首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
目的 探讨nNOS选择性抑制剂亚胺基烯丁基-L-鸟氨酸(L-VNIO)对心肌缺血再灌注(I/R)损伤的影响及机制。方法 构建SD大鼠离体心脏I/R模型和H9c2细胞缺氧/复氧(H/R)模型;nNOS抑制剂L-VNIO(10μmol·L-1)持续给药整个再灌注或复氧过程。TTC染色测定心肌梗死面积;流式细胞术检测H9c2细胞凋亡率;Fluo-3/AM Ca2+荧光探针通过流式细胞仪检测H9c2细胞内Ca2+浓度;试剂盒法测定离体心脏灌流液乳酸脱氢酶(LDH)、丙二醛(MDA)水平以及H9c2细胞MDA水平和超氧化物歧化酶(SOD)活性;离体心脏提取肌浆网,试剂盒法检测肌浆网Ca2+-ATP酶(SERCA)活性,Western blotting检测肌浆网SERCA蛋白表达;Western blotting检测离体心脏中受磷蛋白(PLB)和兰尼碱受体2(RyR2)蛋白表达水平和磷酸化水平。结果 与I/R或H/R模型组相比,L-VNIO显著降低细胞凋亡率,减少心肌梗死面积,降低LDH、MDA水平,提高SOD活性,差异均有统计学意...  相似文献   

2.
目的 研究阿托伐他汀肝毒性损伤作用及机制。方法 将24只Wistar han雄鼠分为对照组和阿托伐他汀低(68.5mg/kg)、高剂量组(205.5 mg/kg),按照10 mL/kg的药液体积给药,溶媒对照组ig等体积5% CMC-Na,连续ig 28 d。检测血清中天门冬氨酸氨基转移酶(AST)、丙氨酸氨基转移酶(ALT)、碱性磷酸酶(ALP)、尿素氮(BUN)和血肌酐(CRE)的含量,HE染色观察肝组织病理。在体外,HepG2细胞经传代培养后,给予阿托伐他汀干预24 h,检测细胞存活率,丙二醛(MDA)水平、Na+-K+-ATP酶和Ca2+-Mg2+-ATP酶活性及线粒体膜电位。结果 与对照组比较,阿托伐他汀高剂量组大鼠肝细胞弥漫性肿胀,核分裂多见,部分肝细胞极性消失,排列紊乱(P<0.05)。与对照组比较,阿托伐他汀高剂量组给药后血清中ALT和AST显著升高(P<0.05、0.01)。在体外,与对照组比较,阿托伐他汀125、250、500 μmol/L能明显抑制细胞存活率(P<0.05、0.001)。与对照组比较,阿托伐他汀500 μmol/L HepG2细胞MDA含量明显升高(P<0.01)。与对照组比较,阿托伐他汀125 μmol/L能使Na+-K+-ATP酶活性增强,500 μmol/L使Na+-K+-ATP酶活性降低(P<0.001)。与对照组比较,阿托伐他汀125、250、500 μmol/L均能使能使Ca2+-Mg2+-ATP酶活性降低(P<0.01,0.001)。与对照组比较,阿托伐他汀125、250、500 μmol/L均能降低线粒体膜电位(P<0.001)。结论 阿托伐他汀高剂量可导致肝组织损伤,其毒性作用通过破坏细胞的线粒体膜电位,抑制Na+-K+-ATP酶、Ca2+-Mg2+-ATP酶活性,细胞膜脂质过氧化,从而破坏细胞内微环境的平衡,导致细胞凋亡和坏死。  相似文献   

