首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The retrograde axonal transport of nerve growth factor   总被引:33,自引:0,他引:33  
A retrograde axonal transport of nerve growth factor (NGF) from the adrenergic nerve terminals in the mouse iris to the cell bodies of postganglionic sympathetic neurones in the superior cervical ganglion has been demonstrated. After injection of iodinated nerve growth factor (125I-NGF) into the anterior eye-chamber there was a relatively rapid accumulation of radioactivity in the superior cervical ganglia on both injected and non-injected sides, as was the case after subcutaneous injection. However, 4 h after intraocular injection a preferential accumulation of radioactivity became apparent in the superior cervical ganglion on the injected side, and this difference between the ganglia on injected and non-injected sides gradually increased to a maximum at 16 h. Transection of the postganglionic adrenergic fibres as well as the prior intraocular injection of colchicine abolished the preferential accumulation of 125I-NGF in the superior cervical ganglion of the injected side, whereas the destruction of adrenergic nerve terminals by 6-hydroxydopamine did not impair the preferential accumulation. It is concluded that the retrograde axonal transport of NGF, which was estimated to take place at a rate of about 2.5 mm/h, depends on a colchicine-sensitive mechanism as does the orthograde rapid axonal transport. However, the uptake of NGF may not only take place from the nerve terminals but also from the preterminal parts, as has been shown in other studies with horseradish peroxidase. Autoradiographic studies strongly supported the existence of a retrograde transport by showing a clear localization of radioactivity in a small number of neurones in the superior cervical ganglion on the injected side, whereas on the non-injected side there was only a diffuse distribution of radioactivity throughout the ganglion.  相似文献   

2.
M Schwab  H Thoenen 《Brain research》1977,122(3):459-474
Adult rats were injected unilaterally into the anterior eye chamber and the submandibular gland with either [125I]tetanus toxin or [125I]nerve growth factor (NGF). Fourteen and 24 h later in electron microscopic autoradiographs of the superior cervical ganglia of the injected side the labeling was confined to a limited number (15-20%) of adrenergic ganglion cells and the silver grains were localized over axons, perikarya and dendrites providing evidence for a retrograde intraaxonal transport of the two macromolecules. Moreover, after injection of [125]tetanus toxin there was a very marked labeling of the presynaptic cholinergic nerve terminals. In contrast, after [125I]NGF these terminals were free of label. In both cases no specific labeling could be detected over glia and extracellular space. In the postganglionic axons the radioactivity seemed to be mainly associated with vesicles and smooth endoplasmic reticulum, in the perikarya and dendrites of the adrenergic neurons with secondary lysosomes, vesicles and smooth endoplasmic reticulum. The Golgi cisternae and the nuclei were free of radioactivity. The specific labeling of presynaptic terminals after injection of [125I]tetanus toxin together wirans-symaptic migration of [125I]tetanus toxin from the adrenergic ganglion cell to its innervating presynaptic terminals following retrograde intraaxonal transport.  相似文献   

3.
The process of the retrograde transport of nerve growth factor (NGF) has been recharacterized using a high specific activity preparation of[125I]NGF. Most of the general conclusions reached in the previous studies of Hendry, Thoenen and co-workers have been confirmed. However, significant quantitative differences were noted. Intraocular (anterior eye chamber) administration of[125I]NGF (less than 10 ng) resulted in accumulation in the superior cervical ganglia beginning at about 4 h. The ratio of radioactivity in the ipsilateral contralateral ganglia was 15--30:1. Maximal accumulation was seen at about 12h in the hamster and 16 h in rats. This pattern was quite different from that seen in other tissues. The uptake system from the eye of the rat was saturable (half-maximal at 15 ng) with maximal accumulation of 35--40 pg/ganglion. Systemic administration of[125I]NGF (200 ng) to adult rats resulted in no accumulation in SGG or celiac ganglion prior to 3 h, with subsequent rapid accumulation by 6 h and a rapid fall in radioactivity after 12 h. A similar time course was seen in 5-day-old rats, although the time curve was shifted slightly toward shorter time. The radioactivity in ganglia co-migrated with native NGF by SDS gell electrophoresis. Cytochrome c of comparable specific activity was not transported, and NGF did not stimulate the uptake and transport of cytochrome c. The retrograde transport of[125I]NGF was inhibited by the co-administration of biologically active, but not inactive, oxidized derivatives of NGF. By any route of administration, a significant percentage of the transported[125I]NGF was found in a purified nuclear fraction of the ganglia. Coupled with previous observations of specific nuclear NGF receptors in embryonic chick and sympathetic ganglia, this suggests that, after internalization and retrograde transport, NGF may directly act on the nucleus to produce at least some of its effects on the responsive cell.  相似文献   

