in northern India. Despite previous vaccination of cattle in these herds, clinical signs of FMD occurred in October 2013 within a subset of animals at the farms containing juvenile‐yearling heifers and steers (Farm A) and adult dairy cattle (Farm B). Subsequent to the outbreak, FMD virus (FMDV ) asymptomatic carriers were identified in both herds by seroreactivity to FMDV non‐structural proteins and detection of FMDV genomic RNA in oropharyngeal fluid. Carriers’ seroreactivity and FMDV genome detection status were subsequently monitored monthly for 23 months. The mean extinction time of the carrier state was 13.1 ± 0.2 months, with extinction having occurred significantly faster amongst adult dairy cattle at Farm B compared to younger animals at Farm A. The rate of decrease in the proportion of carrier animals was calculated to be 0.07 per month. Seroprevalence against FMDV non‐structural proteins decreased over the course of the study period, but was found to increase transiently following repeated vaccinations. These data provide novel insights into viral and host factors associated with the FMDV carrier state under natural conditions. The findings reported herein may be relevant to field veterinarians and governmental regulatory entities engaged in FMD response and control measures.  相似文献   

12.
This study investigated the potential of pooled milk as an alternative sample type for foot‐and‐mouth disease (FMD) surveillance. Real‐time RT‐PCR (rRT‐PCR) results of pooled milk samples collected weekly from five pooling facilities in Nakuru County, Kenya, were compared with half‐month reports of household‐level incidence of FMD. These periodic cross‐sectional surveys of smallholder farmers were powered to detect a threshold household‐level FMD incidence of 2.5% and collected information on trends in milk production and sales. FMD virus (FMDV) RNA was detected in 9/219 milk samples, and using a type‐specific rRT‐PCR, serotype SAT 1 was identified in 3/9 of these positive samples, concurrent with confirmed outbreaks in the study area. Four milk samples were FMDV RNA‐positive during the half‐months when at least one farmer reported FMD; that is, the household‐level clinical incidence was above a threshold of 2.5%. Additionally, some milk samples were FMDV RNA‐positive when there were no reports of FMD by farmers. These results indicate that the pooled milk surveillance system can detect FMD household‐level incidence at a 2.5% threshold when up to 26% of farmers contributed milk to pooling facilities, but perhaps even at lower levels of infection (i.e., below 2.5%), or when conventional disease reporting systems fail. Further studies are required to establish a more precise correlation with estimates of household‐level clinical incidence, to fully evaluate the reliability of this approach. However, this pilot study highlights the potential use of this non‐invasive, routinely collected, cost‐effective surveillance tool, to address some of the existing limitations of traditional surveillance methods.  相似文献   

13.
Foot‐and‐mouth disease (FMD) is endemic in Eritrea and in most parts of Africa. To be able to control FMD using vaccination, information on the occurrence of various foot‐and‐mouth disease serotypes in Eritrea is needed. In this cross‐sectional study, 212 sera samples were collected from FMD infected and recovered animals in Eritrea. These samples were tested for the presence of antibodies against FMD non‐structural proteins (NSP) and neutralizing antibodies against six of the seven (all but SAT 3) serotypes of FMD virus (FMDV). Of these, 67.0% tested positive to non‐structural protein antibodies in the FMD NS ELISA. By virus neutralization, FMDV serotype O antibodies were shown to be the most dominant (approximately 50%). Virus neutralization test results indicate that infection with serotype C and SAT 1 might have occurred, although there are no reports of isolation of these two serotypes. Because the samples were not randomly selected, further random serological surveillance in all age group animals is necessary both to estimate the prevalence of FMD in the country and to confirm the serological results with serotype C and SAT 1.  相似文献   