3.
目的 观察丹酚酸B预处理对大鼠心肌缺血/再灌注损伤(MI/RI)能量代谢的作用。方法 通过结扎冠状动脉30min再灌注2 h建立大鼠MI/RI模型,随机分为4组:假手术组、模型组及丹酚酸B高、低(20、10 mg/kg)组,于建立模型前7 d开始ip给药,每天1次;再灌注结束后,采用比色法测定血清乳酸脱氢酶(LDH)、肌酸激酶(CK)活力,染色法测定心肌梗死面积(MIA),定磷法测定心肌组织Na+-K+-ATP酶、Ca2+-Mg2+-ATP酶活性。结果 与模型组(42.60%)比较,丹酚酸B高、低剂量组的MIA分别缩小至35.93%和37.21%,差异显著(P<0.05);与模型组比较,丹酚酸B高、低剂量组血清CK、LDH活力均显著降低(P<0.05、0.01);与模型组比较,丹酚酸B高、低剂量组心肌组织Na+-K+-ATP酶、Ca2+-Mg2+-ATP酶活性均显著升高(P<0.05、0.01)。结论 丹酚酸B预处理可保护MI/RI所致心肌损伤,作用途径可能与改善心肌组织的能量代谢相关。  相似文献   

4.
目的 研究四肽FMRFa对大鼠单个心室肌细胞Na+/Ca2+交换的作用。方法 用膜片钳全细胞记录法测定成年大鼠心室肌细胞Na+/Ca2+交换电流(INa+/Ca2+)和其他离子通道电流。结果 FMRFa对大鼠心室肌细胞INa+/Ca2+呈浓度依赖性抑制,100μmol·L-1浓度时抑制内向和外向INa+/Ca2+密度分别达60.1%和56.5%,对内向电流及外向电流的IC50分别为20μmol·L-1和34μmol·L-1。FMRFa5μmol·L-1抑制INa+/Ca2+内向和外向电流密度分别为38.7%和34.9%,但FMRFa5μmol·L-1及20μmol·L-1对L型钙电流、钠电流、瞬时外向电流和内向整流钾电流均无显著抑制作用。结论 FMRFa对大鼠心室肌细胞是一个特异性Na+/Ca2+交换抑制剂。  相似文献   

5.
目的研究环维黄杨星D(CD)对大鼠心室肌细胞内Ca2+动员和L型钙电流(ICa-L/sub>)的影响。方法采用全细胞膜片钳和激光扫描共聚焦显微术研究CD对心肌细胞ICa-L/sub>以及氯化钾、咖啡因诱发心肌细胞内Ca2+动员的影响。结果CD浓度依赖性抑制ICa-L/sub>。指令电压为10 mV时,1和10 μmol·L-1 CD分别使ICa-L/sub>电流密度从(-9.9±1.8)pA/pF降至(-6.4±1.4)pA/pF和(-4.2±0.6)pA/pF。共聚焦实验显示1和10 μmol·L-1 CD不影响静息心肌细胞[Ca2+i?/sub>,对氯化钾诱发[Ca2+i?/sub>升高水平无明显抑制作用;咖啡因引起的细胞内Ca2+动员可被CD进一步增强。结论CD浓度依赖性抑制大鼠心室肌细胞ICa-L/sub>,并有促进咖啡因诱发心肌细胞内Ca2+释放的作用。  相似文献   

6.
耿皖平  徐叔云 《药学学报》1987,22(3):170-173
用大鼠甩尾法和放射配基结合实验,探讨了可乐定镇痛与中枢Ca2+的关系。CaCl2(1μmol/rat,icv)和EGTA(0.2μmol/rat,icv)分别拮抗和增强可乐定(1mg/kg,sc)的镇痛。戊脉安(0.1μmol/rat,icy)对可乐定(1 mg/kg,sc)镇痛无明显影响,但可部分翻转CaCl2对可乐定镇痛的拮抗。CaCl2(1×10-3mol)对[3H]-可乐定结合无明显抑制。结果表明可乐定镇痛与脑室周围组织中Ca2+浓度变化密切相关,Ca2+至少部分需经对戊脉安敏感的钙通道进入细胞内方可拮抗可乐定镇痛。推沦:可乐定镇痛与神经元内Ca2+有关。  相似文献   