4.
I A Hendry 《Brain research》1977,134(2):213-223
An injection of nerve growth factor (NGF) into one eye of neonatal rats results in an increase in the tyrosine hydroxylase activity of the ipsilateral superior cervical ganglion. This effect was seen maximally after the intraocular injection of a depot preparation of NGF linked to cellulose. The sympathetic neurones that innervate the eye can be identified by autoradiography after the retrograde axonal transport of either NGF or tetanus toxin labelled with [125I]iodine. It was only those cells having their terminals in the vicinity of the depot preparation. This demonstrates that NGF transported from the periphery to the cell bodies is effectively retained within the transporting cell and is not released to act on extracellular receptors within the ganglion. It is suggested that this specificity of action for NGF reaching the ganglion in this fashion is important during normal development in determining the survival of adrenergic neurones.  相似文献   

5.
The process of the retrograde transport of nerve growth factor (NGF) has been recharacterized using a high specific activity preparation of [125I]NGF. Most of the general conclusions reached in the previous studies of Hendry, Thoenen and co-workers have been confirmed. However, significant quantitative differences were noted. Intraocular (anterior eye chamber) administration of [125I]NGF (< 10 ng) resulted in accumulation in the superior cervical ganglia beginning at about 4 h. The ratio of radioactivity in the ipsilateral contralateral ganglia was 15–30:1. Maximal accumulation was seen at about 12 h in the hamster and 16 h in rats. This pattern was quite different from that seen in other tissues. The uptake system from the eye of the rat was saturable (half-maximal at 15 ng) with maximal accumulation of 35–40 pg/ganglion. Systemic administration of [125I]NGF (200 ng) to adult rats resulted in no accumulation in SGG or celiac ganglion prior to 3 h, with subsequent rapid accumulation by 6 h and a rapid fall in radioactivity after 12 h. A similar time course was seen in 5-day-old rats, although the time curve was shifted slightly toward shorter time. The radioactivity in ganglia co-migrated with native NGF by SDS gell electrophoresis. Cytochrome c of comparable specific activity was not transported, and NGF did not stimulate the uptake and transport of cytochrome c. The retrograde transport of [125I]NGF was inhibited by the co-administration of biologically active, but not inactive, oxidized derivatives of NGF.By any route of administration, a significant percentage of the transported [125I]NGF was found in a purified nuclear fraction of the ganglia. Coupled with previous observations of specific nuclear NGF receptors in embryonic chick and sympathetic ganglia, this suggests that, after internalization and retrograde transport, NGF may directly act on the nucleus to produce at least some of its effects on the responsive cell.  相似文献   