14.
In the wake of on‐going successful programmes for global eradication of rinderpest and the current effort to contain the spread of avian influenza, the progressive world‐wide control of FMD must be regarded as a major contribution to the international public good. FMD is the single most animal disease constraint to international trade in animal products. Its control is relevant, on the one hand, to protecting the livestock industries of industrialised countries and, on the other, to the livelihoods and income generation of developing countries, where, as a general rule, FMD continues to be endemic. The strategy that is advocated in this paper is one that is based on progressive risk reduction of FMD in the context of progressive market access of livestock commodities from developing countries. It is suggested that FMD control should be linked to improvement in livelihoods of livestock dependent communities in the FMD endemic settings. It is expected that this in turn will lead to increasing demand for effective national veterinary services and disease surveillance. This strategy has also taken lessons from the global rinderpest eradication programme and regional FMD control programmes in Europe and South America. The strategy that is advocated for the progressive control of FMD in the endemic settings is based on a seven stage process within a horizon of about 30 years, namely: (1) Assessing and defining national FMD status; (2) instituting vaccination and movement control; (3) suppressing virus transmission to achieve absence of clinical disease; (4) achieving freedom from FMD with vaccination in accordance with the OIE standards; (5) achieving freedom from FMD without vaccination in accordance with the OIE standards; (6) extending FMD free zones; and (7) maintaining FMD Freedom. Concomitant with progressive FMD control, there needs be the encouragement of such risk reduction measures as in‐country commodity processing in order to encourage regulated trade in livestock commodities without unduly increasing the risk of disease spread. Finally, the progressive control of FMD should also be seen as part of reducing the overall, world‐wide threat of infectious diseases to human health and economic development.  相似文献   

15.
One of the most challenging aspects of foot‐and‐mouth disease (FMD) control is the high genetic variability of the FMD virus (FMDV). In endemic settings such as the Indian subcontinent, this variability has resulted in the emergence of pandemic strains that have spread widely and caused devastating outbreaks in disease‐free areas. In countries trying to control and eradicate FMD using vaccination strategies, the constantly evolving and wide diversity of field FMDV strains is an obstacle for identifying vaccine strains that are successful in conferring protection against infection with field viruses. Consequently, quantitative knowledge on the factors that are associated with variability of the FMDV is prerequisite for preventing and controlling FMD in the Indian subcontinent. A hierarchical linear model was used to assess the association between time, space, host species and the genetic variability of serotype O FMDV using viruses collected in Pakistan from 2005 to 2011. Significant (P < 0.05) amino acid and nucleotide variations were associated with spatial distance, but not with differences in host species, which is consistent with the frequent multi‐species infection of this serotype O FMDV. Results from this study will contribute to the understanding of FMDV variability and to the design of FMD control strategies in Pakistan. Viruses sequenced here also provide the earliest reported isolate from the Pan Asia IIANT‐10 sublineage, which has caused several outbreaks in the Middle East and spread into Europe (Bulgaria) and Africa (Libya).  相似文献   

16.
African horse sickness (AHS) is considered a fatal re‐emergent vector‐borne disease of horses. In the absence of any effective treatment for AHS, vaccination remains the most effective form of disease control. The new generation of vaccines, such as one based on purified, inactivated AHS virus (AHSV, serotype 4), which does not induce antibodies against non‐structural protein 3 (NS3), enables the development of diagnostic methods that differentiate infected from vaccinated animals (DIVA assays). As detecting AHS in AHSV‐free countries may lead to restrictions on international animal movements and thereby cause significant economic damage, these DIVA assays are crucial for reducing movement restrictions. In this article, we describe a Luminex‐based multiplex assay for DIVA diagnosis of AHS, and we validate it in a duplex format to detect antibodies against structural protein 7 (VP7) and NS3 in serum samples from horses vaccinated with inactivated AHSV4 vaccine or infected with a live virus of the same serotype. Results of the Luminex‐based assay for detecting anti‐NS3 antibodies showed good positive correlation with results from an in‐house enzyme‐linked immunosorbent assay (ELISA). Thus, the Luminex‐based technique described here may allow multiplex DIVA antibody detection in a single sample in less than 2 h, and it may prove adaptable for the development of robust, multiplex serological assays.  相似文献   

17.
The safety of a replication‐deficient, human adenovirus‐vectored foot‐and‐mouth disease virus (FMDV ) serotype A24 Cruzeiro capsid‐based subunit vaccine (AdtA24) was evaluated in five independent safety studies. The target animal safety studies were designed in compliance with United States (U.S.) regulatory requirements (Title 9, U.S. Code of Federal Regulation [9CFR ]) and international standard guidelines (VICH Topic GL ‐44) for veterinary live vaccines. The first three studies were conducted in a total of 22 vaccinees and demonstrated that the AdtA24 master seed virus (MSV ) was safe, did not revert to virulence and was not shed or spread from vaccinees to susceptible cattle or pigs. The fourth safety study conducted in 10 lactating cows using an AdtA24 vaccine serial showed that the vaccine was completely absent from milk. The fifth safety study was conducted under typical U.S. production field conditions in 500 healthy beef and dairy cattle using two AdtA24 vaccine serials. These results demonstrated that the vaccine was safe when used per the product label recommendations. Additional data collected during these five studies confirmed that AdtA24 vaccinees developed FMDV A24 and the HA d5 vaccine vector serum neutralization antibodies that test negative in a FMDV non‐structural protein antibody test, confirming AdtA24 vaccine's capability to differentiate infected from vaccinated animals (DIVA ). In conclusion, results from this comprehensive set of cattle studies demonstrated the safety of the replication‐deficient AdtA24 vaccine and fulfilled safety‐related requirements for U.S. regulatory requirements.  相似文献   