7.
目的研究银杏叶提取物对低氧复氧、H2O2L-谷氨酸损伤时谷氨酸升高大鼠星形胶质细胞[Ca2+i的影响。方法钙荧光探针Fluo-3/AM标记胞浆内游离钙离子,激光扫描共聚焦显微镜测定[Ca2+i的变化。结果 在低氧复氧、H2O2以及高浓度的L-谷氨酸损伤后,外源性谷氨酸(27 μmol·L-1)均不能引起培养乳大鼠星形胶质细胞正常的[Ca2+i升高,反而使[Ca2+i分别降低(3.3±1.6)%,(81±11)%和(81±7)%;损伤前预先给予GbE(10 mg·L-1)不能明显改善星形胶质细胞的谷氨酸反应,但预先给予GbE(100 mg·L-1)后,27 μmol·L-1谷氨酸可使损伤的星形胶质细胞[Ca2+i分别升高(135±98)%,(117±93)%和(89±36)%。结论低氧复氧、H2O2以及高浓度的L-谷氨酸均能损伤星形胶质细胞的谷氨酸反应,影响神经细胞与胶质细胞的双向交流。GbE能明显逆转不同损伤后谷氨酸诱导星形胶质细胞[Ca2+i的异常变化,使星形胶质细胞在不同损伤时能维持正常功能,该作用可能与GbE的脑保护作用有关。  相似文献   

8.
目的 研究大黄素对人肝癌HepG2细胞线粒体凋亡的影响。方法 培养人肝癌HepG2细胞,与5、10、20、40、60、80、100 μmol/L的大黄素作用24、48 h,MTS法检测细胞增殖;40、80、160 μmol/L大黄素作用HepG2细胞24 h,AO/EB双荧光染色法观察细胞凋亡的形态学改变;Annexin V/PI染色经流式细胞仪检测细胞凋亡;分光光度法检测caspase 3活性;ATP试剂盒检测细胞ATP含量,不同荧光探针加载后流式细胞仪测定大黄素对HepG2细胞内活性氧(ROS)含量、Ca2+浓度、线粒体膜电位(MMP)变化的影响。结果 大黄素抑制HepG2细胞生长,且呈时间、浓度相关性,半数抑制浓度(IC50)为(77.42±1.25)μmol/L;随着大黄素浓度升高,AO/EB双染观察到细胞核浓缩、碎裂、凋亡小体等凋亡形态;与对照组比较,大黄素40、80、160 μmol/L作用于HepG2细胞24 h后细胞凋亡率显著增加,caspase 3活性显著增强,ROS水平、Ca2+浓度明显增加(P<0.05、0.01、0.001),80、160 μmol/L组线粒体膜电位明显降低,ATP含量显著下降(P<0.05、0.01、0.001)。结论 大黄素造成HepG2细胞内ROS堆积,ATP合成功能障碍,线粒体膜电位明显下降,进而诱导线粒体通透转运孔开放,导致钙离子和细胞色素C外流,活化caspase蛋白家族,导致细胞凋亡。  相似文献   

9.
蚓激酶的心肌保护作用及机制   总被引:5,自引:0,他引:5  
目的研究蚓激酶对心肌缺血的保护作用,并进一步探讨其可能机制。方法采用结扎大鼠左冠状动脉前降支制备急性心肌缺血模型,观察蚓激酶对心肌缺血的保护作用;应用全细胞膜片钳和激光扫描共聚焦技术,研究蚓激酶对L-型钙电流(ICa-L)和细胞内游离钙离子浓度的影响。结果蚓激酶80,40和20 mg·kg-1剂量组均可缩小心肌梗死面积。膜片钳研究结果表明,当刺激电压为+10 mV时,10和50 μmol·L-1蚓激酶使ICa-L降低共聚焦结果显示,在静息状态下,10 μmol·L-1蚓激酶对[Ca2+i无明显影响;但10 μmol·L-1蚓激酶对60 mmol·L-1 KCl诱导的[Ca2+i升高却有明显抑制作用,并且在整个实验过程中(240 s)并未出现明显的峰值。结论蚓激酶对大鼠心肌缺血具有保护作用,其机制可能与抑制ICa-L及下调[Ca2+i有关。  相似文献   