6.
Previous studies have shown that nerve growth factor (NGF) produces a selective induction of tyrosine hydroxylase (TH) in peripheral adrenergic neurons and that NGF is transported retrogradely with a high selectivity from the adrenergic nerve terminals to the perikaryon. In order to investigate the biological importance of retrograde NGF transport, the following experiments have been performed; (a) effect of NGF on TH activity in superior cervical ganglia (SCG) after unilateral injection into the anterior eye chamber and the submaxillary gland; and (b) effect of systemic injection of NGF on TH activity in SCG after blockage of retrograde axonal transport by axotomy. After unilateral injection of NGF into the anterior eye chamber and submaxillary gland of both 8-10-day-old rats and adult mice, the increase in TH activity in the SCG was considerably larger on the injected than on the non-injected side although the adrenergic neurons supplying the two organs do not account for more than 25% of the total number of adrenergic neurons in the SCG. A direct diffusion mechanism could be excluded by the fact that unilateral local injection of [125 I] produced no significant side difference in the accumulation of radioactivity in the SCG 2 after injection whereas after 14 h there was a several-fold difference between the injected and non-injected side. Moreover, the nodose ganglia which are located very close to the SCG exhibited no statistically significant difference in the accumulation of radioactivity at any time. Forty-eight hours after subcutaneous injections of 10 mg/kg of NGF the increase in TH activity of the SCG amounted to 154% on the intact side and to 92% on the axotomized side. However, these experiments do not permit decisions about the extent the axotomy, as such, impaired the response to NGF. It is concluded that the biological effect of NGF results to a considerable extent, from the moiety which reaches the cell body by retrograde transport from the nerve terminals.  相似文献   

7.
Administration of NGF to newborn and adult rats elicits a selective increase in TH and DBH both in sympathetic ganglia and adrenal medulla. This effect does not depend on intact preganglionic cholinergic fibers. The augmented enzyme activity results from enhanced enzyme synthesis since it can be abolished by cycloheximide and NGF has been shown to enhance the incorporation of [3H]leucine into DBH molecules. The responsiveness of the adrenal medulla to NGF is also supported by light and electron microscopic autoradiograms which show that intravenously injected 125I-NGF is accumulated with high selectivity in adrenal chromaffin as compared to adjacent adrenal cortical cells. In spite of the many similarities between the response of the adrenergic neurons and adrenal chromaffin cells to NGF, there are also two distinct differences. (a) In newborn rats the ratio between the TH increase effected by a single and 10 subsequent daily injections of NGF is 1:2 in the adrenal medulla and 1:7 in the superior cervical ganglia. (b) If adrenal medullae are transferred to organ culture after intravenous injection of NGF, maximal TH response is initiated 60-90 min after NGF administration. In superior cervical ganglia only a half-maximal response is initiated at that time. After a stationary phase a second increase starts after about 6 h to reach the maximum after 12 h. The biphasic time course of the initiation of TH induction by NGF in sympathetic ganglia is in agreement with the time course of 125I-NGF accumulation after intravenous injection27 reflecting the moiety of NGF reaching the cell bodies of the adrenergic neurons directly by the blood stream (initial accumulation) and by retrograde axonal transport (second phase).  相似文献   

8.
Selective, highly efficient uptake of [125I]NGF by nerve terminals followed by retrograde axonal transport, and specific induction of tyrosine hydroxylase by NGF are well known phenomena in peripheral adrenergic neurons of adult rats. In the present study these parameters were used in order to detect possible interactions of NGF with central catecholaminergic neurons. No selective retrograde transport of [125I]NGF could be detected by light microscopic autoradiography from the caudate nucleus to the dopaminergic neurons in the substantia nigra or from the hippocampus to the noradrenergic nerve cells of the locus coeruleus. Biochemically, no change in tyrosine hydroxylase activity could be observed for up to 3 days after injection of either NGF, anti-NGF antibodies, or control proteins close to the nerve cell bodies in the substantia nigra or the locus coeruleus. These data suggest a fundamental difference between central and peripheral adrenergic neurons with regard to their responsiveness of NGF.  相似文献   