18.
Little information is available about the natural cycle of foot‐and‐mouth disease (FMD) in the absence of control measures such as vaccination. Cameroon presents a unique opportunity for epidemiological studies because FMD vaccination is not practiced. We carried out a prospective study including serological, antigenic and genetic aspects of FMD virus (FMDV) infections among different livestock production systems in the Far North of Cameroon to gain insight into the natural ecology of the virus. We found serological evidence of FMDV infection in over 75% of the animals sampled with no significant differences of prevalence observed among the sampled groups (i.e. market, sedentary, transboundary trade and mobile). We also found antibodies reactive to five of the seven FMDV serotypes (A, O, SAT1, SAT2 and SAT3) among the animals sampled. Finally, we were able to genetically characterize viruses obtained from clinical and subclinical FMD infections in Cameroon. Serotype O viruses grouped into two topotypes (West and East Africa). SAT2 viruses grouped with viruses from Central and Northern Africa, notably within the sublineage causing the large epidemic in Northern Africa in 2012, suggesting a common origin for these viruses. This research will guide future interventions for the control of FMD such as improved diagnostics, guidance for vaccine formulation and epidemiological understanding in support of the progressive control of FMD in Cameroon.  相似文献   

19.
Foot‐and‐mouth disease (FMD ) is an important transboundary disease with substantial economic impacts. Although between‐herd transmission of the disease has been well studied, studies focusing on within‐herd transmission using farm‐level outbreak data are rare. The aim of this study was to estimate parameters associated with within‐herd transmission, host physiological factors and FMD virus (FMDV ) persistence using data collected from an outbreak that occurred at a large, organized dairy farm in India. Of 1,836 regularly vaccinated, adult dairy cattle, 222 had clinical signs of FMD over a 39‐day period. Assuming homogenous mixing, a frequency‐dependent compartmental model of disease transmission was built. The transmission coefficient and basic reproductive number were estimated to be between 16.2–18.4 and 67–88, respectively. Non‐pregnant animals were more likely to manifest clinical signs of FMD as compared to pregnant cattle. Based on oropharyngeal fluid (probang) sampling and FMDV ‐specific RT ‐PCR , four of 36 longitudinally sampled animals (14%) were persistently infected carriers 10.5 months post‐outbreak. There was no statistical difference between subclinical and clinically infected animals in the duration of the carrier state. However, prevalence of NSP ‐ELISA antibodies differed significantly between subclinical and clinically infected animals 12 months after the outbreak with 83% seroprevalence amongst clinically infected cattle compared to 69% of subclinical animals. This study further elucidates within‐herd FMD transmission dynamics during the acute‐phase and characterizes duration of FMDV persistence and seroprevalence of FMD under natural conditions in an endemic setting.  相似文献   

20.
A systematic study was performed to investigate the potential of pigs to establish and maintain persistent foot‐and‐mouth disease virus (FMDV) infection. Infectious virus could not be recovered from sera, oral, nasal or oropharyngeal fluids obtained after resolution of clinical infection with any of five FMDV strains within serotypes A, O and Asia‐1. Furthermore, there was no isolation of live virus from tissue samples harvested at 28–100 days post‐infection from convalescent pigs recovered from clinical or subclinical FMD. Despite lack of detection of infectious FMDV, there was a high prevalence of FMDV RNA detection in lymph nodes draining lesion sites harvested at 35 days post‐infection, with the most frequent detection recorded in popliteal lymph nodes (positive detection in 88% of samples obtained from non‐vaccinated pigs). Likewise, at 35 dpi, FMDV capsid antigen was localized within follicles of draining lymph nodes, but without concurrent detection of FMDV non‐structural protein. There was a marked decline in the detection of FMDV RNA and antigen in tissue samples by 60 dpi, and no antigen or viral RNA could be detected in samples obtained at 100 dpi. The data presented herein provide the most extensive investigation of FMDV persistence in pigs. The overall conclusion is that domestic pigs are unlikely to be competent long‐term carriers of infectious FMDV; however, transient persistence of FMDV protein and RNA in lymphoid tissues is common following clinical or subclinical infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号