10.
徐晓虹  陈瑜  郑筱祥 《药学学报》2007,42(6):583-588
选用培养的海马神经细胞研究灯盏花素(breviscapine,Bre)对谷氨酸(glutamate,Glu)诱导神经细胞毒性的保护作用及其机制。新生大鼠海马神经细胞体外培养8 d后, 用L-谷氨酸(0.1, 0.5及1.0 mmol·L-1)处理30 min; 灯盏花素处理组在加入L-谷氨酸的同时给予不同剂量的灯盏花素(10, 20及40 μmol·L-1); 继续正常培养24 h后, 用Annexin V联合流式细胞仪检测细胞的凋亡和坏死率; RT-PCR分析凋亡蛋白抑制剂XIAP mRNA的表达。结果表明, L-谷氨酸浓度依赖性地诱导神经细胞发生凋亡和坏死, 并使细胞XIAP mRNA表达发生浓度依赖性的双向变化: 0.1 mmol·L-1 L-谷氨酸使神经细胞XIAP mRNA表达增强, 而较高浓度使XIAP mRNA表达下调。灯盏花素(20和40 μmol·L-1)可有效抑制谷氨酸诱导的神经细胞死亡, 分别使细胞凋亡率下降30.4%和40.1%, 坏死率下降32.5%和38.8%; 并上调XIAP mRNA表达45.1%和54.9%。激光共聚焦显微技术联合Fluo-3荧光标记检测表明,L-谷氨酸处理过程中海马神经细胞内Ca2+水平显著升高, 而灯盏花素可抑制谷氨酸引起的细胞内Ca2+超载(P<0.01)。以上结果提示, 灯盏花素可能通过抑制细胞Ca2+超载, 调节凋亡抑制因子XIAP的表达而有效保护谷氨酸对神经细胞的兴奋性毒性作用。  相似文献   

11.
当赛庚啶浓度在8×10-6mol/L~2×10-4mol/L之间时,该药对正常犬心肌肌质网Ca2+,Mg2+—ATP酶活性几乎没有影响,仅在10-3mol/L时对该酶活性才有一定的抑制作用(抑制率为39.85%,P<0.01)。正常犬心肌肌质网的45Ca2+摄取过程有明显的时间依赖性,至第30 min,其45Ca2+摄取量可达312.79±22.25 nmol/mg protein.赛庚啶对心肌肌质网的~(45)Ca2+摄取有一定的抑制作用,其IC50为1.94×10-4mol/L。  相似文献   

12.

Background and Purpose

Calcium handling is known to be deranged in heart failure. Interventions aimed at improving cell Ca2+ cycling may represent a promising approach to heart failure therapy. Istaroxime is a new luso-inotropic compound that stimulates cardiac contractility and relaxation in healthy and failing animal models and in patients with acute heart failure (AHF) syndrome. Istaroxime is a Na-K ATPase inhibitor with the unique property of increasing sarcoplasmic reticulum (SR) SERCA2a activity as shown in heart microsomes from humans and guinea pigs. The present study addressed the molecular mechanism by which istaroxime increases SERCA2a activity.

Experimental Approach

To study the effect of istaroxime on SERCA2a-phospholamban (PLB) complex, we applied different methodologies in native dog healthy and failing heart preparations and heterologous canine SERCA2a/PLB co-expressed in Spodoptera frugiperda (Sf21) insect cells.

Key Results

We showed that istaroxime enhances SERCA2a activity, Ca2+ uptake and the Ca2+-dependent charge movements into dog healthy and failing cardiac SR vesicles. Although not directly demonstrated, the most probable explanation of these activities is the displacement of PLB from SERCA2a.E2 conformation, independently from cAMP/PKA. We propose that this displacement may favour the SERCA2a conformational transition from E2 to E1, thus resulting in the acceleration of Ca2+ cycling.

Conclusions and Implications

Istaroxime represents the first example of a small molecule that exerts a luso-inotropic effect in the failing human heart through the stimulation of SERCA2a ATPase activity and the enhancement of Ca2+ uptake into the SR by relieving the PLB inhibitory effect on SERCA2a in a cAMP/PKA independent way.  相似文献   

13.