9.
To investigate the distribution of nerve growth factor (NGF) receptors on peripheral and central axons, [125I]NGF was injected into the sciatic nerve or spinal cord of adult rats. Accumulation of [125I]NGF in lumbar dorsal root ganglia was monitored by gamma emission counting and radioautography. [125I]NGF, injected endoneurially in small quantities, was taken into sensory axons by a saturable process and was transported retrogradely to their cell bodies at a maximal rate of 2.5 to 7.5 mm/hr. Because very little [125I]NGF reached peripheral terminals, the results were interpreted to indicate that receptors for NGF are present on nonterminal segments of sensory axons. The specificity and high affinity of NGF uptake were illustrated by observations that negligible amounts of gamma activity accumulated in lumbar dorsal root ganglia after comparable intraneural injection of [125I] cytochrome C or [125I]oxidized NGF. Similar techniques were used to demonstrate avid internalization and retrograde transport of [125I]NGF by intraspinal axons arising from dorsal root ganglia. Following injection of [125I]NGF into lumbar or cervical regions of the spinal cord, neuronal perikarya were clearly labeled in radioautographs of lumbar dorsal root ganglia. Sites for NGF uptake on primary sensory neurons in the adult rat are not restricted to peripheral axon terminals but are extensively distributed along both peripheral and central axons. Receptors on axons provide a mechanism whereby NGF supplied by glia could influence neuronal maintenance or axonal regeneration.  相似文献   

10.
Experiments were carried out to determine if stimuli which augment preganglionic nerve activity to sympathetic neurons, and thereby cause trans-synaptic induction, increase the retrograde transport of nerve growth factor (NGF). It was found that nerve activity had no effect on retrograde transport of [125I]NGF. It was found, however, that reserpine decreased retrograde transport of [125I]NGF and this inhibition was characterized. Reserpine decreased the maximal accumulation of intravenously administered [125I]NGF in superior cervical ganglia (SCG) by about 60%. It also caused a distinct shift in the time course of accumulation so that maximal accumulation was seen 12 h after [125I]NGF injection rather than at 9 h as in control animals. Reserpine had no effect on retrograde transport in sensory neurons. Dose--response curves showed that maximal inhibition occurred with doses of reserpine of 2.5 mg/kg i.p. and that reserpine was not able to completely block transport at any dose. The maximal inhibition of retrograde transport was achieved within 30 min of reserpine administration and inhibitory activity was unchanged for 36 h. The ability of sympathetic neurons to transport [125I]NGF subsequently recovered and was normal 96 h after reserpine administration. The inhibitory effect of reserpine appears to be due to an action at or very near to the nerve terminal since it was effective at reducing NGF transport at very low doses (0.33 microgram) when co-administered directly into the eye with [125I]NGF. An action of reserpine at the nerve terminal was further suggested by the inability of reserpine to affect transport if the drug was given 4 h after [125I]NGF administration. Based upon these data, it is suggested that there may be two pools of retrogradely transported NGF and that only more rapidly turning over pool is reserpine-sensitive. This pool may represent the retrogradely moving synaptic vesicles or some derivative of the vesicles.  相似文献   

11.
Experiments were carried out to determine if stimuli which augment preganglionic nerve activity to sympathetic neurons, and thereby cause trans-synaptic induction, increase the retrograde transport of nerve growth factor (NGF). It was found that nerve activity had no effect on retrograde transport of [125I]NGF. It was found, however, that reserpine decreased retrograde transport of [125I]NGF and this inhibition was characterized. Reserpine decreased the maximal accumulation of intravenously administered[125I]NGF in superior cervical ganglia (SCG) by about 60%. It also caused a distinct shift in the time course of accumulation so that maximal accumulation was seen 12 h after [125I]NGF injection rather than at 9 h as in control animals. Reserpine had no effect on retrograde transport in sensory neurons. Dose-response curves showed that maximal inhibition occurred with doses of reserpine of 2.5 mg/kg i.p. and that reserpine was not able to completely block transport at any dose.The maximal inhibition of retrograde transport was achieved within 30 min of reserpine administration and inhibitory activity was unchanged for 36 h. The ability of sympathetic neurons to transport [125I]NGF subsequently recovered and was normal 96 h after reserpine administration. The inhibitory effect of reserpine appears to be due to an action at or very near to the nerve terminal since it was effective at reducing NGF transport at very low doses (0.33 μg) when co-administered directly into the eye with [125I]NGF. An action of reserpine at the nerve terminal was further suggested by the inability of reserpine to affect transport if the drug was given 4 h after [125I]NGF administration. Based upon these data, it is suggested that there may be two pools of retrogradely transported NGF and that only more rapidly turning over pool is reserpine-sensitive. This pool may represent the retrogradely moving synaptic vesicles or some derivative of the vesicles.  相似文献   