Background and purpose:

Ca2+-calmodulin (Ca2+CaM) is widely accepted as an inhibitor of cardiac ryanodine receptors (RyR2); however, the effects of physiologically relevant CaM concentrations have not been fully investigated.

Experimental approach:

We investigated the effects of low concentrations of Ca2+CaM (50–100 nmol·L−1) on the gating of native sheep RyR2, reconstituted into bilayers. Suramin displaces CaM from RyR2 and we have used a gel-shift assay to provide evidence of the mechanism underlying this effect. Finally, using suramin to displace endogenous CaM from RyR2 in permeabilized cardiac cells, we have investigated the effects of 50 nmol·L−1 CaM on sarcoplasmic reticulum (SR) Ca2+-release.

Key results:

Ca2+CaM activated or inhibited single RyR2, but activation was much more likely at low (50–100 nmol·L−1) concentrations. Also, suramin displaced CaM from a peptide of the CaM binding domain of RyR2, indicating that, like the skeletal isoform (RyR1), suramin directly competes with CaM for its binding site on the channel. Pre-treatment of rat permeabilized ventricular myocytes with suramin to displace CaM, followed by addition of 50 nmol·L−1 CaM to the mock cytoplasmic solution caused an increase in the frequency of spontaneous Ca2+-release events. Application of caffeine demonstrated that 50 nmol·L−1 CaM reduced SR Ca2+ content.

Conclusions and implications:

We describe for the first time how Ca2+CaM is capable, not only of inactivating, but also of activating RyR2 channels in bilayers in a CaM kinase II-independent manner. Similarly, in cardiac cells, CaM stimulates SR Ca2+-release and the use of caffeine suggests that this is a RyR2-mediated effect.  相似文献   

14.

BACKGROUND AND PURPOSES

Myocardial C-type natriuretic peptide (CNP) levels are increased in heart failure. CNP can induce negative inotropic (NIR) and positive lusitropic responses (LR) in normal hearts, but its effects in failing hearts are not known. We studied the mechanism of CNP-induced NIR and LR in failing hearts and determined whether sarcoplasmatic reticulum Ca2+ ATPase2 (SERCA2) activity is essential for these responses.

EXPERIMENTAL APPROACH

Contractility, cGMP levels, Ca2+ transient amplitudes and protein phosphorylation were measured in left ventricular muscle strips or ventricular cardiomyocytes from failing hearts of Wistar rats 6 weeks after myocardial infarction.

KEY RESULTS

CNP increased cGMP levels, evoked a NIR and LR in muscle strips, and caused phospholamban (PLB) Ser16 and troponin I (TnI) Ser23/24 phosphorylation in cardiomyocytes. Both the NIR and LR induced by CNP were reduced in the presence of a PKG blocker/cGMP analogue (Rp-8-Br-Pet-cGMPS) and the SERCA inhibitor thapsigargin. CNP increased the amplitude of the Ca2+ transient and increased SERCA2 activity in cardiomyocytes. The CNP-elicited NIR and LR were not affected by the L-type Ca2+ channel activator BAY-K8644, but were abolished in the presence of isoprenaline (induces maximal activation of cAMP pathway). This suggests that phosphorylation of PLB and TnI by CNP causes both a NIR and LR. The NIR to CNP in mouse heart was abolished 8 weeks after cardiomyocyte-specific inactivation of the SERCA2 gene.

CONCLUSIONS AND IMPLICATIONS

We conclude that CNP-induced PLB and TnI phosphorylation by PKG in concert mediate both a predictable LR as well as the less expected NIR in failing hearts.  相似文献   

15.
Depletion of intracellular Ca2+ stores induces the opening of an unknown Ca2+ entry pathway to the cell. We measured the intracellular free-Ca2+ concentration ([Ca2+]i) at different sarcoplasmic reticulum (SR) Ca2+ content in fura-2-loaded smooth muscle cells isolated from bovine tracheas. The absence of Ca2+ in the extracellular medium generated a time-dependent decrement in [Ca2+]i which was proportional to the reduction in the SR-Ca2+ content. This SR-Ca2+ level was indirectly determined by measuring the amount of Ca2+ released by caffeine. Ca2+ restoration at different times after Ca2+-free incubation (2, 4, 6 and 10 min) induced an increment of [Ca2+]i. This increase in [Ca2+]i was considered as Ca2+ entry to the cell. The rate of this entry was slow (~0.3 nM/s) when SR-Ca2+ content was higher than 50% (2 and 4 min in Ca2+-free medium), and significantly (p<0.01) accelerated (>1.0 nM/s) when SR-Ca2+ content was lower than 50% (6 and 10 min in Ca2+-free medium). Thapsigargin significantly induced a higher rate of this Ca2+ entry (p<0.01). Variations in Ca2+ influx after SR-Ca2+ depletion were estimated more directly by a Mn2+ quench approach. Ca2+ restoration to the medium 4 min after Ca2+ removal did not modify the Mn2+ influx. However, when Ca2+ was added after 10 min in Ca2+-free medium, an increment of Mn2+ influx was observed, corroborating an increase in Ca2+ entry. The fast Ca2+ influx was Ni2+ sensitive but was not affected by other known capacitative Ca2+ entry blockers such as La3+, Mg2+, SKF 96365 and 2-APB. It was also not affected by the blockage of L-type Ca2+ channels with methoxyverapamil or by the sustained K+-induced depolarisation. The slow Ca2+ influx was only sensitive to SKF 96365. In conclusion, our results indicate that in bovine airway smooth muscle cells Ca2+ influx after SR-Ca2+ depletion has two rates: A) The slow Ca2+ influx, which occurred in cells with more than 50% of their SR-Ca2+ content, is sensitive to SKF 96365 and appears to be a non-capacitative Ca2+ entry; and B) The fast Ca2+ influx, observed in cells with less than 50% of their SR-Ca2+ content, is probably a capacitative Ca2+ entry and was only Ni2+-sensitive.  相似文献   

16.
Summary The effects of 1-adrenoceptor stimulation by phenylephrine (PE) and -adrenoceptor stimulation by isoprenaline (ISO) on Ca2+ current (ICa) and free intracellular Ca2+ concentration ([Ca2+]i) were studied in isolated atrial myocytes from rat hearts. PE did not significantly affect the magnitude of ICa, whereas large increases of peak ICa were observed in response to ISO. In electrically driven cells, PE evoked a concentration-dependent, gradual increase in diastolic [Ca2+]i and, initially, an increase in the height of peak [Ca2+]i transients. When the diastolic [Ca2+]i was increased to a greater extent, the amplitude of [Ca2+]i transients was decreased. Simultaneous measurements of [Ca2+]i and membrane potential showed that the increase in diastolic [Ca2+]i was associated with a depolarization of the membrane, and the greater amplitude of [Ca2+]i transients with a prolongation of the action potential (AP). The PE-induced increase in diastolic [Ca2+]i was eliminated when the cells were voltage-clamped at the original resting membrane potential (RP); under these conditions, an increase in [Ca2+]i transients was observed in response to PE. ISO usually caused larger increases in the amplitude of [Ca2+]i transients with only minor changes in diastolic [Ca2+]i. These results suggest that PE and ISO increase the amplitude of [Ca2+]i transients in rat atrium in different ways. The increase in [Ca2+]i transients in response to -adrenoceptor stimulation is commonly thought to be mediated by a greater conductance of voltage-dependent Ca2+ channels causing a greater Ca2+ influx and a release of more Ca2+ from the sarcoplasmic reticulum during the AP. The increase in diastolic [Ca2+]i in response to PE is probably a consequence of the depolarization of the membrane, possibly involving the voltage-dependent Na+-Ca2+ exchange mechanism. The increase in the amplitude of the [Ca2+]i transients in response to PE may be ascribed both to the initial increase in diastolic [Ca2+]i and the prolongation of the AP. Send offprint requests to H. Nawrath at the above address  相似文献   

17.
Introduction: Cancer is caused by defects in the mechanisms underlying cell proliferation, death and migration. Calcium ions are central to all of these phenomena, serving as major signalling agents with the spatial localisation, magnitude and temporal characteristics of calcium signals ultimately determining cell's fate. The transformation of a normal cell into a malignant derivative is associated with a major rearrangement of Ca2+ pumps, Na/Ca exchangers and Ca2+ channels, which leads to enhanced proliferation and invasion under compromised/impaired ability to die.