12.
Previous experiments have shown that nerve growth factor (NGF) enhances regeneration of goldfish optic nerve after local application of NGF at the site of the lesion. However, the site and mechanism of action of NGF are not yet known. One possibility is that NGF is taken up at the site of the lesion and retrogradely transported to the cell bodies of the retinal ganglion cells and thereby exerts its trophic effects. The present work was carried out to assess the role of retrograde transport of NGF in this enhanced regeneration of goldfish retinal ganglion cells. In intact retinal ganglion cells of the goldfish, 125I-labeled NGF was found not to be retrogradely transported from the optic tectum to the retina, suggesting that retinal ganglion cells do not possess specific NGF receptors. However, if [125I]NGF was injected at the site of an optic nerve lesion at the time of lesion, [125I]NGF was retrogradely transported from the site of a lesion of the optic nerve to the cell body of retinal ganglion cells. The accumulated radioactivity was shown to be intact NGF by SDS-PAGE. The ability of NGF to decrease the time required for recovery of visual function was observed only when NGF was administered at the time of the injury. Likewise, no transport of [125I]NGF was observed when it was injected at the crush site 16 hr or longer after crush. Thus, there is a temporal correlation between the ability of intact [125I]NGF to be retrogradely transported from a lesion site to the retina and the regenerative effect of NGF. Autoradiography showed that the [125I]NGF accumulated only in retinal ganglion cells. The transport of NGF in the lesioned goldfish visual system was not specific for NGF in that other proteins (cytochrome c, bovine serum albumin) were transported equally well. Likewise, transport of [125I]NGF was not prevented by concomitant administration of excess unlabeled NGF. The retrograde transport of [125I]NGF therefore was not selective and did not appear to be mediated by specific NGF receptors in this system. This nonspecific transport of [125I]NGF did not occur in the axotomized spinal motor neurons in the neonatal or adult rat or in the newt. However, receptor-mediated transport is seen in lesioned sensory neurons in both species.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The autoradiographic localization of [125I]alpha-bungarotoxin binding sites on primary sensory fibres was investigated. Nicotinic alpha-bungarotoxin binding sites were localized to a small sub-population of large dorsal root ganglion cells in the rat, monkey, cat and human dorsal root ganglia. Ligation of the sciatic nerve or dorsal root in the rat resulted in an anterograde accumulation of binding sites proximal to the dorsal root ganglion, and a small retrograde accumulation. Unilateral dorsal root section in the rat produced a loss of toxin binding sites mainly within lamina III of the dorsal horn. These results suggest that nicotinic alpha-bungarotoxin binding sites manufactured in large dorsal root ganglion cell bodies are transported both centrally to the spinal cord and also peripherally.  相似文献   

14.
It has been proposed that the drugs (6-hydroxydopamine, guanethidine, vinblastine) which are known to destroy sympathetic neurons in neonatal animals do so by preventing the accumulation of retrogradely transported nerve growth factor (NGF). It was found, consistent with the proposal, that administration of 6-hydroxydopamine (100 mg/kg s.c.) or vinblastine (0.4 mg/kg s.c.) 16 h prior to the administration of [125I]NGF complete prevented the accumulation of retrogradely transported [125I]NGF in superior cervical ganglia of neonatal rats. Administration of 6-hydroxydopamine or vinblastine to adult rats (where it does not cause sympathetic neuron cell death) did not completely prevent the retrograde transport of NGF, although 6-hydroxydopamine produced an alteration of the time course of accumulation (early times unaffected, later times depressed). The administration of guanethidine to adult rats (50 mg/kg/day) produced a modest decrease in the accumulation of NGF (40-60%). It would appear, however, that this decrease cannot account for the cytotoxic effects of guanethidine since: (1) sub-cytotoxic doses of guanethidine and non-cytotoxic guanidinium blocking agents also produce modest decreases in the retrograde transport in NGF; and (2) the retrograde transport of [125I]NGF is not affected in neonatal animals until after the neurons are clearly damaged. Hence, the data are entirely consistent with the hypothesis that NGF deprivation caused by 6-hydroxydopamine and vinblastine is the mechanism of the cytotoxic effects of these drugs on sympathetic neurons in neonatal animals. Guanethidine destroys sympathetic neurons by some other mechanism.  相似文献   