Areas covered: This paper examines the changes in Ca2+ signalling and the mechanisms that underlie the passage from normal to pathological cell growth and death control. Understanding these changes and identifying the molecular players involved provide new perspectives for cancer treatment.

Expert opinion: Despite compelling evidence that the disruption of Ca2+ homeostasis in cancer cells leads to the promotion of certain malignant phenotypes as well as the identification of key Ca2+-transporting molecules whose altered expression and/or function underlies pathological changes, the therapeutic utilisation of these findings for cancer treatment is still at its infancy. However, the rapid development of the field warrants the development of improved molecular Ca2+ transport-targeting tools for cancer diagnosis and treatment.  相似文献   

18.
Summary The modes by which Endothelin-1 (ET) induces Ca2+-influx and the relative functional importance of the different sources of Ca2+ for ET-induced contraction were studied using fura 2-loaded and unloaded rat aortic strips. ET caused an increase in the cytosolic free Ca2+ level ([Ca2+]i) followed by a tonic contraction in Ca2+-containing solution, and produced a transient elevation of [Ca2+]i followed by a small sustained contraction in Ca2+-free medium. ET also stimulated 45Ca influx into La2+-inaccessible fraction significantly. With the same change of [Ca2+]i, ET caused a larger tension than that induced by high K. ET-induced contraction and [Ca2+]i elevation were not significantly inhibited by 0.1–0.3 M nicardipine which nearly abolished the contraction and [Ca+]i elevation produced by high K. During treatment of the strips with high K, addition of ET induced further increases in [Ca2+]i and muscle tension, and vice versa. In Ca2+-free medium, ET-induced contraction was influenced neither by ryanodine-treatment nor by high K-treatment, although the former attenuated and the latter potentiated the [Ca2+]i transient induced by ET. Further, the ET-induced sustained contraction under Ca2+-free conditions began to develop after the [Ca2+]i level returned to the baseline. Thus, it seems that the Ca2+ released from the ryanodine-sensitive and -insensitive Ca2+ stores by ET may provide only a minor or indirect contribution, if any, to the tension development. ET might cause a contraction mainly by stimulating Ca2+-influx through Ca2+ channel(s) other than voltage-dependent Ca2+ channels in character, and by increasing the sensitivity of the contractile filaments to Ca2+ or activating them Ca2+-independently.Visiting from Zun Yi Medical College, China Send offprint requests to I. Takayanagi at the above address  相似文献   

19.
Ca2+ ions are essential to myonecrosis, a serious complication of snake envenomation, and heparin seems to counteract this effect. We investigated the effect of local injection of Bothrops jararacussu venom in mouse fast-twitch extensor digitorum longus (EDL) muscle, without or with heparin, on functional/molecular alterations of two central proteins involved in intracellular Ca2+ homeostasis, sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) and Na+/K+-ATPase. EDL-specific SERCA1 isoform expression dropped significantly just after venom administration (up to 60% compared to control EDL values at days 1 and 3; p < 0.05) while SERCA2 and Na+/K+-ATPase α1 isoform expression increased at the same time (3-6- and 2-3-fold, respectively; p < 0.05). Although not significant, Na+/K+-ATPase α2 isoform followed the same trend. Except for SERCA2, all proteins reached basal levels at the 7th day. Intravenous heparin treatment did not affect these profiles. Ca2+-ATPase activity was also decreased during the first days after venom injection, but here heparin was effective to reinstate activity to control levels within 3 days. We also showed that B. jararacussu venom directly inhibited Ca2+-ATPase activity in a concentration-dependent manner. Our results indicate that EDL SERCA and Na+/K+-ATPase are importantly affected by B. jararacussu venom and heparin has protective effect on activity but not on protein expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号