15.
The autoradiographic localization of [125I]α-bungarotoxin binding sites on primary sensory fibres was investigated. Nicotinic α-bungarotoxin binding sites were localized to a small sub-population of large dorsal root ganglion cells in the rat, monkey, cat and human dorsal root ganglia. Ligation of the sciatic nerve or dorsal root in the rat resulted in an anterograde accumulation of binding sites proximal to the dorsal root ganglion, and a small retrograde accumulation. Unilateral dorsal root section in the rat produced a loss of toxin binding sites mainly within lamina III of the dorsal horn. These results suggest that nicotinic α-bungarotoxin binding sites manufactured in large dorsal root ganglion cell bodies are transported both centrally to the spinal cord and also peripherally.  相似文献   

16.
In the present experiments the uptake and retrograde axonal transport of antibodies to dopamine beta-hydroxylase (DBH) in adrenergic neurons was studied. When partially purified labelled antibodies to DBH were injected unilaterally into the vicinity of the adrenergic nerve terminals in the iris, radioactive substances accumulated preferentially in the superior cervical ganglia of the injected. By SDS (sodium dodecyl sulfate) gel electrophoresis and immunoprecipitation it could be shown that the accumulated radioactivity in the superior cervical ganglion represented antibodies to DBH. This retrograde accumulation was greatly reduced by colchicine, axotomy or destruction of the adrenergic nerve terminals by 6-hydroxydopamine. The rate of retrograde transport was the same as that of nerve growth factor (NGF) and tetanus toxin in sympathetic neurons. The retrograde transport of antibodies was confined to sympathetic neurons and could not be detect in either sensory or motor neurons.  相似文献   

17.
Specificity of the retrograde axonal transport of nerve growth factor   总被引:16,自引:0,他引:16  
The specificity of the retrograde axonal transport of nerve growth factor (NGF) has been investigated by injecting125I-labelled NGF and similar proteins (both with respect to molecular weight and electrical charge at physiological pH) into the anterior eye chamber of adult mice. Previous studies have shown that the difference between the accumulation of radioactivity in the superior cervical ganglion of the injected and non-injected sides is a measure for retrograde axonal transport. Of all the proteins studied (NGF, cytochrome c, insulin, horseradish peroxidase, ovalbumin, bovine albumin, ferritin), NGF was the only which exhibited a statistically significant (2–3 fold) difference between injected and non-injected sides. The specificity of the retrograde transport of NGF was further supported by the finding that relatively small chemical changes, such as oxidation of the tryptophan moieties of the NGF molecule, resulted in a marked reduction of retrograde transport.It is concluded that the system for providing information to the cell body from the adrenergic nerve terminals in the form of NGF is highly specific, and that this specificity does not depend on general physico-chemical properties of the molecule such as size of the molecule and electrical charge at physiological pH. However, the information available so far does not allow one to decide as to whether the selectivity resides in the transport system itself or in the specificity of the uptake mechanism at the nerve terminals.  相似文献   

18.
The retrograde axonal transport of intravenously administered [125I]nerve growth factor ([125I]NGF) was examined in ileal mesenteric nerves maintained for short periods in vitro. [125I]NGF was injected systemically, and at various times thereafter mesenteric pedicles were ligated and incubated in vitro in Krebs-Henseleit medium under a number of different conditions. Retrogradely transported [125I]NGF began to accumulate distal to the ligature after an initial lag period and increased in a linear fashion for 3-4 h. The amount of retrogradely transported [125I]NGF was proportional to the length of the ileum innervated by each pedicle, which allowed for comparison of ileal segments of different lengths. Retrograde axonal transport of [125I]NGF was inhibited by vinblastine, colchicine and incubation in the cold, and was decreased by agents that interfere with oxidative or glycolytic metabolism. The accumulation of retrogradely transported [125I]NGF in ileal mesenteric nerves of 1-9 day streptozotocin diabetic animals placed in an in vitro bath containing normal (5.5 mM) glucose was decreased 40% compared to control animals. The induction of diabetes in vivo resulted in a greater decrease in the early phases of [125I]NGF export from ileal mesenteric nerve terminals compared to later phases. Ileal mesenteric nerve segments derived from untreated controls were incubated in vitro in media containing increased concentrations of glucose (27.5 and 50 mM) without reproducing the NGF transport defect found in diabetic animals.  相似文献   

19.
It has been proposed that the drugs (6-hydroxydopamine, guanethidine, vinblastine) which are known to destroy sympathetic neurons in neonatal animals do so by preventing the accumulation of retrogradely transported nerve growth factor (NGF). It was found, consistent with the proposal, that administration of 6-hydroxydopamine (100 mg/kg s.c.) or vinblastine (0.4 mg/kg s.c.) 16 h prior to the administration of [125I]NGF completely prevented the accumulation of retrogradely transported [125I]NGF in superior cervical ganglia of neonatal rats. Administration of 6-hydroxydopamine or vinblastine to adult rats (where it does not cause sympathetic neuron cell death) didnot completely prevent the retrograde transport of NGF, although 6-hydroxydopamine produced an alteration of the time course of accumulation (early times unaffected, later times depressed). The administration of guanethidine to adult rats (50 mg/kg/day) produced a modest decrease in the accumulation of NGF (40–60%). It would appear, however, that this decrease cannot account for the cytotoxic effects of guanethidine since: (1) sub-cytotoxic doses of guanethidine and non-cytotoxic guanidinium blocking agents also produce modest decreases in the retrograde transport in NGF; and (2) the retrograde transport of [125I]NGF is not affected in neonatal animals until after the neurons are clearly damaged. Hence, the data are entirely consistent with the hypothesis that NGF deprivation caused by 6-hydroxydopamine and vinblastine is the mechanism of the cytotoxic effects of these drugs on sympathetic neurons in neonatal animals. Guanethidine destroys sympathetic neurons by some other mechanism.  相似文献   

20.
Anterograde axonal transport of phospholipids occurs at a rate of several hundred millimeters per day. However, although labeled precursors are incorporated into phospholipids in the neuronal cell bodies within several hours, these newly synthesized phospholipids are committed to transport over a much longer period of time. Thus, maximal accumulation of radioactive lipids in axons and nerve endings does not occur for several days (e.g., 4 to 7 days in rat optic tract and sciatic nerve). We have now investigated the retrograde axonal transport of endogenous phospholipid molecules in sensory neurons of rat sciatic nerve. Labeled phospholipids were delivered to axons and nerve endings of these cells by anterograde axonal transport following injection of [2-3H] glycerol into the L5 dorsal root ganglion. At various times following precursor injection two ligatures, 9 mm apart, were applied to the mid-thigh region of the sciatic nerve. Animals were sacrificed 3 to 48 hr after nerve ligation, nerves were dissected and sectioned into 5-mm segments, and phospholipid radioactivity in each segment was determined. The time-dependent accumulation of labeled phospholipids distal to the distal ligature demonstrated their retrograde axonal transport. The time course of retrograde transport for these phospholipids was more prolonged and peaked several days later than the time course for the anterograde transport phase. Further information regarding the relationship between radioactive phospholipids arriving at the nerve endings by anterograde transport, and their subsequent "turn-around" and retrograde transport back to the nerve cell bodies, was obtained by analyzing the phospholipid class label distribution of both of these transport phases at various times following precursor injection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号